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Abstract

The paper presents a quasi-stationary model for dissociation, recombination and vibrational kinetics in a nozzle

expansion of (N2, N) mixture. The model is based on strongly non-equilibrium non-Boltzmann and non-Treanor

vibrational distributions. The closed set of equations for gas dynamic parameters is derived, the ¯ow ®eld parameters

and vibrational distributions are computed in di�erent sections of the nozzle for various reservoir conditions. The

in¯uence of vibrational distributions on gas parameters in the nozzle is discussed as well as the dissociation±recom-

bination e�ects. Ó 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Modeling of vibrational and dissociation±
recombination kinetics in nozzle ¯ows is important
for many practical problems of physical gas dy-
namics. The peculiarity of the rapid expansion of
an initially heated gas mixture is that chemical
reactions proceed in strongly vibrationally excited
gas. Actually, the vibrational energy in a nozzle
occurs much higher than the translational±rota-
tional one because of rapid decrease of the gas
temperature and di�erent times of the transla-
tional±rotational and vibrational relaxation. Such
a situation requires adequate models of vibra-

tional-chemical coupling in the ¯ow. The ®rst
calculations of chemically non-equilibrium ex-
panding ¯ows were performed in the 60s [1±4],
then di�erent models of chemical and vibrational
non-equilibrium have been elaborated.

The most rigorous approach consists in con-
sidering the state-to-state vibrational and chemical
kinetics on the basis of the equations for vibra-
tional level populations and atomic concentrations
coupled with the gas dynamics equations. This
approximation has been essentially advanced
during the last decade and applied for di�erent gas
¯ows. For a nozzle ¯ow the state-to-state model is
developed in Refs. [5±10], and the important fea-
tures of strongly non-equilibrium kinetics are
shown. Another approach is based on the quasi-
stationary vibrational distributions [11,12]. In this
case the equations for vibrational level popula-
tions are reduced to the less number of the equa-
tions for macroscopic parameters. This approach
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is essentially simpler than the state-to-state one
and therefore is attractive for practical use. The
most often used quasi-stationary models, based on
the non-equilibrium Boltzmann or Treanor distri-
butions [13], are not su�ciently good for nozzle
¯ows. Indeed, due to strong vibrational excitation
in a nozzle, not only low lying vibrational levels,
but also intermediate and high vibrational states
play an important role in the relaxation process.
This situation cannot be described correctly by
the Boltzmann or Treanor distributions. Thus, the
Boltzmann distribution (with the vibrational tem-
perature di�erent from the translational±rota-
tional one) is valid only for harmonic oscillator
model and cannot take into account the real
non-equidistant anharmonic vibrational spectrum,
which is important for the high levels. The Treanor
distribution takes into account the real vibrational
spectrum but is applicable only for the low levels
in strong vibrationally excited gas and gives unreal
populations of high levels. Experiments in high
enthalpy conditions with vibrational energy stor-
age exceeding the translational±rotational one
[14,15] show that the populations at intermediate
and high levels are quite di�erent from the Treanor
distribution.

The non-equilibrium quasi-stationary vibra-
tional distributions valid for all levels in the one-
component chemically non-reactive gas have been
found in Refs. [14,15] as an approximate solution
of master equations, and in Refs. [16,17] such
distributions have been obtained from the ki-
netic equation for distribution functions. These
distributions re¯ect the complex mechanism of
vibrational energy exchanges in a strongly excited
gas.

In the present paper we generalize the model
given in Refs. [16,17] for a dissociating gas
mixture and apply it to a nozzle ¯ow of (N2,
N) mixture. The aim of this paper is the elabora-
tion of a generalized two-temperature model de-
scribing the dynamics of a strong vibrationally
non-equilibrium ¯ow with dissociation and re-
combination taking into account di�erent channels
of vibrational relaxation for various groups of
vibrational levels. The accuracy of more simple
models based on the Boltzmann and Treanor dis-
tributions in a nozzle expansion is estimated.

2. Kinetic model

2.1. Equations of the state-to-state kinetics

We consider the ¯ow of a binary mixture of
diatomic molecules and atoms with dissociation
and recombination

A2�i� �M$ A�A�M; �1�
and with VT�TV� and VV vibrational energy
transitions

A2�i� �M$ A2�i0� �M; �2�

A2�i� �A2�k� $ A2�i0� �A2�k0�; �3�
here A2�i� is a molecule at the ith vibrational level,
an inert partner M can be a molecule or an atom
A. The translational and rotational energies are
known to equilibrate faster than the vibrational
relaxation and dissociation±recombination pro-
cesses proceed, and therefore the following condi-
tions for characteristic relaxation times take place:

str6 srot � svibr < sdis±rec � h; �4�
here str, srot, svibr, sdis±rec are the mean times of
translational, rotational, vibrational relaxation
and dissociation±recombination processes, h is the
macroscopic characteristic time.

Under condition (4) the state-to-state model of
non-equilibrium ¯ow is valid. The equations of the
state-to-state kinetics coupled with the gas dy-
namic conservation equations in the Euler ap-
proximation of a non-viscous non-conductive gas
[18,19] have the form:

oni

ot
�
X

s

o�nivs�
oxs

� Ri; i � 0; . . . ; L; �5�

onat

ot
�
X

s

o�natvs�
oxs

� Ra; �6�

q
ovj

ot

 
�
X

s

vs
ovj

oxs

!
� op

oxj
� 0; �7�

o
ot

 
�
X

s

vs
o

oxs

!
E � � p � E�

X
s

ovs

oxs
� 0: �8�

112 A. Chikhaoui et al. / Chemical Physics 263 (2001) 111±126



Here ni is the ith level population, L is the total
number of excited levels, vj (j � 1; 2; 3) are the gas
velocity components, E is the total energy per unit
volume, p is the pressure, q � nmolmmol � natmat,
mmol, mat are the molecular and atomic masses, nat

and nmol are the atom and molecule number den-
sities.

The right-hand side of Eq. (5) describes the
change of ni as a result of VT�TV�, VV vibrational
energy transitions, dissociation and recombina-
tion:

Ri � Rvibr
i � Rdis±rec

i ; �9�
Ra describes the atom number density change:

Ra � ÿ2
X

i

Rdis±rec
i : �10�

The expressions for Rvibr
i and Rdis±rec

i have the
form:

Rvibr
i �

X
k;k0;i0�k0 6�k;i0 6�i�

�kk0k
i0i ni0nk0 ÿ kkk0

ii0 nink�

� nmol

X
k 6�i

�kmol
ki nk ÿ kmol

ik ni�

� nat

X
k 6�i

�kat
ki nk ÿ kat

ik ni�;

Rdis±rec
i � Rdis

i � Rrec
i ;

Rdis
i � ÿni�nmolkmol

dis;i � natkat
dis;i�;

Rrec
i � n2

a�nmolkmol
rec;i � natkat

rec;i�:

Here kmol
ik �T �, kat

ik �T �, kkk0
ii0 �T � are the rate coe�cients

of VV and VT exchanges:

kkk0
ii0 �T � �

1

nmol

±ZmolQkk0
ii0 �T �;

kmol�T �
ik � 1

nmol

±ZmolP mol
ik �T �;

kat
ik �T � �

1

nat

±ZatP at
ik �T �;

where ±Zmol, ±Zat are the numbers of collisions with
molecules or atoms per unit time, Qkk0

ii0 �T �, P mol
ik �T �,

P at
ik �T � are the probabilities of VV and VT transi-

tions (we do not take into account TRV transi-

tions as they are less probable), kmol
dis;i�T � and

kat
dis;i�T � are the rate coe�cients of dissociation

from the ith level at the collision with a molecule
or an atom, kmol

rec;i�T � and kat
rec;i�T � are the rate co-

e�cients of recombination to the ith level.
Eqs. (5)±(8) represent the closed set of the non-

equilibrium gas dynamic equations for ni, nat, v, T .

2.2. Quasi-stationary vibrational distributions

There exist the conditions when Eq. (5) can
be reduced to the less number of the equations
for macroscopic parameters. Such a procedure is
performed in Ref. [18] for a reacting mixture and
in Refs. [16,17] for a one-component gas with
strong vibrational non-equilibrium. The reducing
of the equations of state-to-state kinetics is based
on the quasi-stationary solutions of Eq. (5). The
existence of quasi-stationary distributions is de-
termined by the relation between characteristic
times of the considered processes. Usually these
distributions are found from the equations

Rrap
i � 0; �11�

where Rrap
i is the part of the collisional production

term Ri in Eq. (5) for level populations, describing
the dominant process with the shortest relaxation
time.

Thus, from experimental results concerning
relaxation times [20] it is known that at moder-
ate temperatures which do not exceed strongly
the characteristic vibrational temperature, the ex-
change of vibrational quanta between two mole-
cules occurs more often than collisions with
VT(TV) transitions, dissociation and recombina-
tion. Therefore the relaxation times for VV,
VT(TV) and dissociation±recombination processes
satisfy the condition

sVV � sVT6 sdis±rec: �12�
Under condition (12) the quasi-stationary so-

lution of Eq. (5) have the form of the Boltzmann
or Treanor distribution [13]. It is well known that
the Boltzmann non-equilibrium distribution with
the vibrational temperature Tv di�erent from T is
valid only for the harmonic oscillator model, this
distribution establishes as a result of rapid reso-
nant VV exchanges between harmonic oscillators.
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The Treanor distribution takes into account an-
harmonic vibrational spectrum and describes the
non-resonant quanta exchanges. It was used
by many authors for the investigation of the non-
equilibrium vibrational kinetics. In the papers
[18,21] the generalized multi-temperature model of
the reacting air mixture is elaborated on the basis
of the Treanor distribution for molecular compo-
nents and applied for the conditions behind shock
waves [21].

Such a model occurs not su�ciently rigorous
for nozzle ¯ows because in a strongly vibrationally
excited gas the Treanor distribution is correct only
at the lower levels. The distributions taking into
account strong vibrational excitation and valid for
all levels are obtained in Refs. [16,17] for a one-
component non-reacting gas. In the present paper
we generalize this model for a reacting mixture
consideration.

The peculiarity of a strongly vibrationally ex-
cited gas is that the mechanism of vibrational en-
ergy transitions is di�erent at various groups of
levels. It follows both from experimental results
and theoretical calculations concerning the tran-
sition probabilities [13±15]. Thus, at lower levels
�i < i�� the most rapid process is the non-resonant
exchange of vibrational quanta between colliding
molecules:

i� k � �i� m� � �k � m�; �13�

(m is the number of transferred quanta).
For the intermediate levels i�6 i < i�� the reso-

nant exchange of vibrational quanta between the
neighboring levels proceeds more rapidly:

i� �i� 1�
 �i� 1� � i: �14�
For high levels the rates of all vibrational energy
transitions are of the same order and remain much
less than the rates of dissociation and recombina-
tion. Corresponding relations between relaxation
times are:

snonres
VV � sVT6 sdis±rec � h; 06 i < i�;

sres
VV � sVT6 sdis±rec � h; i� < i6 i��;

sVV � sVT � sdis±rec � h; i�� < i6 L:

Under these conditions the expressions for Rrap
i

in Eq. (11) are di�erent for various groups of
levels. Actually, at low levels Ri describe non-
resonant exchanges (13), at intermediate levels Ri

contain the terms corresponding to the resonant
exchanges (14) and at high levels Ri describe all
vibrational energy transitions. The solution of Eq.
(11) in this case is obtained in Refs. [16,17] in the
form:

ni � C1

ZTr
vibr

exp

�
ÿ ei ÿ ie1

kT
ÿ ie1

kT1

�
; 0 < i6 i�;

ni � C
i� 1

; i� < i6 i��;

ni � C2

ZB
vibr

exp
�
ÿ ei

kT

�
; i�� < i6 L:

�15�

Here the coe�cients C1, C2, C are found from
the normalizing conditions for ni and the conti-
nuity conditions at i � i�, i � i��,

ZTr
vibr�T ; T1� �

Xi�

i�0

exp

�
ÿ ei ÿ ie1

kT
ÿ ie1

kT1

�
; �16�

ZB
vibr�T � �

XL

i�i��
exp

�
ÿ ei

kT

�
; �17�

are the truncated Treanor and Boltzmann parti-
tion functions correspondingly, T1 is the vibra-
tional temperature of the ®rst vibrational level,
ei � e1iÿ Dei�iÿ 1� is the vibrational energy of an
anharmonic oscillator, e1 � hc�we ÿ 2wexe�, De �
hcwexe, k is the Boltzmann constant, h is the Plank
constant, c is the light speed, we and wexe are the
spectroscopic constants (wexe is the anharmonici-
ty), energies are calculated from the energy of the
zeroth vibrational level.

Level populations (15) depend on two temper-
atures T , T1. One can see that at the low levels ni

are described by the Treanor distribution with the
coe�cient C1, at the intermediate levels popula-
tions have a form of a slopping plateau, and at the
high levels they are described by the one-temper-
ature Boltzmann distribution with the coe�cient
C2. The value i� corresponds to the minimum of
the Treanor distribution:
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i� � e1T
2DeT1

� 1

2
;

i�� is taken from the comparison of probabilities of
VV and VT transitions: at i > i�� probabilities of
VV and VT transitions are of the same order. In
Ref. [14] i�� is obtained in the form:

i�� � i� � e1

2d
1

kT

�
ÿ 1

kT1

�
;

d � 8

3
p2 De

ha

��������
l

2kT

r
;

here l is the reduced mass of colliding particles, a
is the constant of exponential interaction poten-
tial. The last vibrational level L is found from the
condition eL ' D, where D is the dissociation en-
ergy.

It can be easily shown that if T1 < T the value of
i� is close to the last level L and the Treanor dis-
tribution is valid practically for all levels. Such
conditions are realized in the relaxation zone be-
hind shock waves [21].

If anharmonic e�ects are negligible, ei � ie1,
distribution (15) comes to the non-equilibrium
Boltzmann distribution with vibrational tempera-
ture T1 � Tv 6� T :

ni � nmol

Zvibr�Tv� exp

�
ÿ ei

kTv

�
; �18�

Zvibr�Tv� �
XL

i�0

exp

�
ÿ ei

kTv

�
: �19�

If Tv � T one obtains the thermal equilibrium
Boltzmann distribution.

3. Macroscopic equations in the quasi-stationary

approximation

Now we substitute distributions (15) into Eqs.
(5) and (8). After summation of Eq. (5) over i we
obtain the equation for molecular number density
nmol:

onmol

ot
�
X

s

o�nmolvs�
oxs

� Rdis � Rrec: �20�

Here

Rdis �
X

i

Rdis
i � ÿnmol�natkat

dis � nmolkmol
dis �;

Rrec �
X

i

Rrec
i � n2

at�natkat
rec � nmolkmol

rec �;
�21�

where k�M�rec �T � and k�M�dis �T ; T1� (M is an atom or a
molecule) are the macroscopic dissociation and
recombination rate coe�cients:

k�M�dis �T ; T1� � 1

nmol

XL

i�0

nik
�M�
dis;i�T �;

k�M�rec �T � �
XL

i�0

k�M�rec;i�T �:
�22�

Multiplying Eq. (5) by i, after summation over i we
obtain the equation

oW
ot
�
X

s

o�Wvs�
oxs

� Rvibr
w � Rdis±rec

w ; �23�

here W �nmol; T ; T1� �
PL

i�0 ini is the number of
vibrational quanta in the unit volume and

Rvibr
w �

X
i

iRvibr
i ; Rdis±rec

w � Rdis
w � Rrec

w ; �24�

Rdis
w �

X
i

iRdis
i ; Rrec

w �
X

i

iRrec
i : �25�

Distributions (15) should also be substituted to
the energy equation (8). The total energy E is the
sum of the translational, rotational and vibra-
tional ones:

E � 5
2
nmolkT
ÿ � 3

2
natkT � Evibr � Ef

�
;

Evibr � Evibr�nmol; T ; T1� �
X

i

eini;

Ef is the energy of atom formation, ni � ni�nmol; T ;
T1�.

