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Model

N = {1, 2, 3} — players (neighboring industries or countries).

The players are of two types:

I — vulnerable player (or developed country)
II — nonvulnerable player (or developing country)

One nonvulnerable and two vulnerable players

Emissions ei (t) — strategy of player i

Pollution stock S dynamics:

Ṡ(t) = µ
∑
i∈N

ei (t)− εS(t), S(0) = S0, (1)

where µ > 0, ε > 0.
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Model

The nonvulnerable player maximizes

Wi =

∫ ∞
0

e−ρt(αiei (t)− 1

2
e2
i (t))dt. (2)

The vulnerable player’s objective function is

Wi =

∫ ∞
0

e−ρt(αiei (t)− 1

2
e2
i (t)− 1

2
βiS

2(t))dt, (3)

where αi > 0, βi > 0.

We use objective function (3) but any player with the parameters:

βi > 0 for vulnerable player
βi = 0 for nonvulnerable player

Two vulnerable players may be asymmetric.
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Different Scenarios

1 Noncooperative scenario, π1 = {{I}, {I}, {II}};
2 Cooperative scenario, π2 = {{I , I , II}};
3 Partially cooperative scenarios:

1 Case 1 (two developed countries cooperate): π3 = {{I , I}, {II}};
2 Case 2 (one developing and one developed country cooperate):
π4 = {{I , II}, {I}}.
Two variants: π41 = {{1, 2}, {3}} and π42 = {{1, 3}, {2}}.
Hereinafter, we refer to a general form of the coalition structure π4 if the result
is true for both structures π41 and π42 .
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NE under noncooperative scenario

Proposition 1

In the noncooperative scenario π1 = {{I}, {I}, {II}}, assuming an interior solution,
the feedback-Nash equilibrium is given by

enc1 (t) = α1, (4)

encj (t) = αj + µ(xjS
nc(t) + yj), j = 2, 3, (5)

where xj , yj , zj for j = 2, 3 satisfy the following system (given in the paper).
The corresponding equilibrium state trajectory is

Snc(t) =
µα123 + µ2y23

µ2x23 − ε
(e(µ2x23−ε)t − 1) + e(µ2x23−ε)tS0, (6)

where y23 = y2 + y3.
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NE under cooperative scenario

Proposition 2

In the cooperative scenario, when π2 = {I , I , II}, the players’ optimal feedback
strategies are given by

eci (t) = αi + µ(xcS
c(t) + yc), i ∈ N, (7)

where xc , yc are given in the paper. The cooperative state trajectory is

Sc(t) =
µα123 + 3µ2yc

3µ2xc − ε
(e(3µ2xc−ε)t − 1) + e(3µ2xc−ε)tS0. (8)

The steady-state emission stock is

Sc
∞ =

(ρ+ ε)µα123

(ε− 3µ2xc)(ρ+ ε− 3µ2xc)
, (9)

which is globally asymptotically stable.
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Partially Cooperative Scenarios

Case 1: {{I , I}, {II}} or {{2, 3}, {1}}

Player 1 aims to maximize
max
e1

W1(e1, e2, e3)

The objective of coalition {2, 3} is given by

max
e2,e3

(
W2(e1, e2, e3) + W3(e1, e2, e3)

)
s.t. state dynamics (1) with S(0) = S0.
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Partially Cooperative Scenarios

Proposition 3

Under partially cooperative scenario with coalition structure π3 = {{1}, {2, 3}},
the feedback-Nash equilibrium is given by

epc1

1 (t) = α1, (10)

epc1

i (t) = αi + µ(xc1S
pc1 (t) + yc1 ), i = 2, 3, (11)

where xc1 , yc1 , zc1 are given in the paper.
The corresponding Nash equilibrium trajectory under p.c.s. (case 1) is

Spc1 (t) =
µα123 + 2µ2yc1

2µ2xc1 − ε
(e(2µ2xc1

−ε)t − 1) + e(2µ2xc1
−ε)tS0. (12)

The steady-state emission stock is

Spc1
∞ =

(ρ+ ε)µα123

(ε− 2µ2xc1 )(ρ+ ε− 2µ2xc1 )
, (13)

which is globally asymptotically stable if 2µ2xc1 − ε < 0. 10 / 27



Partially Cooperative Scenarios

Case 2: {{I , II}, {I}} or {{1, 2}, {3}}

Player 3 aims to maximize
max
e3

W3(e1, e2, e3),

and an optimization problem of coalition {1, 2} is

max
e1,e2

(
W1(e1, e2, e3) + W2(e1, e2, e3)

