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Motivation

[Dotan et al., 2017]: a study on endocrine disrupting compounds entering
surface waters in two transboundary streams between Israel and
the Palestinian West Bank.

∙ Socio-economic asymmetry.
∙ Streams receive raw Palestinian wastewater and are only treated when

entering the Israeli side.
∙ A coordinated strategy and joint water management would yield

greater benefit for both parties.
∙ A joint Israeli–Palestinian commission established to develop effective

strategies ceased to function a short time later.
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Motivation

[Sedakov et al., 2021]: a dynamic game of river pollution (firms are located
along the river, represented by a graph)

∙ Equilibrium behavior is more harmful to the environment than
cooperation.

∙ There must be effective mechanisms stimulating firms to reduce
pollution by lowering outputs.

∙ To encourage cooperation, one can give firms more benefits in the
allocation of the cooperative profit (individual rationality).
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Literature

∙ The acid rain differential game: [Mäler, 1989]

∙ Transboundary pollution between two countries:
∘ [Kaitala et al., 1992] (Finland and the USSR)
∘ [Mäler and de Zeeuw, 1998] (U.K. and Ireland)
∘ [Fernandez, 2008] (U.S. and Mexico)

∙ A game involving waste disposal: [Jørgensen, 2010] (three neighboring
regions)

∙ A model of river pollution: [Sedakov et al., 2021] (n regions connected
in a graph)

Mechanisms supporting cooperation:
∙ [Petrosyan, 1979], [Belitskaya and Petrosyan, 2012]: IDP for TU

games
∙ [Petrosyan and Yeung, 2014]: PDP for NTU games
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Outline

1 A model of river pollution

2 A general linear-state game with network externalities

3 Solution concepts

4 Example
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A model of river pollution
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Notations

∙ N = {1, . . . , n}: the set of competing firms which produce
homogeneous goods and sell them in a market.

∙ 𝒯 = {0, 1, . . . ,T}: the set of periods.
∙ The firms are located along a river.

1 2 . . . n river flow

∙ The production of the goods is associated with water pollution.
∙ Single pollutant.
∙ ui (t): the amount of the pollutant of firm i in period t.
∙ xi (t): the amount of the pollutant in the water within the region

administered by firm i at period t.
∙ Upstream firms influence the water pollution levels in the regions

of downstream firms — we have a directed network g .
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State dynamics and profits

∙ The relationship between the states:

xi (t + 1) = 𝛼xi (t) + ui (t) +
∑︀

j∈N in
i (g)

𝛿𝜔ji (g)uj(t).

∘ 𝛼 ∈ [0, 1]: the natural decline in pollutant concentration;
∘ 𝛿 ∈ (0, 1]: a decay rate [Jackson and Wolinsky, 1996];
∘ N in

i (g) = {j ∈ N : j
g−→ i};

∘ 𝜔ji (g): the length of the shortest path j
g−→ i .

∙ The firm’s stage profit (corresponds to the Cournot competition):

hit(xi (t), u(t)) = pi (u(t)) ui (t)− cui (t)− dxi (t), t ̸= T ,

hiT (xi (T )) = −dxi (T ).
∘ cui (t): production cost functions, c > 0;
∘ dxi (t): environmental damage, d > 0;
∘ pi (u(t)) ≜ a− ui (t)− b

∑︀
j ̸=i uj(t): inverse demand function, a > c, b ⩾ 0.

∙ The firm’s total profit:

Ji (x0, u) =
T−1∑︀
t=0

𝜚thit(xi (t), u(t)) + 𝜚ThiT (xi (T )), 𝜚 ∈ (0, 1].
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A general linear-state game with network externalities
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A general model

∙ An arbitrary directed network g .

∙ State equation:

xi (t + 1) = bi0xi (t) + biiui (t) +
∑︀

j∈N in
i (g) bijuj(t).

with the initial condition xi (0) = xi0.

∙ Stage payoffs:

hit(xi (t), u(t)) = ai0ui (t) + ai1u
2
i (t) + ai2ui (t)

∑︀
j ̸=i uj(t) + ai3xi (t),

hiT (xi (T )) = ai4xi (T ).
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Solution concepts
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Solution concepts

∙ Pareto solution uP = (uP1 , . . . , u
P
n ):

uP = argmax
u

∑︀
i∈N 𝜃iJi (x0, u), 𝜃i > 0,

∑︀
i∈N 𝜃i = 1.

∙ A cooperative strategy profile uC = (uC1 , . . . , u
C
n ):

uC = argmax
u

∑︀
i∈N Ji (x0, u).

∘ Equal surplus division value (ES-value);
∘ Shapley value

An equilibrium profile for the characteristic function (𝛾-approach
[Chander and Tulkens, 1997]):⎧⎨⎩uN,S

S = argmax
uS

∑︀
i∈S Ji (x0, (uS , u

N,S
−S )), i ∈ S ,

uN,S
i = argmax

ui
Ji (x0, (ui , u

N,S
−i )), i /∈ S .

