ПОТЕНЦИАЛЬНОЕ ОБТЕКАНИЕ ПЛОСКИХ ТЕЛ С КОНТУРАМИ, БЛИЗКИМИ К КРУГОВЫМ

Галина Анатольевна Кутеева, Георгий Васильевич Бунин

Результат исследований: Научные публикации в периодических изданияхстатья

Выдержка

В работе изучено потенциальное обтекание твердого тела, по форме близкого к круговому цилиндру радиуса R = 1, потоком идеальной несжимаемой жидкости с заданными давлением и скоростью на бесконечности (p∞ и V∞ соответственно) и плотностью ρ. При помощи вариационного принципа конформных отображений в общем случае получен комплексный потенциал обтекания контуров, близких к круговым, совпадающий с потенциалом М.А. Лаврентьева. Проведено сравнение результатов с классическим решением задачи обтекания кругового цилиндра и с частным случаем поставленной задачи. Вычислен главный вектор сил, действующий на тело, и главный момент, если главный вектор сил равен нулю.
Язык оригиналарусский
Страницы (с-по)12-27
Число страниц16
ЖурналКомпьютерные методы в механике сплошной среды. Труды семинара
СостояниеОпубликовано - 10 дек 2017

Цитировать

@article{966bb75c4db24b9fb1a42578b5499a13,
title = "ПОТЕНЦИАЛЬНОЕ ОБТЕКАНИЕ ПЛОСКИХ ТЕЛ С КОНТУРАМИ, БЛИЗКИМИ К КРУГОВЫМ",
abstract = "В работе изучено потенциальное обтекание твердого тела, по форме близкого к круговому цилиндру радиуса R = 1, потоком идеальной несжимаемой жидкости с заданными давлением и скоростью на бесконечности (p∞ и V∞ соответственно) и плотностью ρ. При помощи вариационного принципа конформных отображений в общем случае получен комплексный потенциал обтекания контуров, близких к круговым, совпадающий с потенциалом М.А. Лаврентьева. Проведено сравнение результатов с классическим решением задачи обтекания кругового цилиндра и с частным случаем поставленной задачи. Вычислен главный вектор сил, действующий на тело, и главный момент, если главный вектор сил равен нулю.",
author = "Кутеева, {Галина Анатольевна} and Бунин, {Георгий Васильевич}",
year = "2017",
month = "12",
day = "10",
language = "русский",
pages = "12--27",
journal = "Компьютерные методы в механике сплошной среды. Труды семинара",
issn = "2218-7421",

}

ПОТЕНЦИАЛЬНОЕ ОБТЕКАНИЕ ПЛОСКИХ ТЕЛ С КОНТУРАМИ, БЛИЗКИМИ К КРУГОВЫМ. / Кутеева, Галина Анатольевна; Бунин, Георгий Васильевич.

В: Компьютерные методы в механике сплошной среды. Труды семинара, 10.12.2017, стр. 12-27.

Результат исследований: Научные публикации в периодических изданияхстатья

TY - JOUR

T1 - ПОТЕНЦИАЛЬНОЕ ОБТЕКАНИЕ ПЛОСКИХ ТЕЛ С КОНТУРАМИ, БЛИЗКИМИ К КРУГОВЫМ

AU - Кутеева, Галина Анатольевна

AU - Бунин, Георгий Васильевич

PY - 2017/12/10

Y1 - 2017/12/10

N2 - В работе изучено потенциальное обтекание твердого тела, по форме близкого к круговому цилиндру радиуса R = 1, потоком идеальной несжимаемой жидкости с заданными давлением и скоростью на бесконечности (p∞ и V∞ соответственно) и плотностью ρ. При помощи вариационного принципа конформных отображений в общем случае получен комплексный потенциал обтекания контуров, близких к круговым, совпадающий с потенциалом М.А. Лаврентьева. Проведено сравнение результатов с классическим решением задачи обтекания кругового цилиндра и с частным случаем поставленной задачи. Вычислен главный вектор сил, действующий на тело, и главный момент, если главный вектор сил равен нулю.

AB - В работе изучено потенциальное обтекание твердого тела, по форме близкого к круговому цилиндру радиуса R = 1, потоком идеальной несжимаемой жидкости с заданными давлением и скоростью на бесконечности (p∞ и V∞ соответственно) и плотностью ρ. При помощи вариационного принципа конформных отображений в общем случае получен комплексный потенциал обтекания контуров, близких к круговым, совпадающий с потенциалом М.А. Лаврентьева. Проведено сравнение результатов с классическим решением задачи обтекания кругового цилиндра и с частным случаем поставленной задачи. Вычислен главный вектор сил, действующий на тело, и главный момент, если главный вектор сил равен нулю.

UR - https://elibrary.ru/item.asp?id=30713443

UR - http://seminar.16mb.com/file99.htm

M3 - статья

SP - 12

EP - 27

JO - Компьютерные методы в механике сплошной среды. Труды семинара

JF - Компьютерные методы в механике сплошной среды. Труды семинара

SN - 2218-7421

ER -