Антон Витальевич Ануфриев - Основной докладчик

Владимир Николаевич Коваленко - Докладчик

At the beginning of the 21st century, a new phase state of strongly interacting matter was established, known as the quark-gluon plasma (QGP) [1]. To study the formation of the QGP in collisions of heavy nuclei, the solution of a system of equations of relativistic hydrodynamics with a specific equation of state (EoS) is typically employed. In light of difficulties for non-zero baryonic potentials within Lattice QCD, various holographic models based on the well-known AdS/CFT duality have been proposed to obtain EoS for the QGP using the thermodynamic properties of the corresponding black brane in AdS5.
In the present work, a calibration method is proposed for the holographic EoS developed by I. Ya. Aref’eva’s theoretical group [2] to study QGP properties within the framework of relativistic hydrodynamics. Machine learning methods were applied to address the regression and optimization issues during the calibration of the relevant parameters using the LQCD results for quark masses that approximate the physical values [3]. The effect of matching the equation of state with the hadron gas equation [4] at low temperatures is shown. To account for the hadron strangeness in the holographic model, we use phenomenological hypotheses of the chemical potential on density relation derived from the hadron gas model [5] and the Fermi quark gas [6].
For practical applications in studying heavy-ion collisions, the corresponding holographic EoS was incorporated into the relativistic hydrodynamics packages MUSIC [7] and vHLLE [8].
The authors acknowledge Saint-Petersburg State University for a research project 103821868.

1. J. Adams et al. (STAR Collab), Experimental and Theoretical Challenges in the Search for the Quark-Gluon Plasma: The STAR Collaboration’s Critical Assessment of the Evidence from RHIC Collisions // Nucl. Phys. A 757 102 (2005)
2. I. Aref’eva, K. Rannu, P. Slepov, Holographic anisotropic model for light quarks with confinement-deconfinement phase transition // J. High Energ. Phys. 2021, 90 (2021).
3. M. Cheng et al., QCD equation of state with almost physical quark masses // Phys. Rev. D 77, 014511 (2008)
4. V. Vovchenko, H. Stoecker, Thermal-FIST: A package for heavy-ion collisions and hadronic equation of state // Comput. Phys. Commun. 244, 295 (2019)
5. V. Vovchenko, H. Stoecker, Thermal-FIST: A package for heavy-ion collisions and hadronic equation of state, Comput. Phys. Commun. 244, 295 (2019)
6. K.-il Kim, Y. Kim, S. H. Lee, Isospin Matter in AdS/QCD, Journal of the Korean Physical Society, 55 (2009), pp. 1381-1388
7. B. Schenke, S. Jeon, C. Gale, (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions // Phys. Rev. C 82, 014903 (2010)
8. Iu. Karpenko, P. Huovinen, M. Bleicher, A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions // Comput. Phys. Commun. 185 (2014), 3016
1 дек 20256 дек 2025

Событие (конференция)

ЗаголовокМеждународная конференция "Fields & Strings 2025"
Сокр. Заголовок"Fields Strings 2025"
Период1/12/256/12/25
Веб-адрес (URL-адрес)
МестоположениеМатематический институт им. В.А. Стеклова Российской академии наук, г. Москва
ГородМосква
Страна/TерриторияРоссийская Федерация
Степень признаниямеждународный уровень

ID: 143521994