A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property

Результат исследований: Научные публикации в периодических изданияхстатья

Аннотация

Abstract: The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.

Язык оригиналаанглийский
Страницы (с-по)243-249
Число страниц7
ЖурналMathematical Notes
Том108
Номер выпуска1-2
DOI
СостояниеОпубликовано - 1 июл 2020

Предметные области Scopus

  • Математика (все)

Fingerprint Подробные сведения о темах исследования «A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать