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Abstract 

The specific heats and thermal conductivity in a diatomic gas with a strong vibrational nonequilibrium are studied starting 
from the kinetic equations for the distribution functions. Three models for the heat conductivity coefficients are considered. 
The first one is based on a rigorous kinetic theory treatment. In the second model the inelastic collision integrals are 
neglected and the thermal conductivity coefficients are expressed only in terms of standard elastic collision integrals and 
nonequilibrium specific heats. The third model uses the Eucken empirical formula with real gas specific heats. The results 
are compared with experimental data and with the results of other authors. The limits of the validity of the Eucken formula 
are estimated and a refinement for strong nonequilibrium is given. A simplified formula for the heat conductivity coefficient 
is proposed which closely agrees with the experimental data and with the exact kinetic model. 
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1. Introduction 

The thermal conductivity of  a nonequilibrium gas with internal degrees of  freedom has been studied exten- 
sively starting from Eucken [ 1 ]. He introduced an empirical correction factor which establishes the relationship 
between the thermal conductivity o f  a molecular gas and the internal heat capacity. Hirschfelder [2] expressed 
the Eucken factor in terms of  a diffusion coefficient considering a gas with internal degrees of  freedom as a 
mixture o f  different components. Mason and Monchick [3] used a kinetic theory method for the calculation of  
the structural gas thermal conductivity under the conditions of  weak deviations from equilibrium and considered 
the effects of  inelastic collisions. From an analysis of  the different approaches Ferziger and Kaper [4] supposed 
a weak influence o f  the inelastic collisions on the thermal conductivity in the case of  a weakly nonequilibrium 
gas. 

The strong nonequilibrium conditions in a diatomic gas were considered in Refs. [5,6] where the heat 
flux was obtained as a sum of  the gradients of  both the translational and vibrational temperatures and the 
vibrational heat conductivity was calculated for a system of harmonic oscillators. The heat conductivity of  a 
strongly nonequilibrium polyatomic gas with different vibrational temperatures of  various vibrational modes 
was investigated in Ref. [7] .  
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If the vibrational temperature appears to be higher than the translational and rotational ones, anharmonic 
effects may be important and, strictly speaking, a multi-temperature distribution is not valid. A kinetic model 
of the transport processes in a gas consisting of anharmonic oscillators was put forward in Refs. [ 8,9]. 

All these models based on the kinetic theory contain both elastic and inelastic collision integrals. The question 
arises under what conditions the influence of the inelastic integrals on the thermal conductivity is essential and 
whether a simple formula like the Eucken one with real gas specific heats may be used for the heat conductivity 
determination in a strongly nonequilibrium gas. 

In this paper the asymptotic solution of the generalized Boltzmann equation is obtained taking into account 
the strong deviations from the equilibrium and anharmonic effects. Starting from this distribution function a 
rigorous treatment of the heat conductivity of a diatomic gas with rotational and vibrational degrees of freedom 
is presented. It is shown that in this case there exist several heat conductivity coefficients and all of them are 
expressed in terms of the elastic and inelastic collision integrals and the real gas specific heats. The collision 
integrals, the specific heats and the heat conductivity coefficients are calculated for N2 in a wide range of 
temperatures. A comparison with the two-temperature approximation for the harmonic oscillator and with the 
one-temperature approach for the weakly nonequilibrium gas is carried out. 

Moreover, a heat conductivity approximate formula containing only the real gas specific heats and the elastic 
collision integrals neglecting the inelastic ones is derived. The results obtained on the basis of this expression 
are compared both with rigorous ones and with those deduced from the Eucken formula with the real gas 
specific heats. The limits of the validity of these two approaches are given. The role of the specific heats is 
shown to be very important for the heat conductivity of the strongly excited gas. 

2. The kinetic equations. The zero order solution 

We consider a diatomic gas with rotational and vibrational degrees of freedom. In the case of weak 
translational-rotational nonequilibrium and a strong vibrational one the kinetic equations for the distribution 
functions f i j ( r ,  u, t) over velocities u, space and time coordinates r, t for every vibrational i and rotational j 
energy level may be written in the form 

gfij ~fij l j~o) + .i!1) ( 1 ) 
bt + u "  a r = e  -'J " 

Here j~o), j~j~) are collision operators of rapid and slow processes, e = r0/r~ is a small parameter, r0, 7t are 
average times between the frequent and rare collisions. 

Under the conditions under consideration the most frequent collisions are those with TT, RR, RT translational 
and rotational energy exchanges. The vibrational energy transfers are known to have different characteristic rates 
at different energy levels [ 10]. In particular at the lower levels of an anharmonic oscillator nonresonant VV ~ 
exchanges of vibrational quanta, 

k + l=  (k - t -m)  + ( l q : m ) ,  

(k, l, are vibrational species, m is the number of exchanging quanta) may also be assigned to the most frequent 
collisions [ I 1 ]. At the intermediate levels the most frequent collisions include the resonant VV ~r exchanges 
between neighbouring levels 

k +  ( k +  1) = ( k +  1) -}-k. 

At the upper levels all the vibrational transfers have the same frequency as the other collisions. Therefore the 
operators Ji! °), J~)) appear to be different in three groups of levels: 
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JET: + J'7 + + ,vv, 
- t J  ' 

J[?) = J iT  +,]TR + jRR + j VV, 

J(/, 

0 ~ < i < i .  

i. ~< i < i** 

i >/i**, 

(2) 

-ijJ(l) = { 0,jVT + .-IVRT,: , 0i ~> ~< i**.i < i** (3) 

&i is the total collision operator. 
In order to find a solution of Eq. ( 1 ) we use the Chapman-Enskog method generalization for rapid and slow 

processes representing f i j ( r ,  u, t) as a power series of 6. 
In the zero order approach we obtain 

f / ¢(o) ) = :1°'s,, ::O,s. ,,,,k,,,. . J[?) ~ gtri./k I (g,  to)sijskl du/j d2f2 = 0. 
k,l.i ,. , J,l' 

(4) 

i'jtk'l' 
Here O'ijkl d2ff'-~ is the differential cross-section of the scattering into a solid angle d212, g is the relative 
velocity of particles, s o = sisj, si, sj are the statistical weights. 

It traditionally follows from Eq. (4) that In(f[°)/s~j) has to be a linear combination of the additive invariants 

~p~/~), ( A = 1,2...) of the most frequent collisions. At any collisions these invariants are the following: the number 

of particles ¢)j') = 1, the momentum ~p[2) = mu, the total energy ~k[f ) = lmu2  + ei + ej. As a matter of fact 
there exist additional invariants in a system of anharmonic oscillators, which are different at the lower and 
intermediate levels. The first one is the number of quanta ep[ 4) = i, the second one is any value independent 

of velocity and the rotational energy level j and depending arbitrarily on i: ~bi~ 5) = a(i. Hence fi!? ) may be 
obtained in the form 

i 
als~i exp ( 2kT kT 

ni m c  2 ej  
4 ? ) =  ~tZ~ sijexp 2kT -k-T'  

( m: e, + ej ) 
a2s(/exp 2kr  k--T- ' 

Oi) ,  0 <<. i < i. ,  

i . < . i < i * * ,  (5) 

i/> i**. 

nk 
otk = Z ZrL~t--~,, k = 1 2. 

Here the rotational ej and the vibrational ei energy spectra are simulated as a rigid rotator and an anharmonic 
oscillator, 

ej = (h2/21a) j ( j  + 1), ei = h v ( l  - ot)i - ahvi  2, 

h is the Planck constant, v is a frequency of molecular vibrations, a is an anharmonicity parameter, la is the 
inertia momentum, k is the Boltzmann constant, m is a molecular mass, c = u - v, v ( r ,  t) is the macroscopic 
gas velocity, T is the gas temperature, Zt, Zr, Zv, are the statistical sums, and ni are the level populations at 
the intermediate levels. They may be found from the master equations in the form of a sloping plateau [ 10]: 

F 
ni= ~ - ~ ,  i. <~ i < i**. 
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The parameter F as well as nl, n2 are determined from the continuity conditions for f~?) at i = i. and i = i** 
and from the normalization conditions. 

The parameter a is defined in terms of the total number of vibrational quanta at the lower levels W, 

i .  

pW=~-~i f f:°ldu, (6) 
i=0 j 

(p  = mn is the density, n is the total number of particles) and may be presented traditionally as follows: 

o - - -  k- 

Here Tl is introduced as the temperature of the first vibrational level and el = by( 1 - 2oQ. The distribution 
(5) may be written in the unified form [8] 

• ( f~?) = nsi/ exp mc2 ej e,, + e# - flel _ Be_____L1 + in 
• Z 2kT kT kT kT1 y + 1 J 

 ,i, li o i<i {i o i<i 
i, i** <<, i < L, i. i. <<, i < L, y(  i) = i, i. ~< i < i**, 

' i**, i** ~< i < L. 

Here Z is the total statistical sum. 

(7) 

The nonequilibrium distribution functions (5) and (7) are defined in terms of the macroscopic parameters 
n(r ,  t) ,  c(r ,  t) ,  T (r ,  t) ,  Tl (r,  t) .  

In the equilibrium state (T = T1 ) Eq. (7) transforms into the Maxwell-Boltzmann distribution. If  the 
anharmonicity of the vibrations is negligible ( a  = 0, ei = hvi) then we have a two-temperature distribution. 
The length of the plateau becomes small with decreasing T~/T, and may be neglected for T1/T < 4. 

3. The  n o n e q u i l i b r i u m  specific heats  

Let us introduce translational, rotational and two vibrational specific heats at constant volume on the basis 
of the distribution functions (5) and (7):  

OE, 3 k OE~ OEv (T, 1"1 ) r, OE,, (T, Tt ) 
. . . .  , C r =  C~- C,, = (8) c t cgT 2 m " '~"  a'T ' c9Ti 

Here Et, Er, Et. are the translational, rotational and vibrational energies per unit mass: 

/ n ( _ _ . ~ ) ,  
pE, = 3nkT, pEr = ~ . .  ejf}? ) du = ~ ~ .  e./exp ej 

tJ J 

f n ~ e, exp ( 
Z °'  d. = - - Z 

(i i i 

i. + 1"~ e~, + e# - ~el fle~ + In 
kT kTj 3~ + 1 ,] 

If  the gas temperature is not very low (h2/2kla << T) then Cr = k/m.  The vibrational specific heats c r and c r~ 
depend on the two temperatures T and Tl and differ from the equilibrium specific heats (when T -- 7"1 ) and from 
the specific heats obtained on the basis of  a harmonic oscillator model (when c vr _- O, c~' = c~'(T~,), Tt -- T~,). 

Hereafter we will use dimensionless values for all specific heats (divided by k /m)  with the same designations. 
In Figs. 1 and 2 the dimensionless vibrational specific heats c r and c r~ versus T and T1 calculated on the 
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Fig. I. Dimensionless specific heats: (I) @, (2) -c r, (3) c~ t (h.o.), (4) ceq(h.o.) and (5) c~(a.o.) (5) as function of T for N2 at 
7"i = 2000 K. 

basis of Eq. (7) are given for molecular nitrogen. The comparison with the vibrational specific heat c~ rt (h.o.) 
calculated for a harmonic oscillator model is shown. Fig. I depicts also the equilibrium specific heat ceq(T) 
versus T for both harmonic and anharmonic oscillators (they are denoted respectively c~ (h.o.) and c,, eq (a.o.)). 

One can see that the magnitude of c~ is growing in importance with the nonequilibrium factor TI/T rising, 
c, r, can play an essential role for I"i/T > 4 and becomes negligible as compared to c r` for Tl/T < 3. It will be 
revealed in Section 5 that the negative sign of c r determines the unusual behaviour of the thermal conductivity 
under strong nonequilibrium conditions. The coefficient c r~ exceeds that calculated for a harmonic oscillator 

Tt and and approaches c,r~(h.o.) with reduction in TI/T down to 0.5. For TI/T > 2 the difference between c, 
T~ (h.o.) becomes noticeable and increases with TIlT rising. It may be pointed out that c eq < ctT, ~ for T1 > T and C v 

c eq > c~ ~ for Tj < T. This fact explains the similar character of the vibrational thermal conductivity coefficients 
shown in Ref. [6]. 

The anharmonic effects are found to be most important for TI >> T and also for high temperatures in 
the equilibrium case (TI = T), on the other hand they may be neglected for Ti << T. Fig. 3 depicts the 
constant pressure equilibrium internal specific heats at high temperature. Here ct,(a.o.) is that obtained for 
the anharmonic oscillator, cp(h.o.) are those for the harmonic oscillator and cp([12]) has been calculated 
in Ref. [ 12] with the inclusion of the electronic degrees of freedom. It is evident that for T > 7000 K the 
electronic excitation impact on cp becomes very significant and must be taken into account in the transport 
process investigation. The distinctions between c v (h.o.) and cp (a.o.) also increase progressively with rising T. 

From the formulas given above it is apparent that the coefficients c~ and c Tt depend crucially on the vibrational 
level populations. Strictly speaking the vibrational energy distribution over vibrational levels plays a dominant 
role in the c,r, and cv r~ behaviour. In particular the curves cr(Tl) and c~'(Ti) have peaks (Fig. 2b) which 
correspond to the maximum store of the vibrational energy on the three lower energy levels. It will be shown 
in Section 5 that c T and c rt influence very strongly the heat conductivity coefficients of a nonequilibrium gas. 
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rz ( 2 )  --c~, (3 )  C~ rl (h.o.)  as function o f  TI for N2 at ( a )  T = 800 K and (b )  r = 500 K. Fig. 2. Dimensionless  specific heats: ( 1 ) c L, , 

4. The first-order distribution functions 

For the first order distribution functions we have the following linear integral equations: 

j :o)( f fo) , f fo)qb)  df~ °) ffi dt Jf iJl)(f f°) ' f(°)) '  (9) 

~bij is a perturbation term, f~.l) = f~o) qbij" 
Taking into account Eq. (7) ,  the expression df~°)/dt may be written in the form 
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Fig. 3. Dimensionless internal constant pressure specific heats: ( ! ) Cp (a.o.), (2) cp (h.o.) and (3) cp from Ref. l 121 as function of T for 
N2 at equilibrium (/'1 = T). 

( I dr: °) (mc 2 5 ~J ' ~ + ~ - / ~ '  c V l n r  
d t = f (o ) \ 2 k T 2 + [k-T] + "#-T" 

i F'~,l ~v,n~,÷( m lmc2i~ 
+ L kTl ] ~-~cc 3 2kT ] :~Tv 

: :n~ ((m: 
r~ r r~ \ 2kT + \ p ( c : w  -CwC. ) 

r 

e j ] ' )  rl [ f l e l l ' c T ~  mc 2 ) 
+[~f ~- [kr , /  r,J+3--/f -1 v.v 

E ~"~i. iel f j ( l ) ( f (o ) , f (O))du  [ ( m c  2 3 j L.~i--o J U 
- -~-S~--~-Y-~:~- k \ 2 k T  2 p( CuCw -- CwCv ) 

(lo) 

) ) }  ÷["+"-"]+I"l ri,i.,lc. 
kr ~ - Y - L k r ~ J  Y~ ' 

where  
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((),,, (()r are the values of (i and (j  averaged over a vibrational and rotational spectrum, respectively: 

= 

E ~ i e x p  ( e,~ + t# - f l e l k T  _ flelkTi + In i . + 1 )  
i y + l  

E e x p  ( e , ~ + e O - f l e l  flel + l n i . + l )  
; - T r  

( ( ) r  = ~_ , j ( j exp ( - e j / kT )  
~ . i e x p ( _ ~ / k T  ) ' 

cu denotes the total specific heat at constant volume: 

OU C T U = Et + Er + Et., (11) Cu = - ~  = c t - ~ - c r ' ~ -  t,, 

r r~ are additional coefficients: U is the total energy per unit mass, c w, c w 

r a (el W) r, 0 (el W.______~) 
Cw = 37" ' Cw = o'cI'l 

Proceeding from Eq. (10) the solution of Eq. (9) may be found in the form 

f [ j l )= J(if(O) I~(-1A!J)VlnT-n ts -IA}/,v I n T I n  " - lBij:VVn - 1Fqvn . v -  IG i j ) .  (12) 

