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Abstract

In this paper the influence of different vibrational distributions on heat transfer and diffusion in expanding nozzle

flows is studied. Non-equilibrium flows of N2=N and O2=O mixtures with dissociation, recombination and excitation of
vibrational levels are considered. Vibrational distributions, gas dynamic parameters as well as the transport coefficients

and total energy flux are computed along the nozzle axis using four approaches of the transport kinetic theory: a

rigorous state-to-state approximation, quasi-stationary two-temperature models for harmonic and anharmonic oscil-

lators and a thermal equilibrium one-temperature model. A comparison of vibrational distributions and transport

properties obtained in different approaches is presented. � 2002 Published by Elsevier Science B.V.
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1. Introduction

Adequate models of heat transfer in reacting
real gas flows should take into account the kinetics
of numerous non-equilibrium processes. Appro-
priate models of non-equilibrium kinetics depend
on specific flow conditions and relations between
relaxation times of various processes. Thus, under
conditions of strong vibrational and chemical non-
equilibrium, the commonly used kinetic models

based on quasi-stationary one-temperature and
multi-temperature distributions over vibrational
levels become not to be valid, and more rigorous
state-to-state approximation is needed. It is par-
ticularly important in expanding flows of initially
heated gas. As a matter of fact, in such a flow the
gas temperature drops fast and vibrational energy
becomes higher than the translational one. As a
result, recombination and vibrational energy ex-
changes lead to formation of non-Boltzmann non-
equilibrium distributions.
Particular features of state-to-state distributions

in nozzle flows have been recently studied in [1–3],
and a rather strong difference between state-to-
state populations and quasi-stationary distribu-
tions in all cases has been found. The transport
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kinetic theory in the state-to-state and several
multi-temperature approximations has been de-
veloped in [4–6], and in [7,8] the heat transfer in
nozzle flows has been investigated on the basis of
state-to-state distributions. However, up to now it
is not sufficiently clear how the various vibrational
distributions can influence the gas dynamic pa-
rameters and transport properties. This problem is
very important for practical applications: under-
standing the role of non-equilibrium kinetics in the
heat transfer allows one to choose an appropriate
model of non-equilibrium gas dynamics for par-
ticular conditions. The implementation of the
state-to-state model requires solution of a large
number of master equations for vibrational level
populations coupled with the gas dynamic equa-
tions. In order to find the heat flux in this ap-
proach, one should calculate state dependent
transport coefficients, among them the diffusion
coefficients for each vibrational level [6]. More-
over, transport coefficients should be recalculated
at each step of the numerical code. Such a proce-
dure consumes a lot of computational time even
for the case of simple gas mixtures. From this
point of view the employment of quasi-stationary
models gives a considerable benefit. Therefore it is
interesting to distinguish the conditions where
both the rigorous state-to-state model and more
simple quasi-stationary ones provide similar re-
sults when applied to a gas dynamic problem. This
question is discussed in the present paper.
The aim of the paper is the investigation of

non-equilibrium vibrational distributions and heat
transfer in expanding flows of N2=N and O2=O
mixtures in a nozzle on the basis of several
models: the state-to-state approach, the quasi-
stationary multi-temperature models for harmonic
and anharmonic oscillators and, finally, one-
temperature thermal equilibrium model. First, the
non-equilibrium distributions and gas dynamic
parameters along the nozzle axis are calculated on
the basis of these four models in the Euler ap-
proximation. After that, their influence on the
transport coefficients and heat transfer is esti-
mated using an approximate method proposed in
[9] and then applied for the evaluation of trans-
port properties in various non-equilibrium flows
[6–8,10–13].

2. State-to-state approximation

2.1. Non-equilibrium kinetics

In the present paper we study a binarymixture of
diatomic molecules A2ðiÞ and atoms A with disso-
ciation, recombination, vibration–translation (VT)
and vibration–vibration (VV) energy transitions:

A2ðiÞ þM�AþAþM; ð1Þ

A2ðiÞ þM�A2ði0Þ þM; ð2Þ

A2ðiÞ þA2ðkÞ�A2ði0Þ þA2ðk0Þ; ð3Þ

where A2ðiÞ is a molecule at the vibrational level i,
an inert partner M can be a molecule or an atom A.
The state-to-state approach is commonly ap-

plied when the characteristic times of vibrational
and chemical relaxation svibr and sreact are compa-
rable with the mean time of changing of macro-
scopic gas flow parameters h and exceed essentially
the times of translational and rotational relaxation
sel, srot:

sel < srot � svibr < sreact � h: ð4Þ
Under condition (4) in the zero-order approxi-

mation of the generalized Chapman–Enskog
method for the distribution functions one obtains
the Maxwell distribution over velocities and the
Boltzmann distribution over rotational energies
while no quasi-stationary distributions over vib-
rational energy levels exist. The vibrational level
populations ni and number densities of atoms nat
are found from the equations of detailed vibration-
chemical kinetics coupled to the conservation
equations of momentum and total energy [6].
A closed set of equations describing a non-vis-

cous non-conductive gas flow in a nozzle in the
state-to-state approach has been derived in
[2,3,14]. For a binary mixture of molecules and
atoms it has the form:

d

dx
ðnivSÞ ¼ S Rvibri

�
þ Rdiss�reci

�
; i ¼ 0; 1; . . . ; L;

ð5Þ

d

dx
ðnatvSÞ ¼ �2S

X
i

Rdiss�reci ; ð6Þ
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qv
dv
dx

þ dp
dx

¼ 0; ð7Þ

dh
dx

þ v
dv
dx

¼ 0; ð8Þ

where ni is the population of molecular vibrational
level i, nat is the number density of atoms, x is the
distance from the reservoir along the nozzle axis,
SðxÞ is the nozzle cross-section, v is the macro-
scopic gas velocity, L is the number of excited
vibrational states, q is the density, p is the pressure,
h is the enthalpy per unit mass:

h ¼ hmol
qmol
q

þ hat
qat
q

; ð9Þ

qmol ¼ mmol
P

i ni ¼ mmolnmol, qat ¼ matnat, mc is the
mass of species c,

hat ¼
5

2

kT
mat

þ hatf ; hmol ¼
5

2

kT
mmol

þ Erot þ Evibr;

k is the Boltzmann constant, T is the gas temper-
ature, hatf is the enthalpy of atom formation, Erot,
Evibr are the rotational and vibrational energies per
unit mass. In the present case,

Erot ¼ kT
mmol

; Evibr ¼ 1

qmol

X
eini;

ei is the vibrational energy of a molecule at the ith
level. One can see that the specific enthalpy in the
state-to-state approach depends on the species
concentrations, gas temperature and populations
of all vibrational levels.
The production terms Rvibri , Rdiss�reci in Eqs. (5)

and (6) describe the change of vibrational level
populations and atomic concentrations due to VV,
VT energy exchanges and chemical reactions. They
are given, for instance, in [14]. In the present study
we use the rate coefficients for all vibrational en-
ergy transitions reported in [15] where the inter-
polating formulas for the rate coefficients obtained
by means of molecular dynamics methods [16,17]
are proposed. Dissociation rate coefficients are
calculated on the basis of the Treanor–Marrone
model [18] extended in [19] to the case of state-to-
state approach. The rate coefficients of recombi-
nation are evaluated using the detailed balance
principle for the state-to-state coefficients (see
[14]).

2.2. Transport terms

The first-order approximation of the general-
ized Chapman–Enskog method under condition
(4) has been considered in [6] in the general case of
a multi-component reacting mixture. In the latter
paper the first-order perturbation term has been
expressed in terms of the gradients of macroscopic
flow parameters: nci (number densities of species c
at the vibrational level i), v (gas velocity), T (gas
temperature). On the basis of the first-order dis-
tribution function the diffusion velocities of mol-
ecules at each vibrational state and the total heat
flux have been derived. Thus the diffusion velocity
of the molecules of each chemical species c at the
vibrational level i reads [6]:

Vci ¼ �
X
dk

Dcidkddk � DTcir ln T ; ð10Þ

where Dcidk and DTci are the diffusion and thermal
diffusion coefficients for every chemical and vib-
rational species, dci are the diffusion driving forces
for each chemical and vibrational species:

dci ¼ r nci
n

� �
þ nci

n

�
� qci

q

�
r ln p: ð11Þ

It is clear that the number of independent
diffusion and thermal diffusion coefficients in this
approximation is very large (see estimations in
[20]). The expressions for diffusion velocities can
be simplified invoking some additional assump-
tions. In [6,20] it has been supposed that the
cross-sections of elastic collisions are independent
of the vibrational states of colliding particles.
This assumption is usually accepted in the trans-
port kinetic theory despite the fact that molecules
in vibrationally excited states may have a larger
effective radius than ground state molecules (see,
for instance, [21]). The validity of this assumption
is discussed in [13], where it is shown that taking
into account the dependence of elastic cross-sec-
tions on the vibrational quantum number pro-
vides only a very small correction to the
transport coefficients. Finally, using this assump-
tion, the system of diffusion coefficients is reduced
to the following system: there remain coefficients
Dcici which are different for any vibrational level i
of species c, coefficients Dcc ¼ Dcick 8i; 8k 6¼ i,
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coefficients Dcd ¼ Dcidk 8d 6¼ c; 8i; k, and ther-
mal diffusion coefficients DTci ¼ DTc; 8i.
For a binary mixture considered in the present

paper, the diffusion velocities of vibrationally ex-
cited molecules Vi and atoms Vat, after simplifi-
cation discussed above, have the form:

Vi ¼ �Diidi � Dmm
X
k 6¼i

dk � Dmadat � DTmolr ln T ;

ð12Þ

Vat ¼ �Daadat � Dmadmol � DTatr ln T : ð13Þ
Here Dma is the binary diffusion coefficient for a
mixture of molecules and atoms, Dmm is the dif-
fusion coefficient of the molecules at different
vibrational levels, Daa is the self-diffusion coeffi-
cient of atomic species, and Dii are the self-diffu-
sion coefficients of molecular species at the same
ith vibrational level, DTmol and DTat are the thermal
diffusion coefficients of molecules and atoms cor-
respondingly, dmol ¼

P
i di.

The total energy flux in the state-to-state ap-
proximation in the considered mixture reads

q ¼ �kTRrT � p DTmoldmol
�

þ DTatdat
�

þ
X
i

5

2
kT

�
þ heijir þ ei

�
niVi

þ 5

2
kT

�
þ eat

�
natVat; ð14Þ

where eat is the energy of atom formation, heijir is
the rotational energy averaged over rotational
spectrum. The coefficient of heat conductivity
kTR ¼ ktr þ krot is due to translational and rota-
tional degrees of freedom, vibrational modes do
not contribute to thermal conductivity in this ap-
proach. The transport of vibrational energy is
described in terms of diffusion coefficients intro-
duced for each vibrational state.
It is important to note that the expressions for

diffusion velocities depend on the gradients of all
level populations and also on the gradients of gas
temperature, pressure and number density of at-
oms. Consequently, the total energy transfer in the
state-to-state approximation is determined by heat
conductivity, thermal diffusion, mass diffusion of
molecules and atoms and diffusion of vibrationally
excited molecules. The last mentioned effect takes

place only in the state-to-state approximation. In
order to estimate the role of different dissipative
processes in the heat transfer it is useful to separate
their contribution to the heat flux. First, let us
define the diffusion velocities caused by mass dif-
fusion of molecules and atoms:

