Об одноранговой аппроксимации положительных матриц с помощью методов тропической оптимизации

Результат исследований: Научные публикации в периодических изданияхстатьянаучнаярецензирование

Выдержка

В статье развивается подход на основе применения методов тропической оптимизации к задаче одноранговой аппроксимации положительных матриц в метрике Чебышёва в логарифмической шкале. Теория и методы тропической оптимизации составляют один из разделов тропической математики, которая изучает полукольца и полуполя с идемпотентным сложением и их приложения. Для многих практически важных задач методы тропической оптимизации позволяют найти полное решение задачи в явном виде в замкнутой форме. В этой работе рассматриваемая задача аппроксимации приводится к многомерной задаче тропической оптимизации, которая в общем случае имеет известное решение. Предлагается новое решение задачи для случая матриц без нулевых столбцов или строк, которое представляется в более простой форме. На основе этого результата строится новое полное решение задачи одноранговой аппроксимации положительных матриц. Для иллюстрации полученных результатов приводится пример решения в явном виде задачи аппроксимации произвольной положительной матрицы второго порядка.
Язык оригиналарусский
Страницы (с-по)208-220
Число страниц13
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том6 (64)
Номер выпуска2
СостояниеОпубликовано - 2019

Ключевые слова

  • тропическая математика
  • тропическая оптимизация
  • max-алгебра
  • одноранговая аппроксимация матриц
  • log-чебышёвская функция расстояния

Предметные области Scopus

  • Алгебра и теория чисел
  • Теория оптимизации

Цитировать

@article{36df587dcf624c70b3f47720e00f48c5,
title = "Об одноранговой аппроксимации положительных матриц с помощью методов тропической оптимизации",
abstract = "В статье развивается подход на основе применения методов тропической оптимизации к задаче одноранговой аппроксимации положительных матриц в метрике Чебышёва в логарифмической шкале. Теория и методы тропической оптимизации составляют один из разделов тропической математики, которая изучает полукольца и полуполя с идемпотентным сложением и их приложения. Для многих практически важных задач методы тропической оптимизации позволяют найти полное решение задачи в явном виде в замкнутой форме. В этой работе рассматриваемая задача аппроксимации приводится к многомерной задаче тропической оптимизации, которая в общем случае имеет известное решение. Предлагается новое решение задачи для случая матриц без нулевых столбцов или строк, которое представляется в более простой форме. На основе этого результата строится новое полное решение задачи одноранговой аппроксимации положительных матриц. Для иллюстрации полученных результатов приводится пример решения в явном виде задачи аппроксимации произвольной положительной матрицы второго порядка.",
keywords = "тропическая математика, тропическая оптимизация, max-алгебра, одноранговая аппроксимация матриц, log-чебышёвская функция расстояния",
author = "Кривулин, {Николай Кимович} and Романова, {Елизавета Юрьевна}",
note = "Кривулин Н.К., Романова Е.Ю. Об одноранговой аппроксимации положительных матриц с помощью методов тропической оптимизации // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2019. Т. 6 (64). Вып. 2. С. 208–220.",
year = "2019",
language = "русский",
volume = "6 (64)",
pages = "208--220",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

TY - JOUR

T1 - Об одноранговой аппроксимации положительных матриц с помощью методов тропической оптимизации

AU - Кривулин, Николай Кимович

AU - Романова, Елизавета Юрьевна

N1 - Кривулин Н.К., Романова Е.Ю. Об одноранговой аппроксимации положительных матриц с помощью методов тропической оптимизации // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2019. Т. 6 (64). Вып. 2. С. 208–220.

PY - 2019

Y1 - 2019

N2 - В статье развивается подход на основе применения методов тропической оптимизации к задаче одноранговой аппроксимации положительных матриц в метрике Чебышёва в логарифмической шкале. Теория и методы тропической оптимизации составляют один из разделов тропической математики, которая изучает полукольца и полуполя с идемпотентным сложением и их приложения. Для многих практически важных задач методы тропической оптимизации позволяют найти полное решение задачи в явном виде в замкнутой форме. В этой работе рассматриваемая задача аппроксимации приводится к многомерной задаче тропической оптимизации, которая в общем случае имеет известное решение. Предлагается новое решение задачи для случая матриц без нулевых столбцов или строк, которое представляется в более простой форме. На основе этого результата строится новое полное решение задачи одноранговой аппроксимации положительных матриц. Для иллюстрации полученных результатов приводится пример решения в явном виде задачи аппроксимации произвольной положительной матрицы второго порядка.

AB - В статье развивается подход на основе применения методов тропической оптимизации к задаче одноранговой аппроксимации положительных матриц в метрике Чебышёва в логарифмической шкале. Теория и методы тропической оптимизации составляют один из разделов тропической математики, которая изучает полукольца и полуполя с идемпотентным сложением и их приложения. Для многих практически важных задач методы тропической оптимизации позволяют найти полное решение задачи в явном виде в замкнутой форме. В этой работе рассматриваемая задача аппроксимации приводится к многомерной задаче тропической оптимизации, которая в общем случае имеет известное решение. Предлагается новое решение задачи для случая матриц без нулевых столбцов или строк, которое представляется в более простой форме. На основе этого результата строится новое полное решение задачи одноранговой аппроксимации положительных матриц. Для иллюстрации полученных результатов приводится пример решения в явном виде задачи аппроксимации произвольной положительной матрицы второго порядка.

KW - тропическая математика

KW - тропическая оптимизация

KW - max-алгебра

KW - одноранговая аппроксимация матриц

KW - log-чебышёвская функция расстояния

M3 - статья

VL - 6 (64)

SP - 208

EP - 220

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 2

ER -