Finally we obtain the closed set of Eqs. (6)±(8),
(20) and (23) for the functions nmol�r; t�, nat�r; t�,
v�r; t�, T �r; t�, T1�r; t� in the quasi-stationary ap-
proximation. The equations for vibrational popu-
lations are reduced to the equations for the
number density of molecular species and total
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number of vibrational quanta W, which are ex-
pressed in terms of nmol, T , T1. Compared to the
quasi-stationary model considered by us pre-
viously [18,21], in the present case we take into
account not only non-Boltzmann but also non-
Treanor distributions with strongly excited inter-
mediate and upper levels.

4. Dissociation±recombination models

For the calculation of the dissociation±recom-
bination rate coe�cients (22) and production
terms (21), (24) in the equations for the number
density of molecules (20) and atoms (6) and for the
total number of vibrational quanta (23) two
models have been used: the ladder-climbing model
and the Treanor±Marrone one.

4.1. Ladder-climbing model

According to the ladder-climbing model mole-
cules dissociate only from the last level and appear
at this level as a result of recombination. In this
case:

Rdis � Rdis
L � ÿnL natkat

dis;L

�
� nmolkmol

dis;L

�
; �26�

Rrec � Rrec
L � n2

at natkat
rec;L

�
� nmolkmol

rec;L

�
: �27�

Dissociation rate is de®ned by the number of
molecules leaving the last level L for the continu-
um spectrum. Following Ref. [22] the pseudo-level
L0 above L has been introduced, and it is assumed
that dissociation and recombination go through
the level L0. Thus,

Rdis
L � ÿnL kmol

L;L�1nmol

 
� kat

L;L�1nat �
XL

i�0

ki;iÿ1
L;L�1ni

!
:

Therefore

kmol
dis;L � kmol

L;L�1 �
1

nmol

XL

i�0

ki;iÿ1
L;L�1ni;

kat
dis;L � kat

L;L�1:

The recombination rate coe�cients kat
rec;L and kmol

rec;L

are expressed in terms of kat
dis;L and kmol

dis;L using the
detailed balance principle for the collisions with
dissociation±recombination [23±25]:

k�M�rec;i � k�M�dis;iKi�T �;

Ki�T � � mmol

m2
at

� �3=2

h3�2pkT �ÿ3=2Zrot

� exp

�
ÿ ei ÿ D

kT

�
: �28�

Zrot is the rotational partition function.
Finally in the frame of the ladder-climbing

model the dissociation and recombination rates are
de®ned by the probabilities of vibrational energy
transitions.

The expression for Rdis±rec
w on the right-hand side

of Eq. (23) for W in this case has the form:

Rdis±rec
w � LRdis±rec

L � L�Rdis
L � Rrec

L �

with Rdis
L and Rrec

L given by Eqs. (26) and (27).

4.1.1. Vibrational energy transitions
For the calculations of the production terms

due to vibrations we take into account only one-
quantum vibrational energy transitions as the
more probable ones. The vibrational transition
probabilities are computed using the SSH theory
generalized for anharmonic vibrations [14,15].

It is known that at low temperatures the SSH
theory underestimates signi®cantly the e�ciency of
atoms in the VT exchange [26]. On the contrary, at
high temperatures it gives overestimated values of
probabilities of VT transfers from highly excited
states (compared, for instance, to the values of
Ref. [27]). However, the objective of the present
paper is a comparative analysis of di�erent models
for the quasi-stationary vibrational distributions
and their in¯uence on the macroscopic parameters.
For this purpose one can use a more simple SSH
model for the rate coe�cients of vibrational tran-
sitions. Further validation of the model and vari-
ous transition probabilities should be based on the
comparison with experimental data.
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4.2. Treanor±Marrone model

Now we will calculate the dissociation and re-
combination rate coe�cients and the production
terms Rdis, Rrec and Rdis

w and Rrec
w on the right-hand

sides of Eqs. (20) and (23) using the Treanor±
Marrone model [28]. The Treanor±Marrone model
permits the dissociation from any level.

In the approximation (15) the dissociation rate
coe�cients k�M�dis de®ned by Eq. (22) depend on two
temperatures T , T1. They can be presented in terms
of the equilibrium rate coe�cients keq�M�

dis �T � and
the non-equilibrium factor Z

�M�
f �T ; T1�:

k�M�dis �T ; T1� � keq�M�
dis �T �Z�M�f �T ; T1�: �29�

For calculation of Z
�M�
f �T ; T1� we use the Trea-

nor±Marrone model. Previously [21], we have
calculated Z

�M�
f �T ; T1� for the conditions behind a

shock wave where T P T1, correspondingly i� is
close to L, and therefore the Treanor distribution
is correct for all levels. Now, following Refs.
[28,21], we obtain Z

�M�
f �T ; T1� for strongly non-

equilibrium distributions (15). Thus, in Ref. [28],
the probability of the fact that a dissociated mol-
ecule was at the ith level

p�M�i � nik
�M�
dis;i

nmolk
�M�
dis

�30�

is presented in the form:

pi � Cni exp

�
ÿ Dÿ ei

kU

�
exp

�
ÿ Dÿ ei

kT

�
: �31�

Here U is the parameter of the model which can be
found by ®tting the experimental results, C is the
normalizing coe�cient:

C �
XL

i�0

ni exp

� 
ÿ Dÿ ei

kU

�

� exp

�
ÿ Dÿ ei

kT

�!ÿ1

: �32�

It should be noted that in our case the summation
is performed over three di�erent intervals of i with
various ni at these intervals.