VMDi ¼ VMDmol ¼ �Dmmdmol � Dmadat; ð15Þ

VMDat ¼ �Daadat � Dmadmol; ð16Þ

by thermal diffusion of molecules and atoms:

VTDi ¼ VTDmol ¼ �DTmolr ln T ; ð17Þ

VTDat ¼ �DTatr ln T ; ð18Þ

and finally, by diffusion of vibrational energy of
excited molecules

VDVEi ¼ �ðDii � DmmÞdi: ð19Þ
It is evident that diffusion velocities due to mass
and thermal diffusion do not depend on the vib-
rational state of molecules.
On the basis of these definitions one can intro-

duce various contributions to the heat flux. In this
way the total energy flux can be written as a sum of
several terms:

q ¼ qHC þ qMD þ qTD þ qDVE; ð20Þ
where qHC, qMD, qTD, qDVE are the fluxes deter-
mined respectively by heat conductivity, mass
diffusion, thermal diffusion and diffusion of vib-
rational energy:

qHC ¼ �kTRrT ; ð21Þ

qMD ¼
X
i

5

2
kT

�
þ heijir þ ei

�
niV

MD
i

þ 5

2
kT

�
þ eat

�
natV

MD
at

¼
X

c¼mol;at
qchcV

MD
c ; ð22Þ

qTD ¼
X

c¼mol;at

�
� pDTcdc þ qchcV

TD
c

�
; ð23Þ

qDVE ¼
X
i

5

2
kT

�
þ heijir þ ei

�
niV

DVE
i : ð24Þ
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Sometimes it is convenient to eliminate the diffu-
sion driving forces in Eq. (23) introducing the
thermal diffusion ratios and rewrite qTD in another
form (see [22]).
The expressions for the state-to-state transport

coefficients in terms of bracket integrals and al-
gorithms for their calculation are given in [6,20]. In
particular, all transport coefficients are expressed
in terms of vibrational level populations ni, num-
ber density of atoms nat, gas temperature T and
collision integrals depending on the cross-sections
of the most frequent collisions. Under condition
(4), the most probable collisions are the elastic
ones and inelastic collisions resulting in the RT
rotational energy transitions. Moreover, as it is
shown in [6,23], the influence of the inelastic col-
lision integrals on the transport coefficients is
weak. For instance, their contribution to the heat
conductivity coefficient does not exceed 2% and
occurs to be even less for the diffusion coefficients.
Therefore, for the calculation of heat conductivity
and diffusion coefficients only the data on the
elastic collision integrals are required. As it is
emphasized in [24–26], for low temperatures the
Lennard–Jones potential gives a good agreement
with experimental data; for high temperatures the
employment of the repulsive potential yields a
reasonable accuracy. In the present study the pa-
rameters of the Lennard–Jones and repulsive po-
tentials recommended correspondingly in [27] and
[28] have been used, this choice provides approxi-
mately the same accuracy as the formulas pro-
posed in [25,26].

2.3. Approximate evaluation of heat transfer

Evaluation of transport properties in real gas
flows on the basis of the rigorous kinetic theory
requires solution of fluid dynamics equations
coupled to the equations of non-equilibrium vi-
bration-chemical kinetics in viscous and heat
conductive gases. For the Navier–Stokes approx-
imation, the closed system of equations in the
state-to-state approach have been derived in [5,6]
on the basis the generalized Chapman–Enskog
method. These equations contain production and
transport terms. The algorithms for evaluation of
transport terms are given in [5,6], and production

terms containing first-order state-to-state rates of
vibrational energy transitions and chemical reac-
tions are given in [29]. In the state-to-state ap-
proach the tensor of pressure, heat flux and
diffusion velocities for each vibrational level are
determined by the transport coefficients depending
on the vibrational state. For numerical simulations
one has to compute the state-to-state coefficients at
the each time and space cell. The computational
cost of such a scheme is extremely high. Using the
simplified expressions for the state dependent
transport coefficients proposed in the recent paper
[20] makes this goal attainable. However, up to
now, the practical incorporation of the state-to-
state transport coefficients to the numerical codes
has not been accomplished.
Because of complexity of a rigorous scheme, in

[7–13] an approximate way for the evaluation of
the heat transfer in the state-to-state approach has
been proposed. The analysis carried out in these
papers is based on a simplified scheme: first, the
vibrational distributions, species concentrations,
temperature, pressure, velocity are computed ei-
ther in the Euler approach of non-viscous and
non-conductive gas flow [7–10,13] or on the basis
of very simple models for transport coefficients
[11,12]. Then the calculated macroscopic parame-
ters are used as input for the transport coefficients
and heat transfer evaluation using rigorous kinetic
theory formulas. This approach permits to esti-
mate the influence of state-to-state vibrational ki-
netics on the transport properties. Certainly, in
order to understand the mutual effect of state-to-
state kinetics and transport properties, it is neces-
sary to consider the equations of non-equilibrium
kinetics in viscous and heat conductive gas flow
together with fluid dynamics equations containing
precise transport coefficients. This could be an
interesting perspective for future theoretical and
numerical studies.

3. Quasi-stationary models

3.1. Quasi-stationary vibrational distributions

Since the number of equations constituting
system (5)–(8) is very large, especially for a multi-
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component mixture, it is useful to find conditions
when this system can be reduced to a more simple
one. In the case of significant vibrational excita-
tion at moderate gas temperatures, VV exchanges
(3) appear to be much more probable than VT
transitions (2) [30,31]:

sel < srot < sVV � sVT < sreact � h: ð25Þ

Under condition (25), the quasi-stationary multi-
temperature distributions establish at the time
scale sVV. In particular, if molecules are simulated
using the harmonic oscillator model, then conser-
vation of the vibrational energy ei of colliding
molecules during VV exchanges takes place, and
vibrational level populations have the form of the
non-equilibrium Boltzmann distribution with vib-
rational temperature Tv 6¼ T :

ni ¼
nmol

ZvibrðTvÞ
si exp

�
� ei
kTv

;

�
; ð26Þ

si is the vibrational statistical weight. Since for
diatomic molecules si ¼ 1, in further discussion it
is omitted. The vibrational partition function in
the present case reads

ZvibrðTvÞ ¼
XL

i¼0
exp

�
� ei
kTv

�
: ð27Þ

If molecular vibrations are supposed to be an-
harmonic, then the VV exchange is non-resonant,
and vibrational energy does not conserve in the
most frequent collisions. However, as it is shown
in [32], during VV transitions the number of vib-
rational quanta in a system of colliding molecules
does not change, and therefore the value i can be
chosen as an additional collision invariant of rapid
processes. In this case, at the early stages of vib-
rational relaxation the Treanor distribution with
the temperature of the first vibrational level T1
establishes [32]

ni ¼
nmol

ZvibrðT ; T1Þ
exp

�
� ei � ie1

kT
� ie1
kT1

�
; ð28Þ

ZvibrðT ; T1Þ ¼
XL

i¼0
exp

�
� ei � ie1

kT
� ie1
kT1

�
: ð29Þ

The Treanor distribution describes correctly the
vibrational kinetics only in the case of moderate

vibrational excitation or at T1 < T . Under condi-
tions of strong vibrational excitation, various
mechanisms of vibrational relaxation dominate at
different groups of vibrational levels [31]. Thus, at
low levels the non-resonant VV0 transitions are the
most probable ones, at the intermediate levels near-
resonant VV00 exchanges between the neighboring
states dominate, and at the high levels, probabili-
ties of all vibrational energy transitions become
comparable. It leads to different relations between
relaxation times along the vibrational spectrum. In
this case, the vibrational distribution has different
forms at various groups of vibrational levels [4,14]:

ni ¼
N1
Zv1 exp � ei�ie1

kT � ie1
kT1

� �
; 06 i6 i�;

nmol C
iþ1 ; i� 6 i6 i��;

N3
Zv3 exp � ei

kT

� �
; i�� 6 i6 L:

8><
>: ð30Þ

Level i� corresponds to the minimum of the
Treanor distribution, level i�� is defined from the
ratio of probabilities of VV and VT transitions
[31]. Parameters N1, N3, C can be defined in terms
of T, T1 and nmol from the normalizing conditions
and continuity of distribution at i ¼ i�, i ¼ i��;
Zv1; Zv3 are the partition functions:

Zv1 ¼
Xi�
i¼0

exp

�
� ei � ie1

kT
� ie1
kT1

�
; ð31Þ

Zv3 ¼
XL

i¼i��

exp
�
� ei
kT

�
: ð32Þ

Distribution (30) represents the Treanor distri-
bution at low levels, the declining plateau at the
intermediate levels and the Boltzmann distribution
at high levels. It has been obtained first in [31] as
an approximate solution of balance equations for
vibrational level populations in a pure gas, and
then, it has been derived from the kinetic theory
principles in [4,33]. In [14] the model has been
extended for a dissociating gas.
On the basis of the analytical distributions in-

troduced above the system of macroscopic equa-
tions (5)–(8) can be significantly simplified (see
[5,34] for a detailed discussion). Substituting dis-
tributions (26), (28) or (30) into Eq. (5) and per-
forming summation over vibrational levels, one
obtains the equation of two-temperature chemical
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kinetics for the concentration of molecules nmol.
Furthermore, multiplying (5) by the additional
collision invariants and using quasi-stationary
distributions, one can derive relaxation equations
for the vibrational temperature Tv in the case of
harmonic oscillators or for the temperature T1 for
anharmonic oscillators. Finally, instead of Lþ 1
equations for the vibrational level populations, one
has only two additional relaxation equations. One
should mention that the specific enthalpy in the
energy conservation equation is now a function of
nmol, nat, T, T1. The reduced systems of macroscopic
equations are reported in [5,34] for a general case,
and in [14] for a binary mixture flow in a nozzle.
In the case of thermal equilibrium, when all

internal energy exchanges proceed much faster
than chemical reactions,

sel < sint � sreact � h ð33Þ

(sint is the characteristic time of internal energy
relaxation), vibrational level populations are de-
scribed by the equilibrium Boltzmann distribution
(26) with gas temperature T ¼ Tv. Under condition
(33) the system of macroscopic equations consists
of two equations of one-temperature chemical ki-
netics for nmol and nat, and conservation equations
(7) and (8). The specific enthalpy in this case is
determined only by the gas temperature and con-
centrations of chemical species.
One should note that, contrary to the state-to-

state distributions, the analytical quasi-stationary
distributions described above are not perturbed
directly by the recombination and dissociation
processes. These processes are taken into account
in the equations of two-temperature chemical ki-
netics for nmol and nat, and influence the vibrational
distributions through the concentrations of
chemical species and temperatures.

3.2. Transport terms in quasi-stationary approaches

The transport terms in various quasi-stationary
approaches have been considered in [4,5,34]. For
distribution (30), using the definitions of Section 2
one can write the total heat flux in the following
form:

q ¼ �kTRVrT � kvrT1 þ qMD þ qTD: ð34Þ

In this case the coefficient kTRV ¼ ktr þ krot þ kvt
describes the transport of translational, rotational
energy and a small part of vibrational energy due
to the non-resonant character of VV exchange (in
a system of anharmonic oscillators vibrational
levels are not equidistant and therefore a small
fraction of vibrational energy is transferred to the
translational mode during VV transitions). The
coefficient kv is determined by the transport of the
total number of vibrational quanta as well as by
the loss or gain of vibrational energy in non-res-
onant VV exchange [5].
One can see that using the analytical vibrational

distribution, the term qDVE is reduced to the term
qvibr ¼ �kvrT1 depending on the gradient of vib-
rational temperature T1 instead of gradients of all
vibrational level populations. The expressions for
qMD and qTD are formally given by formulas (22)
and (23). Nevertheless the principal difference ex-
ists: first, the specific enthalpy h as well as all
transport coefficients in the two-temperature ap-
proach depend on nmol, nat, T and T1 contrary to
the state-to-state model, when these quantities are
determined by the gas temperature T, nat and all
vibrational level populations ni; then, the coeffi-
cient Dmm in the present case denotes the self-dif-
fusion coefficient of molecular species rather than
diffusion coefficient of the molecules at different
vibrational levels; and finally, all transport coeffi-
cients are determined by the cross-sections of not
only elastic and RT collisions, but also by the
cross-sections of VV transitions. However the last
point is not of great importance because the con-
tribution of collision integrals depending on the
cross-sections of VV transitions to the heat con-
ductivity and diffusion coefficients is found to be
negligibly small [4,23], while the role of non-equi-
librium specific heats defined on the basis of dis-
tribution (30) is shown to be decisive for the heat
conductivity calculation.
If molecules are simulated by harmonic oscil-

lators, then non-equilibrium Boltzmann distribu-
tion (26) takes place, and the total heat flux is
given by the expression:

q ¼ �k0
TRrT � k0

vrTv þ qMD þ qTD: ð35Þ
Again, like in Eq. (14), the heat conductivity

coefficients k0
TR at the temperature gradient is
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determined only by translational and rotational
degrees of freedom, k0

TR ¼ ktr þ krot [5,35]. It is due
to the fact that the coefficient kvt comes to zero in
this approximation because the vibrational spec-
trum of harmonic oscillators is equidistant, and
therefore VV exchange is resonant. The coefficient
k0
v describes the transport of vibrational energy.
In the case of thermal equilibrium the total heat

flux takes the classical form [22]:

q ¼ �krT þ qMD þ qTD: ð36Þ
The heat conductivity coefficient k ¼ ktr þ kint in-
cludes the coefficient kint describing the heat
transfer due to all internal energy exchanges,
which are supposed to be more rapid than chem-
ical reactions in this case. Note, that the specific
enthalpy hmol depends now only on the gas tem-
perature T, and the transport coefficients are ex-
pressed in terms of macroscopic quantities nmol,
nat, T, elastic collision integrals and integrals of all
inelastic non-reactive collisions. However, simi-
larly to previous cases, the contribution of inelastic
collision integrals to the transport coefficients is
significantly less than that of the elastic ones.
The algorithms for the calculation of all trans-

port coefficients in reacting gas mixtures on the
basis of various quasi-stationary distributions
have been elaborated in [4,5,34]. The transport
properties in the flow are estimated in the present
study using the approximate procedure described
in Section 2.3.

4. Results

The flows of O2=O and N2=N mixtures in a
conic nozzle with an angle 21� have been studied
under different reservoir conditions using the state-
to-state and three quasi-stationary models. The
conditions in the critical cross-section for five cases
considered are summarized in Table 1. The molar
fractions of atoms in the throat are also given in
the table. Distributions in the critical cross-section
are assumed to be in thermal and chemical equi-
librium.
First, let us discuss the peculiarities of the state-

to-state vibrational populations. The evolution of
state-to-state populations along the nozzle axis for

the conditions indicated above has been found
after numerical integration of system (5)–(8). The
typical behavior is presented in Figs. 1(a) and (b)
where distributions versus i are given for the Cases
2 and 5. Different curves correspond to various
dimensionless distances x=R from the throat (R is
the radius of the critical cross-section). In both
cases formation of essentially non-Boltzmann

Table 1

Conditions in the critical cross-section

Case Mixture T� (K) p� (atm) ðnat=nÞ�
1 O2=O 4000 1 0.290

2 O2=O 4000 100 0.0339

3 O2=O 6000 100 0.360

4 N2=N 7000 1 0.234

5 N2=N 7000 100 0.0264

Fig. 1. Reduced level populations ni=n versus i in different

cross-sections x=R. (a) O2=O, T� ¼ 4000 K, p� ¼ 100 atm; (b)
N2=N, T� ¼ 7000 K, p� ¼ 100 atm.
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distributions with a distinct plateau part is ob-
served, this part becomes longer with distance x
rising; in oxygen the plateau is more pronounced
than in nitrogen. A similar qualitative behavior of
state-to-state distributions is found in other cases
except Case 4 (N2=N, T� ¼ 7000 K, p� ¼ 1 atm).
In this case the populations of low and interme-
diate levels remain almost constant along the
nozzle axis, only the populations of very high
levels change slightly during the expansion. With
temperature rising (Case 3) the plateau forms more
rapidly compared to the low temperature condi-
tions (Cases 1 and 2); it starts at very low levels
(i ¼ 3–4) and appears to be longer.
Comparing the peculiarities of vibrational dis-

tributions in the present case to the ones reported
in [3,7] one can see the qualitative similarity of the
results. The existing deviations are explained, first,
by the various nozzle profiles, and then, one
should note that different models of dissociation–
recombination processes have been used in these
two studies: the ladder-climbing model in [3,7] and
the Treanor–Marrone model in the present paper.
Figs. 2(a) and (b) give the variation of popula-

tions of selected vibrational states along the nozzle
axis for the same cases; populations are given
versus x=R. One can see that populations of low
vibrational states change monotonously with x
while the evolution of intermediate and high level
populations is not always monotonous. For higher
temperature (Case 3), contrary to Case 2, O2
populations at upper levels (i ¼ 25–33) decrease
noticeably with x. Under low pressure conditions
(Cases 1 and 4) populations of all states vary
monotonously except several very highly located
levels. It can also be noted that in nitrogen values
of level populations become frozen considerably
faster than in oxygen.
An important role of recombination in the

formation of non-equilibrium distributions can be
seen from Figs. 3(a) and (b). In these figures we
present a comparison of vibrational distributions
at x=R ¼ 50 calculated taking into account vibra-
tional energy exchange and: (1) dissociation and
recombination; (2) only dissociation; (3) only re-
combination; (4) without dissociation and recom-
bination. It is seen that neglecting dissociation
influences rather weakly the state-to-state distri-

butions in nozzles whereas neglecting recombina-
tion leads to a quite different shape of distributions
and disappearing of their plateau parts.
Next figures show a comparison of vibrational

distributions and temperatures calculated in dif-
ferent approaches (Cases 2 and 5). Figs. 4(a) and
(b) present the level populations in the cross-sec-
tion x=R ¼ 50 where the discrepancy between
various distributions is maximum. Curves 1 depict
the state-to-state populations, and Curves 2, 3, 4
denote the non-equilibrium distributions of an-
harmonic and harmonic oscillators and thermal
equilibrium Boltzmann distributions, respectively.
One can observe the dramatic difference between
the distributions in both mixtures; the qualitative
picture is similar also in all remaining cases. As it is
expected, thermal equilibrium one-temperature
Boltzmann populations are located essentially

Fig. 2. Reduced level populations ni=n versus x=R. (a) O2=O,
T� ¼ 4000 K, p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K,
p� ¼ 100 atm.
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lower than the state-to-state and non-equilibrium
quasi-stationary ones. Harmonic and anharmonic
oscillator models provide a rather good indication
of the distribution shape at the low levels whereas
at the intermediate and high states the shape of
state-to-state distributions is quite different. The
harmonic oscillator approach based on distribu-
tion (26) underestimates significantly the level
populations at i > 7–8 in oxygen and at i > 12 in
nitrogen. The distributions obtained by means of
the anharmonic oscillator model using distribution
(30) have some resemblance to the state-to-state
ones; however, their plateau parts and populations

of high levels have distinguishing features. It can
be noted that the length of plateau and its starting
level in the quasi-stationary approximation can be
corrected using other points i� and i�� for pasting
together different parts of Treanor–plateau–
Boltzmann distribution (30). The choice of these
points can depend on the specific flow conditions
and transition probabilities (see [4,31]), and the
rigorous solution of master equations can be used
in order to choose correctly values i� and i��. Fi-
nally, one can conclude that the state-to-state
model gives the most appropriate behavior of
vibrational distributions. It is confirmed by many
experimental works (see, for instance, [36,37]).

Fig. 3. Reduced level populations ni=n versus i at x=R ¼ 50.
Curves 1: dissociation and recombination; 2: dissociation; 3:

recombination; 4: no dissociation and recombination. (a) O2=O,
T� ¼ 4000 K, p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K, p� ¼
100 atm.

Fig. 4. Reduced level populations ni=n versus i at the cross-

section x=R ¼ 50 in different approaches. Curves 1: state-to-
state model; 2: two-temperature anharmonic oscillator model;

3: two-temperature harmonic oscillator model; 4: one-temper-

ature model. (a) O2=O, T� ¼ 4000 K, p� ¼ 100 atm; (b) N2=N,
T� ¼ 7000 K, p� ¼ 100 atm.
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The change of gas temperature and vibrational
temperatures T1 or Tv calculated in different ap-
proximations along the nozzle axis is presented in
Figs. 5(a) and (b). In the state-to-state approach T1
is given by the relation: T1 ¼ e1=k lnðn0=n1Þ. The
discrepancy between the values obtained in vari-
ous approaches (except the one-temperature
model) is found to be relatively weak. In Cases 1,
2, 4, 5 the thermal equilibrium model underesti-
mates the gas temperature (the discrepancy
reaches 47% for Case 2 and 24% for Case 5). A
very sharp decrease of the gas temperature in the

vicinity of the throat is found for condition 3
(O2=O, T� ¼ 6000 K, p� ¼ 100 atm), in this case
the one-temperature model provides the tempera-
ture profile slightly distinct from the one obtained
under conditions of lower initial temperature.
Non-equilibrium quasi-stationary models give the
values of T very close to those obtained by means
of the state-to-state model (the maximum differ-
ence does not exceed 2% for anharmonic oscilla-
tors and 4% for the harmonic oscillator approach).
In all cases, for the prediction of gas temperature,
the anharmonic oscillator model represents some
improvement of the harmonic oscillator approxi-
mation. Concerning T1 and Tv for Cases 2 and 5, in
oxygen all vibrational temperatures appear to be
very close to each other whereas in nitrogen a
noticeable difference (up to 15–20% in the anhar-
monic case) can be observed. Under low pressure
conditions (Cases 1 and 4) the deviation of quasi-
stationary vibrational temperatures from T1 given
by the state-to-state model is a little higher.
Now we will discuss the transport properties

evaluated on the basis of the results presented
above. Figs. 6(a) and (b) plot the heat conductivity
coefficients versus x=R (Cases 2 and 5) computed
using different models. Curves 1–4 denote the co-
efficient kTR, kTRV, k0

