Approximation of convolutions of probability distributions by infinitely divisible distributions.

Зайцев, А. Ю. (Докладчик)

Деятельность: выступлениевыступление с приглашенным докладом/лекцией

Описание

доклад на международной конференции

Результаты

А.Н.Колмогоров (1956) поставил задачу оценки точности безгранично делимой аппроксимации распределений сумм независимых случайных величин, распределение которых сосредоточено на коротких интервалах длины τ<1/2 с точностью до малой вероятности p. Ограничение на распределения слагаемых является неасимптотическим аналогом классического условия бесконечной малости (пренебрежимости) в схеме серий независимых случайных величин. Оценка скорости приближений может быть рассмотрена как количественное уточнение классической теоремы Хинчина о множестве бесконечно делимых распределений как множестве предельных законов для распределений сумм, участвующих в схеме серий. А.Ю. Зайцев (1983) доказал, что в одномерном случае точность аппроксимации в метрике Леви имеет порядок p+τlog(1/τ), что значительно точнее как первоначального результата А.Н. Колмогорова, так и полученных позднее результатов других авторов. В качестве приближающих использовались так называемые сопровождающие безгранично делимые распределения. Более того, как показал Т. Арак, оценка оказалась правильной по порядку. Позднее А.Ю. Зайцев (1989) показал, что аналогичная оценка справедлива и в многомерном случае, причем вместо абсолютной константы в оценке появляется множитель c(d), зависящий только от размерности d. Многомерный аналог метрики Леви определялся так же, как расстояние Прохорова, только вместо произвольных борелевских множеств использовались параллелепипеды со сторонами, параллельными координатным осям. Основной результат доклада состоит в том, что вместо параллелепипедов в этом результате можно взять выпуклые многогранники. Доклад основан на совместной работе с Ф. Гётце и Д.Н. Запорожцем.
Период10 июн 201914 июн 2019
Название событияFourth Russian-Indian Joint Conference in Statistics and Probability, null
Тип мероприятияконференция
МестонахождениеSt.Petersburg, Российская Федерация
Степень признанияМеждународная