The functions A,t.] ') (y  = 1,2), Bij, Fij, Gij depend on the microscopic velocities u and the macroscopic 
parameters n(r , t ) ,  v ( r , t ) ,  T ( r , t ) ,  T l ( r , t )  and can be obtained from the linear integral equations which 
follow from Eq. (9) after substitution of ~tE~j. (10) in (9) and equating the coefficients at the gradients of the 
same macroparameters. In particular for A~j ) and A~ f)  we have [8] 

nlij(A `1)) = f~°)c ( mc2 
\ 2kT ,  

nli j(A <2,) = f:j°)c [ ile' ] 
LkT~ ] • 

+ 

(13) 

Here lij is a linearized operator of the rapid processes 

l [f<o>f<o  
k , l ,F  , j~,k ~,1' ~ 

t ..kt "~ ~,~itj 'k'l '(O) A,, 
+ $k l  --  ¢Ji'j' - -  ~ k ' l ' }  lf~'ijkl ~ - i j  d 2/'2. 

5. The thermal conductivity eoeflieients 

The first order distribution function (12) provides the following expression for the total energy flux: 

q = - A r T  - Av•TI, (14) 

containing the gradients of the two temperatures ~TT and ~TTi. The thermal conductivity ,~ is the sum of 
the three terms A = At q- Ar -1- At,t, where At and Ar are the translational and rotational thermal conductivity 
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coefficients and the coefficient Art appears due to nonresonant W ~ vibrational energy exchanges on lower levels 
and equals zero for harmonic oscillators. For all A-coefficients we have 

k [ A!,) ] k [(ej {e j }  ) a!,) ] 
a, a r =  - c ,  = --tJ J ) "3 - ~  - ~  r 1.1 J ' 

(15) 

A,,t = "~ - v C ,  A i j  , = -~ - ,, C,  A ) 

Here 

C = c, 

the integral bracket [R, D] is defined as 

[R, D] = ~ f lij(R)Dij du. 
1.1 

(1) The functions Aij , A} 2) are obtained from the linear integral equations using the Waidmann and Sonine 
polynomials: 

A!!)  = mc  ,~-~,,(i)h A!2.)= mc  
,.I 2kT ~rpq~rpq' t.I 2kT a52)br' (16) 

rpq r 

_¢(r) (mc2"~pi(p) ( e ~ , + e # - f l e l ) p ) q  ) ej pi(O (fle," ~ 
b r p q - ~ 3 / 2  ~ 2 k Z /  k f  " ( k - T ) '  br = ~ k T  1 / " 

The system of  the linear algebraic equations for the coefficients a (l) and a52) is obtained after multiplying rpq 
Eq. (13) by brpq and br, integration over velocity and summation over i and j .  If we restrict the consideration 
to the first non-vanishing terms in the series (16) ,  the equations for a~],)q and a52) may be written 

( l )  (I) ~ _(l) 15kT 
A110oooalo o + Alool0oaol o + ~1ooool-oo) = 2m ' 

(1) (1) AooloolaOl 3kT r A011°°°al°° + A°°l l°°a°l° + - -m ca, (17) 

Aolooloa~ (1) (1) 3kT Cr~ + Aoool Ioaoi o + Aooo01 laoo 1 m 

T 
a(12 ) = 3kT__ __c w , (18) 

m O~22 

r, and are the integral brackets: where c a r = C r _ CvT, Ca T, _ cTI _ Cw , Arr'pp'qq' a 2 2  

AllOOOO = [5'3/2 (C 2) C,-3/2 

Aoo,,oo= [ p i ( ' ) ( e " + e ~ - f l e ' ) C ,  P i ( ' ) ( e a + e B - f l e l ) C ]  
k r  - f f  ' 

aoooo,, = [P)') (~TT)C'Pi(') (~-~) C] , 
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AIOOIO0 --'. AOIIOO0 ..'= [ ~  (C2) C, Pi(I) (eot 4-efl-l~el) C] -ff 

A,oooo, = Ao,oo,o--  

Aoo,ooI=Aooo,,o= [ P i ( " ( e a + e B - f l e ' ) c , P ~ " ( e J ) C ]  FT: - f f  ' 

O¢22---- [ p i ( l ) ( t ~ e l ~  C,  Pi(l ) ( 1 ~ e 1 ~  4 \ kr, ] \ kr, ] a 

The solution of Eqs. (17) and (18) provides the following expressions for the heat conductivity coefficients: 