∙ Nash bargaining solution uB = (uB1 , . . . , u
B
n ):

uB = argmax
u

∏︀
i∈N(Ji (x0, u)− JNi ),

JN = (JN1 , . . . , JNn ) is a disagreement point.
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Pareto solution

uPi (t, 𝜃) =
∑︁
ℓ∈N

⎛⎜⎜⎜⎜⎝
⎛⎜⎝ ãi2

∑︀
j∈N

ãj2
𝜃j aj2

2+
∑︀

j∈N ãj2
− ãi2

𝜃i ai2

⎞⎟⎠(︂∑︀
j∈N 𝜃j aj2 ãj2

2+
∑︀

j∈N ãj2
−𝜃ℓaℓ2

)︂

2+
∑︀
j∈N

ãj2−
∑︀

j∈N 𝜃j aj2 ãj2
∑︀

j∈N
ãj2

𝜃j aj2
2+

∑︀
j∈N ãj2

+
ãi2

2 +
∑︀

j∈N ãj2

⎞⎟⎟⎟⎟⎠

×
𝜅ℓ(N̄

out
ℓ (g), t, 𝜃)

2𝜃ℓ(aℓ − aℓ2)
−

𝜅i (N̄
out
i (g), t, 𝜃)

2𝜃i (ai1 − ai2)
, i ∈ N,

where

N̄out
i (g) = {j ∈ N : i

g−→ j} ∪ {i},

𝜅i (S , t, 𝜃) = 𝜃iai0 + 𝜚
∑︁
j∈S

𝜃jaj3bji𝜒j(t).

∙ Nash bargaining solution: uBi (t) = uPi (t, 𝜃
*), i ∈ N.

∙ Cooperative strategy profile: uCi (t) = uPi (t,
1
n ), i ∈ N.
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Equilibrium profile for the characteristic function

For i ∈ S :

uN,S
i (t) =

∑︁
ℓ∈S

[︁ ]︁
𝜅ℓ(N̄

out
ℓ (g) ∩ S , t, 1

n ) +
∑︁

j∈N∖S

[︁ ]︁
𝜅j(j , t,

1
n )

−
[︁ ]︁

𝜅i (N̄
out
i (g) ∩ S , t, 1

n ).

For i /∈ S :

uN,S
i (t) =

∑︁
ℓ∈S

[︁ ]︁
𝜅ℓ(N̄

out
ℓ (g) ∩ S , t, 1

n ) +
∑︁

j∈N∖S

[︁ ]︁
𝜅j(j , t,

1
n )−

[︁ ]︁
𝜅i (i , t,

1
n ).

∙ Nash equilibrium: uNi (t) = u
N,{i}
i (t), i ∈ N.
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A special case: cross-product term ai2 = 0, i ∈ N

Pareto solution:

uPi (t, 𝜃) = −
𝜅i (N̄

out
i (g), t, 𝜃)

2𝜃iai1
= −

𝜃iai0 + 𝜚
∑︀

j∈N̄out
i (g) 𝜃jaj3bji𝜒j(t)

2𝜃iai1
.

Equilibrium profile for the characteristic function:

uN,S
i (t) =

⎧⎪⎨⎪⎩
−𝜅i (N̄

out
i (g)∩S,t, 1

n
)

2
n
ai1

= −
ai0+𝜚

∑︀
j∈N̄out

i
(g)∩S aj3bji𝜒j (t)

2ai1
, i ∈ S ,

−𝜅i ({i},t, 1n )
2
n
ai1

= −ai0+𝜚ai3bii𝜒i (t)
2ai1

, i /∈ S ,

Nash equilibrium:

uNi (t) = −
𝜅i ({i}, t, 1

n )
2
nai1

= −ai0 + 𝜚ai3bii𝜒i (t)

2ai1
.
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Allocation procedures
PDP [Petrosyan and Yeung, 2014] and IDP [Petrosyan, 1979]

∙ PDP for the Nash bargaining solution:

PDPB
i (t) =

⎧⎪⎪⎨⎪⎪⎩
1
𝜚t

JBi − JNi
T + 1

+ JNi (t)− 𝜚JNi (t + 1), t ̸= T ,

1
𝜚T

JBi − JNi
T + 1

+ JNi (T ), t = T .

∙ IDP for the Shapley value:

IDPSh
i (t) =

{︃
Shi (t)− 𝜚Shi (t + 1), t ̸= T ,

Shi (T ), t = T .

∙ IDP for the ES-value:

IDPES
i (t) =

{︃
ESi (t)− 𝜚ESi (t + 1), t ̸= T ,

ESi (T ), t = T .
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Example
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Linear network

∙ Four firms, N = {1, 2, 3, 4}.

1 2 3 4

∙ Model parameters:
∘ T = 10;
∘ 𝜚 = 0.95;
∘ a = 3, b = 0.5;
∘ c = 1, d = 0.1;
∘ 𝛼 = 0.65, 𝛿 = 2/3.

∙ The initial stock of the pollutant is zero.
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Firms’ profits

i 1 2 3 4
∑︀

JNi 2.0900 1.5077 1.1195 0.8607 5.5779
JCi 1.6046 1.8639 2.2888 2.8498 8.6070
JBi

* 2.6593 2.1470 1.8470 1.7119 8.3651
ESi 2.8473 2.2650 1.8768 1.6180
Shi 2.8881 2.3248 1.8819 1.5122

* 𝜃 = (0.2992, 0.2665, 0.2342, 0.2001).
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Linear network
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Linear network
Firms 1 and 4
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Linear network
Firms 2 and 3
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Conclusions

∙ The principal contribution is the analysis of an oligopolistic
competition model of river pollution.

∙ Under cooperation, an upstream firm gets a lower profit than
a downstream one, which can be attributed to its support of
cooperation despite being located in a less polluted region (JCi < JNi
for i ⩽ i).

∙ A coordinated behavior can be individually rational (Shapley value,
ES-value, Nash bargaining solution).
For a linear network, JNi decreases in i ⇒ ESi decreases in i .

∙ PDP/IDP for bargaining/cooperative solutions allow for
the implementation of agreed-upon solutions.
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Thank you.
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