TR or k at the temperature
gradient; Curves 20 and 30 designate the vibrational
heat conductivity coefficients kv and k0

v at the
gradient of vibrational temperature. These coeffi-
cients appear only in the multi-temperature ap-
proaches (see formulas (34) and (35)); in the one-
temperature model vibrational degrees of freedom
are supposed to be in equilibrium, therefore the
vibrational heat conductivity coefficient makes a
part of the coefficient k at rT ; in the state-to-state
approach the transport of vibrational energy is
connected with diffusion of vibrationally excited
states rather than with heat conductivity. It is seen
that the one-temperature approximation gives
lower values of k compared to other models, this
fact is explained by lower temperature values ob-
tained in this approach. In O2=O mixtures coeffi-
cients k0

TR and kTRV calculated by means of all
thermal non-equilibrium models practically coin-
cide, the same result is valid for coefficients kv and
k0
v obtained on the basis of harmonic and anhar-
monic oscillator models. It is connected with the

Fig. 5. Temperature and vibrational temperature versus x=R in
different approaches. Curves 1–4 correspond to the gas tem-

perature; 10; 20: T1; 30: Tv. Curves 1,10: state-to-state model; 2,20:
two-temperature anharmonic oscillator model; 3,30: two-tem-

perature harmonic oscillator model; 4: one-temperature model.

(a) O2=O, T� ¼ 4000 K, p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K,
p� ¼ 100 atm.
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fact that the ratio of temperatures T1=T remains
rather low, it does not exceed 3 throughout the
flow. In N2=N mixtures, where T1=T reaches 8, the
anharmonic effects are more important: the vari-
ation of coefficients kTRV, k

0
TR and kv, k

0
v with T1=T

rising is different for harmonic and anharmonic
oscillators; a similar dependence of the coefficients
on T1=T in a pure gas has been reported in [4].
The total energy flux versus x=R obtained in

four approximations is presented in Figs. 7(a) and
(b) for Cases 2 and 5. In all remaining cases the
behavior of the heat flux is analogous. Notations

are the same as in Fig. 4; different curves corre-
spond to various approaches. The total energy flux
decreases with x due to decreasing of macroscopic
parameter gradients. Again, the thermal equilib-
rium model underestimates noticeably the heat
flux, the deviation may reach several tens of per-
cents. Non-equilibrium two-temperature models
give heat flux values significantly closer to the
rigorous state-to-state ones, the anharmonic ap-
proach provides a slightly better accuracy; the
mean discrepancy between the state-to-state and
quasi-stationary heat fluxes is about 7% and 10%
for anharmonic and harmonic oscillators, respec-
tively, in O2=O mixtures (for N2=N mixture we get
4% and 10% correspondingly).

Fig. 7. Heat flux q (W=m2) versus x=R in different approaches.
Curves 1: state-to-state model; 2: two-temperature anharmonic

oscillator model; 3: two-temperature harmonic oscillator mod-

el; 4: one-temperature model. (a) O2=O, T� ¼ 4000 K,
p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K, p� ¼ 100 atm.

(a)

(b)

Fig. 6. Heat conductivity coefficients (W=m K) versus x=R in
different approaches. Curves 1–4 correspond to kTR, kTRV, k0

TR

and k; 20; 30: kv, k0
v. Curves 1: state-to-state model; 2,2

0: two-

temperature anharmonic oscillator model; 3,30: two-tempera-

ture harmonic oscillator model; 4: one-temperature model. (a)

O2=O, T� ¼ 4000 K, p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K,
p� ¼ 100 atm.
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Starting such a detailed study of the heat
transfer in a nozzle flow, we expected to find a
more appreciable influence of state-to-state distri-
butions on the total energy flux. Thus, in a shock
heated flow a substantial influence of state-to-state
kinetics on the heat transfer has been demon-
strated [10,24], although the shape of vibrational
distributions behind the shock is not far from the
Boltzmann one. On the contrary, in the present
case the essentially non-Boltzmann distributions
do not change significantly the heat flux. In order
to understand the reason for this disparity, we
have examined the contribution of various pro-
cesses to the energy flux in the state-to-state ap-
proach. Figs. 8(a) and (b) report the different parts
of the heat flux normalized to the total flux q.
Curves 1 give the reduced Fourier flux qHC=q;
Curves 2 correspond to the flux due to mass dif-
fusion qMD=q; Curves 3 denote the ratio qDVE=q
(qDVE is caused by diffusion of vibrational states);
finally, Curves 4 are obtained taking into account
only thermal diffusion (qTD=q). One can see that
the contribution of thermal diffusion to the heat
flux is negligible in all cases, it confirms the com-
monly used assumption in the kinetic theory about
small influence of this process. In O2=O mixtures
the heat transfer caused by heat conductivity pre-
vails, its contribution comprises about 70–80% of
the total flux; the role of mass diffusion and dif-
fusion of vibrational energy is of the same order,
the latter process loses its importance with x rising.
In N2=N mixtures close to the throat the picture is
similar, however at some distance from the critical
cross-section a strong competition between heat
conductivity and mass diffusion takes place
whereas the contribution of vibrational energy
diffusion diminishes rapidly. This process is not
negligible only in the vicinity of the throat. A
similar tendency has been reported recently in [8]
for an N2=N mixture flow in a nozzle with different
geometry. It is reasonable because in nitrogen the
gradients of level populations are rather low ex-
cept the very beginning of the expansion (see Fig.
2(b)). It is not the case in oxygen (Fig. 2(a)), where
the freezing of level populations proceeds slower.
From the above discussion it is evident that in

