О сходимости степеней матрицы обобщенного линейного оператора в идемпотентной алгебре

Результат исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике

Аннотация

Рассматривается обобщенный линейный оператор, действующий на векторном пространстве над коммутативным полукольцом с нулем и единицей, в котором сложение является идемпотентным, а для каждого ненулевого элемента существует обратный по умножению. Представлен ряд полезных неравенств для нормы, следа и собственного числа матрицы. На основе полученных неравенств предложено простое доказательство теорем сходимости скорости роста нормы и следа степеней произвольного оператора к его спектральному радиусу при условии, что показатель степени стремиться к бесконечности. Показано, что общая формула для спектрального радиуса может быть получена как некоторое следствие указанных теорем.
Язык оригиналарусский
Название основной публикацииПроблемы математического анализа. Вып. 34
РедакторыН. Н. Уральцева
Страницы69-77
СостояниеОпубликовано - 2006

Предметные области Scopus

  • Алгебра и теория чисел
  • Анализ

Цитировать