)
,

where the payoff function Wi , i = 1, 2 is given by (2) and (3) respectively, s.t.
state dynamics (1) with S(0) = S0.
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Partially Cooperative Scenarios

Proposition 4

In the partial-cooperative scenario (case 2) with coalition structure
π41 = {{1, 2}, {3}}, the feedback-Nash equilibrium is given by

epc2

i (t) = αi + µ(xc2S
pc2 (t) + yc2 ), i = 1, 2 (14)

epc2

3 (t) = α3 + µ(xpc2

3c2
Spc2 (t) + y3c2 ), (15)

where xc2 , x3c2
, yc2 , y3c2

, zc2 , z3c2
are given in the paper. The state trajectory is

Spc2 (t) =
µα123 + µ2(2yc2 + y3c2

)

µ2(2xc2 + x3c2
)− ε

(e [µ2(2xc2
+x3c2

)−ε]t − 1) + e [µ2(2xc2
+x3c2

)−ε]tS0.

(16)
The steady-state emission stock is

Sc2
∞ =

µα123 + µ2y3c2
+ 2µ2yc2

ε− 2µ2xc2 − µ2x3c2

, (17)

which is globally asymptotically stable if µ2(2xc2 + x3c2
)− ε < 0. 12 / 27



Two stability concepts

Scenario or coalition structure is stable when any player will not increase her
payoff if she changes this structure in an individual way.

We consider two possibilities for a deviating player:

she can join any possible coalition without any restrictions (Nash stability)

the coalition to which the deviating player would like to join can block the
deviation if there exists at least one member who can lose by accepting the
deviator (individual stability)
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Definition 1

A coalition structure π = {B1, . . . ,Bm} is Nash stable (or simply, stable) if for any
player i ∈ N it holds that

W π
i ≥W π′

i for all π′ = {B(i)\{i},Bj ∪ {i}, π−B(i)∪Bj
},

where Bj ∈ π ∪∅, Bj 6= B(i), π−B(i)∪Bj
= π\{B(i) ∪ Bj}, and W π and W π′

are
vectors of players’ payoffs under π and π′ respectively.

Definition 2

A coalition structure π = {B1, . . . ,Bm} is individually stable if for any player i ∈ N
it holds that

W π
i ≥W π′′

i for all π′′ = {B(i)\{i},Bj ∪ {i}, π−B(i)∪Bj
} such that

W π′′

k ≥W π
k for all k ∈ Bj ,

where Bj ∈ π ∪∅, Bj 6= B(i), π−B(i)∪Bj
= π\{B(i) ∪ Bj}, and W π, W π′′

are
vectors of players’ payoffs under π and π′′ respectively.

14 / 27



Proposition 4 (Nash stability conditions)

In the differential game given by (1)–(3), the following coalition structures or
scenarios are stable or Nash stable if and only if the corresponding conditions given
in the table are satisfied:

Nonvul. Player 1 Vul. Player 2 Vul. Player 3

π1

{
Wπ1

1 ≥W
π41
1

Wπ1
1 ≥W

π42
1

{
Wπ1

2 ≥Wπ3
2

Wπ1
2 ≥W

π41
2

{
Wπ1

3 ≥Wπ3
3

Wπ1
3 ≥W

π42
3

π2 Wπ2
1 ≥Wπ3

1 Wπ2
2 ≥W

π41
2 Wπ2

3 ≥W
π42
3

π3 Wπ3
1 ≥Wπ2

1

{
Wπ3

2 ≥Wπ1
2

Wπ3
2 ≥W

π41
2

{
Wπ3

3 ≥Wπ1
3

Wπ3
3 ≥W

π42
3

π41

{
W

π41
1 ≥Wπ1

1

W
π41
1 ≥W

π42
1

{
W

π41
2 ≥Wπ1

2

W
π41
2 ≥Wπ3

2

W
π41
3 ≥Wπ2

3

π42

{
W

π42
1 ≥Wπ1

1

W
π42
1 ≥W

π41
1

W
π42
2 ≥Wπ2

2

{
W

π42
3 ≥Wπ1

3

W
π42
3 ≥Wπ3

3
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Proposition 5 (Individual stability conditions)