Keeping in mind that k�M�dis;i does not depend on
the vibrational distribution we have

k�M�dis;i �
pinmolk

�M�
dis

ni
� peq

i nmolk
eq�M�
dis

neq
i

; �33�

Zf�T ; T1� � k�M�dis �T ; T1�
keq�M�

dis �T �
� peq

i ni

pin
eq
i
� Ceq

C
; �34�

where peq
i and Ceq denote the expressions for pi and

C with substituted equilibrium distributions ni �
neq

i �T �.
Taking into account the di�erent form of dis-

tribution (15) at various levels we can write the
®nal expression for Zf�T ; T1� in our case:

Zf�T ; T1� � Zvibr�T �
Zvibr�ÿU� S�T ; T1�;

where

S�T ; T1�

� 1

nmol

C1

ZTr
vibr

Xi�

i�0

exp ie1

1

kT

��
ÿ 1

kT1

�
� ei

kU

�

� 1

nmol

C
Xi��
i�i�

1

i� 1
exp ei

1

kT

��
� 1

kU

��
� 1

nmol

C2

ZB
vibr

XL

i��
exp

ei

kU

� �
; �35�

Zvibr�T � �
XL

i�0

exp
�
ÿ ei

kT

�
:

This expression comes to the one obtained in
Ref. [21] if the Treanor distribution is supposed to
be valid for all levels. Actually, in this case i� is
close to L and from Eq. (35) it follows:

S�T ; T1� � STr�T ; T1�
ZTr

vibr�T ; T1� ;

where

STr�T ; T1� �
XL

i�0

exp ie1

1

kT

��
ÿ 1

kT1

�
� ei

kU

�
;

ZTr
vibr�T ; T1� is given by Eq. (16) where i� � L. The

equation for Zf�T ; T1� can be easily reduced to the
commonly used formula [12,28] if the anharmonic
e�ects are neglected.
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Finally the expression for Rdis reads:

Rdis � ÿnmol natk
eq;at
dis �T �

�
� nmolk

eq;mol
dis �T �

�
� Zf�T ; T1�: �36�

Now we consider the term Rdis
w given by Eq.

(25). Substituting k�M�dis;i from Eq. (33) and using
Eqs. (31) and (34) we can rewrite Rdis

w in the form:

Rdis
w � ÿnmol nmolk

eq;mol
dis

�
� natk

eq;at
dis

�
� Zf�T ; T1�Gdis�T ; T1�: �37�

Here

Gdis�T ; T1� �
PL

i�0 ini exp ei
1

kT � 1
kU

ÿ �ÿ �ÿ �PL
i�0 ni exp ei

1
kT � 1

kU

ÿ �ÿ �ÿ �
� V �T ; T1�

S�T ; T1� ; �38�

V �T ; T1�

� 1

nmol

C1

ZTr
vibr

Xi�

i�0

i exp ie1

1

kT

��
ÿ 1

kT1

�
� ei

kU

�

� 1

nmol

C
Xi��
i�i�

i
i� 1

exp ei
1

kT

��
� 1

kU

��
� 1

nmol

C2

ZB
vibr

XL

i��
i exp

ei

kU

� �
; �39�

and S�T ; T1� is given by Eq. (35).
This expression comes to the one obtained in

Ref. [21] in the case if we have only the Treanor
distribution for all levels, then

V �T ; T1� �
XL

i�0

i exp ie1

1

kT

��
ÿ 1

kT1

�
� ei

kU

�
:

Eqs. (36) and (37) express Rdis and Rdis
w in terms of

keq�M�
dis �T �, Zf�T ; T1� and Gdis�T ; T1�. The equilib-

rium rate coe�cients are given by the generalized
Arrhenius law:

keq�M�
dis � AT n exp

�
ÿ D

kT

�
;

where values n, A are taken from Ref. [29]
(n � ÿ1:6, A � 3:7� 1015 if M is a molecule and
A � 1:6� 1016 if M is an atom). The units of this
coe�cient are cm3/(mole. s).

Now we have to calculate the recombination
rate coe�cients and the terms Rrec and Rrec

w in Eqs.
(20) and (23). We use for that the detailed balance
equations (28) for the state-to-state rates of dis-
sociation and recombination. We would like to
note that we use here a more rigorous way for the
connection of the coe�cients of forward and
backward reactions compared to the commonly
used method in the multi-temperature models. In
fact, non-equilibrium two-temperature coe�cients
of forward and backward reactions are often
connected using the expression for the equilibrium
constant K�T � obtained for the equilibrium con-
ditions. We also followed this approximate way in
our previous paper [21]. Now we use Eq. (28)
connecting k�M�dis;i and k�M�rec;i which follows from the
rigorous detailed balance principle for the colli-
sional di�erential cross-sections after averaging
only over the velocity Maxwellian distribution and
the rotational energy Boltzmann distribution.
Therefore Ki�T � does not depend on the vibra-
tional distributions and depends only on T.