5k A~ 
a, =T-Z' 

k A3 
1~ r ---- ~ - ~ C r ,  

k A2 c,r, k A2c~4- k A2cr a,,,=~7 ~7~ 
T~ 3k2T T~ 3k2T Cra , 3k2T c w cv 

A,, - - - - -  4 - - - - - = - - - -  
8m a22 8m a22 8m a22" 

Here A, A1, A2, A3 are the determinant of the system (17) and the corresponding minors. 
In order to simplify the integral brackets as well as in Ref. [3] we suppose that 

( e  i, 4- e j ,  - e k, - el, ) g~ = (ei 4- e j  - -  e k - -  e I ) g 

(19) 

and replace the expression sin2x in the inelastic collision integrals by its mean value obtained after averaging 
over a unit sphere and equal to 2/3. As a result all integral brackets Arr'pp'qq' and 0t22 may be expressed in 
terms of the specific heats, the standard elastic O(t'r)-integrals: 

= ( kT ) I/2 °° 
O(t'r) \-~-mm/ f exp(-~)g2or+3Q ~t) dg0, 

0 

Q(t) = Q(t)(g) = 2~/{1 - c o s t x ( b , g ) } b d b  

i' "' k' l' and the two integrals fir and ilL, containing the inelastic cross-sections J O'ok I , 

Z S(jSkl exp 
f ir = -~m i j k li' j '  k' l' 

e~u) + ea(;) - B(i)e~ flU)el 
kT kTi 

+ In i, 4-____l_l_l ej e~(k) 4- eB(~) - fl(k)el fl(k)e..._____~l + In - -  
y( i )  4- 1 kT kT kTi 

i, + 1 el '~ 
),(k) 4- 1 k-T ; 

/ l i l t  
_2x_3t  A_rx2_ i  j k l 

X e xp ( -g  1,~ ~ } O i j k l  d212 dg, 
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-- E SijSkt exp ( kT 
i j k l  
i ' j ' k ' l '  

i ,  + 1 ej ea(k) + e~(~) - f l ( k ) e l  f l ( k ) e l  
+In  - -  

y ( i )  + 1 kT  kT  kT~ 

/ /  .... 7 .  3 - - -  v \2  i j  k I x e x p ( - g - ) g  [ a e  ) Or i j  k l d2f/dg ' 

e~,<i) + eBfi ) - f l (  i )e l  f l (  i )e l  

kT~ 

- -  + In i ,  + 1 et  
y(k) +-------I k-T : 

Here for ce(i), f l ( i )  and y( i )  the notations from Eq. (7) are used, 

"~ l (e i ,  -~-ej ,  -~ e k/ -4- ell - -  ei - -  e.i - -  ek --  e l )  -~ A e  r + Ae  Ae v, 

A e  r and Ae" are the resonance defects of the rotational and vibrational energy at the inelastic collisions. 
Thus we have the following expressions for Arr'pp'qq' and a22: 

A0010Ol = Aoo0110 = 0,  

A100100 = a0110oo = -~fl,,, 

AI00001 = Aolo010 = -45-fl~. 

A,~(l,t):r, 3/3., 

25 25 
Altoooo = 4 0  (2'2) + ~flr + ~ f l t , ,  

A001100 = 4/"2(l'l)~Tt- a + 43-]~v, 

A0o0Oll = 4O<l'l)Cr + 3/3~, 

323 

The integral fir was written in terms of the rotational relaxation time ~'r: 

3 C r l  

fir - 2n cu r r '  

using the Parker theory for rr. For the calculation of fly the generalized SSH-theory was applied taking into 
account anharmonic effects [ 10]. Finally all A-coefficients were obtained as functions of T and/'1. 

Simultaneously with the rigorous kinetic theory code, approximate formulas for the heat conductivity coeffi- 
cients were found in the limit case supposing Ae = Ae r + Ae" = 0. It is reasonable to expect that Ae is close 
to zero because in molecular collisions the inelastic energy exchange is generally small [3,4]. The assumption 
A e  r = 0 is validated for rotating molecules by the fact that the rotational quantum for gases at ordinary tem- 
peratures is much smaller than the relative kinetic energy of a colliding pair, and in collisions between rotating 
molecules generally only one or a few quanta of rotational energy are exchanged. For the vibrational energy 
one-quantum exchange prevails excluding the upper levels with small vibrational quanta, Under the conditions 
of one-quantum exchange Ae" = 0 for harmonic oscillator, and it is proportional to the anharmonicity parameter 
for anharmonic oscillators and has the form 

A e  v e i+ 1 -~- e k _  I --  e i - -  e k 2ah~, 
= k T  = kt  ( k - i - l ) .  