In the differential game given by (1)–(3), the following coalition structures or
scenarios are individually stable if and only if the corresponding conditions given in
the table are satisfied:

Nonvul. Player 1 Vul. Player 2 Vul. Player 3

π1




{
Wπ1

2 <W
π41
2

Wπ1
1 ≥W

π41
1

or Wπ1
2 ≥W

π41
2

{
Wπ1

3 <W
π42
3

Wπ1
1 ≥W

π42
1

or Wπ1
3 ≥W

π42
3




{
Wπ1

3 <Wπ3
3

Wπ1
2 ≥Wπ3

2

or Wπ1
3 ≥Wπ3

3
{
Wπ1

1 <W
π41
1

Wπ1
2 ≥W

π41
2

or Wπ1
1 ≥W

π41
1




{
Wπ1

2 <Wπ3
2

Wπ1
3 ≥Wπ3

3

or Wπ1
2 ≥Wπ3

2
{
Wπ1

1 <W
π42
1

Wπ1
3 ≥W

π42
3

or Wπ1
1 ≥W

π42
1

π2 Wπ2
1 ≥Wπ3

1 Wπ2
2 ≥W

π41
2 Wπ2

3 ≥W
π42
3

π3




Wπ3

2 <Wπ2
2

Wπ3
3 <Wπ2

3

Wπ3
1 ≥Wπ2

1

or Wπ3
2 ≥Wπ2

2

or Wπ3
3 ≥Wπ2

3



Wπ3
2 ≥Wπ1

2
{
Wπ3

1 <W
π41
1

Wπ3
2 ≥W

π41
2

or Wπ3
1 ≥W

π41
1



Wπ3
3 ≥Wπ1

3
{
Wπ3

1 <W
π42
1

Wπ3
3 ≥W

π42
3

or Wπ3
1 ≥W

π42
1
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Proposition 5 (Individual stability conditions)

Nonvul. Player 1 Vul. Player 2 Vul. Player 3

π41



W
π41
1 ≥Wπ1

1
{
W

π41
3 <W

π42
3

W
π41
1 ≥W

π42
1

or W
π41
3 ≥W

π42
3



W
π41
2 ≥Wπ1

2
{
W

π41
3 <Wπ3

3

W
π41
2 ≥Wπ3

2

or W
π41
3 ≥Wπ3

3




W

π41
1 <Wπ2

1

W
π41
2 <Wπ2

2

W
π41
3 ≥Wπ2

3

or W
π41
1 ≥Wπ2

1

or W
π41
2 ≥Wπ2

2

π42



W
π42
1 ≥Wπ1

1
{
W

π42
2 <W

π41
2

W
π42
1 ≥W

π41
1

or W
π42
2 ≥W

π41
2




W

π42
1 <Wπ2

1

W
π42
3 <Wπ2

3

W
π42
2 ≥Wπ2

2

or W
π42
1 ≥Wπ2

1

or W
π42
3 ≥Wπ2

3



W
π42
3 ≥Wπ1

3
{
W

π42
2 <Wπ3

2

W
π42
3 ≥Wπ3

3

or W
π42
2 ≥Wπ3

2
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Example

β1 = 0, β2 = 3, β3 = 4,

α1 = 5, α2 = 6, α3 = 8,

ε = 0.6, µ = 0.3, S0 = 1.

Players’ payoffs under different scenarios:

Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} 3.734 3.205 7.085
π3 = {{1}, {2, 3}} 4.167 2.810 6.581
π41 = {{1, 2}, {3}} 4.069 2.976 6.596
π42 = {{1, 3}, {2}} 3.995 3.043 1.994