In so doing we write the recombination rate
coe�cients (22) in the form:

k�M�rec �T � �
XL

i�0

k�M�dis;i�T �Ki�T �: �40�

From Eq. (33) we can write k�M�dis;i�T � in the form
[30]:

k�M�dis;i�T � � keq�M�
dis

Zvibr�T �
Zvibr�ÿU� exp ei

1

kU

��
� 1

kT

��
and obtain the expression for k�M�rec �T �:
k�M�rec �T � � keq�M�

dis �T � Zvibr�T �
Zvibr�ÿU�

�
XL

i�0

exp ei
1

kU

��
� 1

kT

��
Ki�T �;

�41�
where Ki�T � is given by Eq. (28).

Finally the term Rrec reads:

Rrec � n2
at natk

eq;at
dis �T �

�
� nmolk

eq;mol
dis �T �

�
� Zvibr�T �

Zvibr�ÿU�
XL

i�0

exp ei
1

kU

��
� 1

kT

��
Ki�T �:

�42�
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Now we have to consider the expression for Rrec
w

on the right-hand side of Eq. (23) for the mean
number of vibrational quanta:

Rrec
w �

X
M

n�M�n2
at

XL

i�0

ik�M�rec;i: �43�

The term Rrec
w is also calculated using the detailed

balance principle (33). Doing so, we ®nd:

Rrec
w �

XL

i�0

in2
at nmolkmol

rec;i

�
� natkat

rec;i

�
� n2

at nmolk
eq;mol
dis

�
� natk

eq;at
dis

�
Zf�T ; T1�Grec�T �;

Grec�T � �
PL

i�0 i Ki�T � exp ei
1

kT � 1
kU

ÿ �ÿ �ÿ �
S�T ; T1�

� Zvibr�T �
Zvibr�ÿU�

XL

i�0

i exp ei
1

kU

��
� 1

kT

��
Ki�T �:

�44�
Finally, the equations for Rrec and Rrec

w are pre-
sented in terms of keq�M�

dis , Zf�T ; T1� and Grec�T �.

5. Application to a nozzle ¯ow

The equations for macroscopic parameters nmol,
nat, T , T1, v derived above have been applied
for the investigation of a nozzle expansion using
the steady-state quasi-one-dimensional approxi-
mation. In this case the system of governing
equations reads:

d�nmolvS�
dx

� SRdis±rec;

d�natvS�
dx

� ÿ2SRdis±rec;

qv
dv
dx
� ÿ dp

dx
;

Sv
dE
dx
� �E � p� d�Sv�

dx
� 0;

d�SvW �
dx

� S Rrel
w

ÿ � Rdis±rec
w

�
:

�45�

Here S�x� is the nozzle cross-section, x is the co-
ordinate along the nozzle axis, v is the velocity
along the nozzle axis.

The numerical calculations have been per-
formed for the N2;N� � mixture ¯ow in the
expanding nozzle of a conic pro®le with the angle
21° for the following conditions in the reservoir:
T0 � 5375, 7525 K, p0 � 1:74, 17:4, 174 atm, the
radius of the critical cross-section is 1 mm.

In the reservoir, as well as in the critical cross-
section, the mixture is supposed to be at the ther-
mal and chemical equilibrium. Number densities
of molecular and atomic species in the reservoir
are found in terms of T0, p0 using the law of acting
masses and the Dalton law:

n2
at;0

nmol;0

� kT0

p0

m2
at

mmol

� �3=2

hÿ3�2pkT0�3=2

��Zint�T0��ÿ1
exp

�
ÿ D

kT0

�
; �46�

nat;0 � nmol;0 � 1;

where nmol and nat are the atomic and molecular
molar fractions:

nat � nat

nat � nmol

; nmol � nmol

nat � nmol

;

Zint�T � � Zrot�T �Zvibr�T �:
The rotational partition function for diatomic
molecules in the frame of the rigid rotator model is

Zrot � 8pJkT
rh2

;

where r is a symmetrical factor, r � 2 for homo-
nuclear molecules, J is the inertia momentum, the
data for N2 are taken from Ref. [31].

The parameters in the critical section have been
calculated in terms of reservoir parameters using
the equation

1
2
c�RT� � h� � h0 �47�

coupled with the equation of the law of acting
mass and the Dalton one written for the parame-
ters in the critical cross-section.

In Eq. (47) h�, h0 are the speci®c enthalpies in
the critical cross-section and in the reservoir,
subscript ��� denotes the values in the critical
cross-section, c � cp=cv, cp, cv are the speci®c heats
at the constant pressure and constant volume.
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The enthalpy of a mixture is

h � hatYat � hmolYmol;

where hat, hmol are speci®c enthalpies of atoms and
molecules, Yat � qat=q, Ymol � qmol=q are the mass
fractions of atoms and molecules.

Therefore

h � p
q
� 3

2

ReM T � Yathf � Ymol

R
Mmol

T � Ymolcv;vibr;

1eM � 1

Mat

� 1

Mmol

;

Mat, Mmol are the atomic and molecular weights, hf

is the speci®c enthalpy of atom formation, cv;vibr is
the vibrational speci®c heat at the constant vol-
ume.

The values c and cv;vibr are found from the ex-
pressions:

c �
5
2
� nmol � Ymolcv;vibr

3
2
� nmol � Ymolcv;vibr

;

cv;vibr � 1

k
o
oT

1

Zvibr�T �
X

i

ei exp
� 
ÿ ei

kT

�!
:

The results presented below are obtained using the
Treanor±Marrone model with the parameter U �
D=3k.

