О существовании решения граничной задачи Коши

Результат исследований: Научные публикации в периодических изданияхстатьярецензирование

1 Загрузки (Pure)

Аннотация

Рассматривается обыкновенное дифференциальное уравнение первого порядка, разрешенное относительно производной. Предполагается, что его правая часть определена и непрерывна на множестве, состоящем из области двумерного евклидова пространства и некоторой части ее границы. Известно, что теорема Пеано для любой точки области гарантирует существование решения задачи Коши на отрезке Пеано. В статье методом ломаных Эйлера на некотором аналоге отрезка Пеано доказано существование решения задачи Коши, поставленной в граничной точке области во всех случаях, позволяющих применить указанный метод. Также приведены условия, гарантирующие отсутствие решения граничной задачи Коши.
Язык оригиналарусский
Страницы (с-по)277-288
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Номер выпуска2
DOI
СостояниеОпубликовано - 1 апр 2020

Предметные области Scopus

  • Математика (все)

Цитировать