the general case diffusion of vibrational energy
cannot be neglected throughout the flow. There-

fore, the question about the weak influence of non-
Boltzmann distributions on the heat flux still
remains open. The next point to check is the con-
tribution of different vibrational states to the en-
ergy flux. In Figs. 9(a) and (b) the heat flux due to
diffusion of vibrational states calculated using dif-
ferent number of levels is presented. Curves 1 are
obtained taking into account the maximum num-
ber of vibrational states (L ¼ 33 for O2 and L ¼ 46
for N2). Curves 2, 3, 4 correspond to qDVE calcu-
lated with use of 5, 10 and 20 levels, respectively.
One can notice that only Curves 2 (L ¼ 5) deviate
noticeably from the accurate values. For oxygen

Fig. 8. Contribution of various processes to the total heat flux.

Curves 1: qHC=q; 2: qMD=q; 3: qDVE=q; 4: qTD=q. (a) O2=O,
T� ¼ 4000 K, p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K,
p� ¼ 100 atm.
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taking into account only five levels leads to a 10%
error in the vicinity of the throat, then this error
tends to zero. The results obtained with L ¼ 10
practically coincide with the ones calculated using
L ¼ 33. In nitrogen, using five levels is not enough
for a correct prediction of qDVE, 10 levels give a
maximum discrepancy within 25%; finally, 15–20
levels are quite sufficient for the accurate calcula-
tion of qDVE. Consequently, several lower levels
give the main contribution to the heat flux. How-
ever, we have seen from Fig. 4 that at low levels the
state-to-state distributions are relatively close to
the quasi-stationary two-temperature ones. It al-
lows us to suggest that the heat flux due to diffusion
of vibrational energy represents in our case prac-

tically the same value as the heat flux due to vib-
rational heat conductivity, qvibr ¼ �kvoT1=ox.
Curves 5 in Fig. 9 show the vibrational energy flux
qvibr. It is seen that for oxygen our assumption
about the close agreement of qvibr and qDVE works
rather well, qvibr represents the average value of
qDVE. That is why the quasi-stationary models
provide so good correspondence to the state-to-
state approach. The situation is somewhat different
in nitrogen: qvibr coincides with qDVE only close to
the throat, then a significant deviation appears: it is
connected with the discrepancy between state-to-
state and quasi-stationary solutions at intermediate
levels (i ¼ 10–20) which in N2 make some contri-
bution to the energy flux. Nevertheless, in this case
the role of diffusion of vibrational energy in the
total heat flux at x=R > 5 tends to zero (see Fig.
8(b)), and in the region where qvibr differs from qDVE

the state-to-state distributions again do not influ-
ence noticeably the total energy flux.
It is interesting to note that in a shock heated

gas close to the shock front a significant distinction
between heat fluxes calculated by means of state-
to-state and quasi-stationary models is determined
by the strong difference in the state-to-state and
multi-temperature distributions at low vibrational
levels. Under such conditions the role of diffusion
of vibrational states becomes much more impor-
tant than in the present case [10].
Finally, one can conclude that thermal non-

equilibrium multi-temperature quasi-stationary
models provide a good approximation for the gas
temperature and heat flux evaluation in a nozzle
flow, while for the correct prediction of vibrational
distributions, the more rigorous state-to-state ap-
proach is required.

5. Conclusions

The vibration–chemical kinetics and heat
transfer in a nozzle flow have been studied using
four kinetic theory approaches: detailed state-to-
state model; non-equilibrium two-temperature
models for anharmonic and harmonic oscillators
based on different quasi-stationary vibrational
distributions; thermal equilibrium one-tempera-
ture model.

Fig. 9. Heat flux due to diffusion of vibrational energy qDVE

and qvibr (W=m2). Curves 1: qDVE, L ¼ 33 ð46Þ; 2: L ¼ 5; 3:
L ¼ 10; 4: L ¼ 20; 5: qvibr. (a) O2=O, T� ¼ 4000 K,
p� ¼ 100 atm; (b) N2=N, T� ¼ 7000 K, p� ¼ 100 atm.
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The influence of these approaches on the vib-
rational state populations, macroscopic gas flow
parameters and transport properties has been es-
timated. It is shown that vibrational distributions
depend essentially on the model: one-temperature
distributions are very far from the state-to-state
and other quasi-stationary ones; at the low levels
state-to-state and two-temperature models give a
similar behavior of distributions while at the in-
termediate and high levels only the state-to-state
approach provides adequate shapes of distribu-
tions with a well pronounced plateau part.
The macroscopic flow parameters are rather

weakly affected by the model; in all cases only the
one-temperature approach leads to a considerable
error, both harmonic and anharmonic oscillator
models give results close to the ones obtained by
means of the detailed state-to-state approach. The
same conclusion is valid for the heat transfer; the
one-temperature approach underestimates the heat
flux whereas all remaining models give close
agreement for the heat flux values. Such a weak
influence of essentially non-equilibrium distribu-
tions on the energy flux is explained by a small
contribution of intermediate and high levels to the
heat transfer in the present case.
The role of various processes in the energy

transfer has been examined. Thermal diffusion can
be neglected in all the considered cases. The
dominating role of heat conductivity and mass
diffusion in the heat transfer is demonstrated.
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