6. Results

In this section we will discuss the results of
numerical calculations. The macroscopic parame-
ters nat, nmol, T, T1 have been found as a numerical
solution of Eq. (45) and presented at di�erent
distances from the critical cross-section along the
axis. Then vibrational distributions (15) are cal-
culated using the obtained values of macroscopic
parameters. The results are compared with the
ones obtained on the basis of

(1) the non-equilibrium Boltzmann distribution
(18) (for harmonic oscillators with Tv 6� T ),

(2) the Treanor two-temperature distribution
(up to the level i� and neglecting populations at
i > i�),

(3) the equilibrium Boltzmann distribution
(Tv � T ).

The in¯uence of di�erent vibrational distribu-
tions on the macroscopic parameters and dissoci-
ation±recombination processes is investigated for
various values of pressure and gas temperature in
the reservoir. The calculations have been done also
neglecting dissociation and recombination in order
to understand the role of these processes under the
conditions considered. The results are presented in
Figs. 1±12.

Figs. 1±4 plot the change of the gas temperature
T and vibrational temperature of the ®rst level T1

along the nozzle axis in dependence of the distance
from the critical cross-section (x is related to the
radius R of the critical cross-section) for di�erent
reservoir conditions.

One can see the essential in¯uence of vibra-
tional distributions on T1, this e�ect on T is very
weak. Neglecting the anharmonism of molecular
vibrations and using the Boltzmann distribution
lead to an overestimation of T1, lower values of T
and more rapid freezing of both the temperatures.
The Treanor distribution, taking into account
anharmonic e�ects, gives the values of T1 much
closer to the ones obtained using distributions
(15). The di�erence between the values found on
the basis of Eq. (15) and the Boltzmann distribu-
tion is about 31% for T1 and 6% for T in the case
T0 � 7525 K, p0 � 17:4 atm.

In order to estimate the role of dissociation and
recombination processes on the temperature we
calculated T and T1 in the following cases: (a) ne-
glecting dissociation (with recombination and VV,
VT(TV) processes), (b) neglecting recombination
(with dissociation and VV, VT(TV) processes) and
(c) neglecting dissociation and recombination
(with VV and VT(TV) exchanges only). The results
are presented in Figs. 3 and 4. Fig. 4 shows that in
the case p0 � 174 atm, T0 � 7525 K neglecting
dissociation±recombination and taking into ac-
count only VV and VT(TV) vibrational energy
exchanges we have the higher values of T and
lower T1 values. Quantitatively this e�ect is rather
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small because dissociation±recombination pro-
cesses go slightly in the expanding (N2, N) mixture
under conditions considered.

Figs. 5±7 present the ratio T1=T versus x=R for
various models and di�erent reservoir conditions.
The ratio T1=T characterizes the degree of non-
equilibrium in the ¯ow. Fig. 5 shows the highest
T1=T in the case of the Boltzmann non-equilibrium
distribution, the Treanor distribution gives the
value of T1=T closer to the one obtained on the
basis of distribution (15), but still exceeds the last
one. The same ®gure presents T1=T calculated with
the distribution (15) taking into account the
complete kinetics (curve (15)), neglecting dissoci-
ation (curve ((15)rec)), neglecting recombination
(curve ((15)dis)), and neglecting both dissociation
and recombination (curve ((15)VV, VT)). Ne-
glecting dissociation±recombination causes lower
T1=T values in the case p0 � 174 atm, T0 � 7525 K.
The ratio T1=T increases with x rising.

Figs. 6 and 7 plot T1=T calculated on the basis
of Eq. (15) and the Boltzmann distribution corre-
spondingly, for di�erent reservoir conditions. The
lowest T1=T values are in the case T0 � 7525 K,
p0 � 174 atm. One can see the higher values of
T1=T calculated using the Boltzmann distribution
compared to distribution (15).

The molar fractions of atoms nat=�nat � nmol�
versus x=R is given in Figs. 8±10. The most es-
sential recombination e�ect is found in the case
T0 � 7525 K, p0 � 174 atm. The competition of
dissociation and recombination is seen in Figs. 9
and 10, which are given in the other scale. Re-
combination plays the dominant role at the high
pressure in the reservoir and is less important at
the lower pressure.

Comparison of the values nat=�nat � nmol�
calculated on the basis of Eq. (15) and Boltz-
mann distribution (18) shows the higher role of

Fig. 1. T , T1 versus x=R for di�erent vibrational distributions;

T0 � 5375 K, p0 � 17:4 atm. Fig. 2. T , T1 versus x=R for di�erent vibrational distributions;

T0 � 5375 K, p0 � 174 atm.
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dissociation in the ®rst case. It is not surprising
because Eq. (15) gives more excited intermediate
and upper levels which are important for dissoci-
ation. It should be noted, that the results obtained
show the very weak change of atomic molar frac-
tion in the expanding (N2, N) mixture. It is similar
to the behavior found in Ref. [9] for the same
mixture. It is explained by the low rate of disso-
ciation±recombination in this case. Actually, the
expanding of the ¯ow results in the rapid decrease
of both the gas temperature and pressure. Be-
cause of the temperature rapid decrease, the role
of the dissociation becomes weak, and low pres-
sure causes very slight recombination which goes
through triple collisions. Experiments show the
stronger decrease of nat=�nat � nmol� in the air noz-
zle expansion [2]. It is explained by the fact that the
change of nitrogen atom density in the air mixture
goes mostly through the exchange reactions which

rates exceed the N2 dissociation rate and the rate
of N2 formation due to recombination.

