Интерполяция по периодам в плоской области

    Результат исследований: Научные публикации в периодических изданияхстатья

    Выдержка

    Let Ω ⊂ ℝ2 be a countably connected domain. With any closed differential form of degree 1 in Ω with components in L2(Ω) one associates the sequence of its periods around the holes in Ω that is around the bounded connected components of ℝ2 \ Ω. For which Ω the collection of such period sequences coincides with ℓ2 We give an answer in terms of metric properties of holes in Ω.

    Язык оригиналарусский
    Страницы (с-по)597-669
    Число страниц73
    ЖурналSt. Petersburg Mathematical Journal
    Том28
    Номер выпуска5
    DOI
    СостояниеОпубликовано - 1 янв 2017

    Предметные области Scopus

    • Анализ
    • Геометрия и топология

    Цитировать

    @article{82029a6cc5cf4e4182560f5a23d64031,
    title = "Интерполяция по периодам в плоской области",
    abstract = "Let Ω ⊂ ℝ2 be a countably connected domain. With any closed differential form of degree 1 in Ω with components in L2(Ω) one associates the sequence of its periods around the holes in Ω that is around the bounded connected components of ℝ2 \ Ω. For which Ω the collection of such period sequences coincides with ℓ2 We give an answer in terms of metric properties of holes in Ω.",
    keywords = "Harmonic functions, Infinitely-connected domain, Interpolation, Periods of forms, Riesz basis",
    author = "Dubashinskiy, {M. B.}",
    year = "2017",
    month = "1",
    day = "1",
    doi = "10.1090/spmj/1465",
    language = "русский",
    volume = "28",
    pages = "597--669",
    journal = "St. Petersburg Mathematical Journal",
    issn = "1061-0022",
    publisher = "American Mathematical Society",
    number = "5",

    }

    Интерполяция по периодам в плоской области. / Dubashinskiy, M. B.

    В: St. Petersburg Mathematical Journal, Том 28, № 5, 01.01.2017, стр. 597-669.

    Результат исследований: Научные публикации в периодических изданияхстатья

    TY - JOUR

    T1 - Интерполяция по периодам в плоской области

    AU - Dubashinskiy, M. B.

    PY - 2017/1/1

    Y1 - 2017/1/1

    N2 - Let Ω ⊂ ℝ2 be a countably connected domain. With any closed differential form of degree 1 in Ω with components in L2(Ω) one associates the sequence of its periods around the holes in Ω that is around the bounded connected components of ℝ2 \ Ω. For which Ω the collection of such period sequences coincides with ℓ2 We give an answer in terms of metric properties of holes in Ω.

    AB - Let Ω ⊂ ℝ2 be a countably connected domain. With any closed differential form of degree 1 in Ω with components in L2(Ω) one associates the sequence of its periods around the holes in Ω that is around the bounded connected components of ℝ2 \ Ω. For which Ω the collection of such period sequences coincides with ℓ2 We give an answer in terms of metric properties of holes in Ω.

    KW - Harmonic functions

    KW - Infinitely-connected domain

    KW - Interpolation

    KW - Periods of forms

    KW - Riesz basis

    UR - http://www.scopus.com/inward/record.url?scp=85026303105&partnerID=8YFLogxK

    U2 - 10.1090/spmj/1465

    DO - 10.1090/spmj/1465

    M3 - статья

    AN - SCOPUS:85026303105

    VL - 28

    SP - 597

    EP - 669

    JO - St. Petersburg Mathematical Journal

    JF - St. Petersburg Mathematical Journal

    SN - 1061-0022

    IS - 5

    ER -