No Nash-stable scenario

π3 = {{I , I}, {II}} is unique individually stable scenario

Without transfers payments inside a coalition, we are able to find an
individually stable scenario in the game
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Dynamically stable scenarios (subgames at t̄ = 1, 5, 10)

t̄ = 1 Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -6.681 -6.382
π2 = {{1, 2, 3}} 0.144 -0.307 -0.255
π3 = {{1}, {2, 3}} 4.167 -0.495 -0.499
π41 = {{1, 2}, {3}} 0.190 -0.569 -4.736
π42 = {{1, 3}, {2}} 0.177 -5.082 -0.786

t̄ = 5 Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -20.911 -25.467
π2 = {{1, 2, 3}} 0 0 0
π3 = {{1}, {2, 3}} 4.167 0 0
π41 = {{1, 2}, {3}} 0 0 -19.807
π42 = {{1, 3}, {2}} 0 -15.464 0

t̄ = 10 Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 -21.817 -26.682
π2 = {{1, 2, 3}} 0 0 0
π3 = {{1}, {2, 3}} 4.167 0 0
π41 = {{1, 2}, {3}} 0 0 -20.553
π42 = {{1, 3}, {2}} 0 -15.936 0
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Cooperative scenario: Nash and individual stability

The conditions are the same for Nash and individual stability

The stability conditions: 
ξ1 + ξ2 + ξ3 =

3∑
i=1

W π2

i ,

ξ1 ≥W π3
1 ,

ξ2 ≥W
π42
2 ,

ξ3 ≥W
π41
3 .

(18)

If there exists a solution of system (18), then the transfer payment to player
i ∈ N is defined by

θπ2

i = ξi −W π2

i . (19)
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Cooperative scenario: Nash and individual stability

(a) The first run (b) The second run

Figure 1: The set of payments to the players (ξ1, ξ2, ξ3) satisfying conditions (18)
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Nash stability of partial cooperation scenario

Players’ payoffs under different scenarios with transfers:

Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} ξπ2

1 ξπ2
2 14.024− ξπ2

1 − ξ
π2
1

π3 = {{1}, {2, 3}} 4.167 ξπ3
2 10.290− ξπ3

2

π41 = {{1, 2}, {3}} ξ
π41
1 7.045− ξ

π41
1 6.596

π42 = {{1, 3}, {2}} ξ
π42
1 3.043 5.991− ξ

π42
1

Conditions to make scenario π41 stable (including 5 variables):

ξ
π41
1 ≥ 4.167,

ξ
π41
1 ≥ ξπ42

1 ,

7.045− ξπ41
1 ≥ 2.772,

7.045− ξπ41
1 ≥ ξπ3

2 ,

6.596 ≥ 14.024− ξπ2
1 − ξ

π2
2 .
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Nash stability of partial cooperation scenario

ES-value:

Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} 4.240 3.116 6.669
π3 = {{1}, {2, 3}} 4.167 3.378 6.912
π41 = {{1, 2}, {3}} 4.220 2.825 6.596
π42 = {{1, 3}, {2}} 1.758 3.043 −0.247

Conditions to make scenario π41 stable (including 5 variables):

ξ
π41
1 ≥ 4.167,

ξ
π41
1 ≥ ξπ42

1 ,

7.045− ξπ41
1 ≥ 2.772,

7.045− ξπ41
1 ≥ ξπ3

2 ,

6.596 ≥ 14.024− ξπ2
1 − ξ

π2
2 .
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Nash stability of partial cooperation scenario

Player 1 Player 2 Player 3
Nonvul. player Vul. player Vul. player

π1 = {{1}, {2}, {3}} 4.167 2.772 6.306
π2 = {{1, 2, 3}} 4.240 3.189 ↑ 6.596 ↓
π3 = {{1}, {2, 3}} 4.167 2.825 ↓ 7.465 ↑
π41 = {{1, 2}, {3}} 4.220 2.825 6.596
π42 = {{1, 3}, {2}} 1.758 3.043 −0.247

Conditions to make scenario π41 stable (including 5 variables):

ξ
π41
1 ≥ 4.167,

ξ
π41
1 ≥ ξπ42

1 ,

7.045− ξπ41
1 ≥ 2.772,

7.045− ξπ41
1 ≥ ξπ3

2 ,

6.596 ≥ 14.024− ξπ2
1 − ξ

π2
2 .
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Conclusions

Definition of the transfer payment scheme based on individual stability
approach.

Extension of the transfer payment schemes for more than 3 players.

Transitions from one scenario to another one may be costly (job change,
divorce, etc.)

Mechanism design of the transfer distribution over time, based on the ”nice”
properties (time consistency, individual rationality, proportional stability, etc.)

Existence of stable coalition structures in some classes of differential games.
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Thank you!
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