Our calculations show the e�ect of non-Boltz-
mann distribution on the dissociation±recombi-
nation processes, this role decreases at the higher
pressure because in this case, as it is seen from Fig.
6, the deviation from the thermal equilibrium is
less.

Figs. 11 and 12 represent the vibrational dis-
tributions ni=nmol versus i in two sections of the
nozzle: x=R � 3 and x=R � 15. Distribution (15) is
compared with the Treanor distribution, non-
equilibrium Boltzmann distribution and one-tem-
perature equilibrium Boltzmann distribution. The
populations have been calculated using the gas
parameters obtained from the macroscopic equa-
tions based on the approximation (15), Treanor
distributions and Boltzmann distributions corre-
spondingly.

Fig. 3. T , T1 versus x=R for distribution (15) and Boltzmann

distribution (Bol) for the complete kinetics and neglecting dis-

sociation±recombination ((15)VV, VT): T0 � 7525 K, p0 � 17:4

atm.

Fig. 4. T , T1 versus x=R for distribution (15) and Boltzmann

distribution (Bol) for the complete kinetics and neglecting dis-

sociation±recombination ((15)VV, VT): T0 � 7525 K, p0 � 174

atm.
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One can see that close to the critical cross-sec-
tion when T1=T only slightly exceeds 1, the Trea-
nor distribution is close to Eq. (15) practically at
all levels. Anharmonism of vibrations manifests
itself already at i > 7 and Boltzmann distribution
gives underpopulation of the levels at i > 7. The
thermal equilibrium Boltzmann distribution with
Tv � T gives much lower vibrational populations.
At x=R � 15 the Treanor distribution is valid only
up to i� � 17 and distribution (15) gives popula-
tions of intermediate and upper levels quite dif-
ferent from the Treanor one.

7. Conclusions

In this paper the non-equilibrium gas dynamic
model for binary (N2, N) mixture with dissociation
and recombination is presented. The closed set of

the equations for macroscopic parameters nmol, nat,
T , T1, v is derived on the basis of quasi-stationary
vibrational distributions. These distributions take
into account strong vibrational excitation and
di�er from the Boltzmann and Treanor ones.

The model is applied to a nozzle expansion of
(N2, N) mixture. The ¯ow parameters and vibra-
tional distributions are computed for di�erent
conditions in the reservoir. The results are com-
pared with the ones obtained using the Boltzmann
and Treanor distributions and the accuracy of the
last ones in a nozzle ¯ow is estimated.

It is shown that in a nozzle expansion of the
mixture considered in the paper the essentially
non-Boltzmann and non-Treanor distributions
appear, the intermediate levels are excited due to
VV vibrational energy exchange. The Boltzmann
distribution gives an underestimation of level
population and di�ers strongly from the Treanor
distribution and distribution (15) obtained in our
paper. It shows the importance of anharmonic
e�ects in a nozzle ¯ow. The Treanor distribution
gives satisfactory approximation of all levels only
in the very beginning of a nozzle, at small x, and
then with x growing leads to unreal populations of

Fig. 5. T1=T versus x=R for distribution (15): complete kinetics,

neglecting dissociation ((15)rec), recombination ((15)dis), dis-

sociation±recombination ((15)VV, VT) and for Boltzmann and

Treanor distributions, complete kinetics. T0 � 7525 K, p0 � 174

atm.

Fig. 6. Comparison of T1=T for distribution (15) under di�erent

source conditions.
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intermediate and upper levels. The di�erence be-
tween distribution (15) and the Treanor one in-
creases noticeably with x rising.

The model of vibrational level populations
in¯uences signi®cantly T1 and non-equilibrium
parameter T1=T whereas its e�ect on the gas tem-
perature is weak, the Boltzmann distribution
causes an overestimation of T1 and T1=T and lower
values of T.

The ratio T1=T increases noticeably with x.
The in¯uence of dissociation±recombination on

T , T1, T1=T and atomic molar fraction is also
studied in this paper. However, this e�ect occurs
small in the expanding (N2, N) mixture. Actually,
the dissociation role decreases due to the rapid

Fig. 8. Nat=N for distribution under di�erent source condi-

tions.

Fig. 7. Comparison of T1=T for Boltzmann distribution (15)

under di�erent source conditions.

Fig. 9. Nat=N for distribution (15) with complete kinetics,

neglecting recombination ((15)dis), neglecting dissociation

((15)rec) and for Boltzmann distribution. T0 � 7525 K, p0 �
174 atm.
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temperature falling and the recombination e�ect,
which could be expected at low temperature, oc-
curs small because of pressure decrease due to
expansion. In order to see a more noticeable
change of nitrogen atom number density in a
nozzle ¯ow, not only dissociation±recombination,
but also bimolecular exchange reaction should be
taken into account. For the mixture considered in
this paper it is shown that neglecting dissociation
and recombination at p0 � 174 atm, T0 � 7525 K
leads to the lower values of T1 and T1=T and to the
gas temperature overestimation.

We would like to note that the estimations
presented above have a qualitative character. It is
due to the uncertainty of data on rate coe�cients
for vibrational energy transitions and dissociation
and because only quasi-stationary distributions
are used in our paper. For the further validation of
our model a comparison with the more rigorous
state-to-state solution and with experimental data
is required.
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