One can see that Ae" is negligible for neighbouring levels and increases with k - i rising. However, the 
probabilities of the nonresonant exchange of vibrational quanta have a maximum at small k - i values [ 1 1 ]. 
Furthermore, the value Ae" is considered small in Ref. [4] because the collisions with vibrational energy 
transfer are known to be rare in comparison to elastic ones and collisions with rotational energy exchange. 
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Table 1 
Comparison between the thermal conductivity coefficients (A, 10 -3 W/K m) calculated on the basis of exact (Eq. (19)) and approximate 
(Eq. (20)) models for N2 at Tt =2000 K 

T (K) Eq. (19) Eq. (20) 

At Ar Art At, At Ar Art I~t, 

400 24.251 8.364 2.034 10.768 24.070 8.459 2.034 10.768 
600 32.335 11.187 0.014 9.982 32.095 11.314 0.014 9.981 
800 39.344 13.649 0.0082 11.821 39.050 13.805 0.0082 11.821 

1000 45.655 15.874 0.0056 13.526 45.309 16.058 0.0056 13.526 
1200 51.464 17.930 0.0042 15.120 51.069 18.140 0.0042 15.120 
1400 56.890 19.854 0.0033 16.624 56.448 20.091 0.0033 16.624 
1600 62.013 21.675 0.0027 18.055 61.524 21.937 0.0027 18.055 
1800 66.886 23.410 0.0022 19.423 66.352 23.696 0.0022 19.423 
2000 71.550 25.073 0.0019 20.739 70.972 25.384 0.0019 20.739 

Under the condition A~ " = 0, integrals fir = ft. = 0 and formulas (19) appear to be much simplified: 

75k2T 3k2T 
At 32m/2(2,2), /~r 8mY2(1,1) Cr, 

(20) 

A.t = 3k2T r 3k2T 
8m/.2(1__1) Cv, /~v = rt 8m/2(1,1) cv ' 

and keep only specific heats and elastic O-integrals. 
A comparison of the A-coefficients obtained on the basis of the explicit (Eq. (19) ) and approximate (Eq. 

(20))  models is given in Table 1. One can see that the difference does not exceed 1.5%. The strongest 
discrepancy is observed in the rotational thermal conductivity coefficients ,~r (up  tO 1.5%) but the differences 
in the total coeffÉcients A at ~rT are no more than 0.3%. It leads to the conclusion that in order to predict 
the thermal conductivity coefficients it is sufficient to take into account real gas effects such as vibrational 
nonequilibrium and anharmonicity of vibrations only in the specific heats. The neglecting of the inelastic 
integrals for Ae ~ 0 does not influence noticeably on the thermal conductivity. Previously Mason and Monchik 
[3] came to the similar conclusion that the inelastic collision integrals may be eliminated in the kinetic theory 
code for the thermal conductivity in the weakly nonequilibrium gas. 

Now let us consider the formulas for the thermal conductivity coefficient A at the gas temperature gradient. 
In the limit case Ae = 0 from Eq. (20) we obtain 

5 k (ct  2pDcr +cr~TCu, (21) 
a=:m  +5n c-? : 

where 

3 kT 
D= 

8 p/2 fj'l) 

is the self-diffusion coefficient and r / is  the shear viscosity coefficient. In Ref. [8] it was shown that the strong 
vibrational nonequilibrium does not affect the shear viscosity and therefore this coefficient may be written only 
in terms of elastic collision integrals: 

5 kT 
T/ -- 8 ~Q(2,2)" 
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Fig. 4. Thermal conductivity coefficient h = At + Ar + h,t versus T calculated for N2 on the bmsis of present model: ( I ) Eq. (20), (2) 
AME, Eq. (22), and (3) ~ex~, Ref. 113]. Equilibrium case (TI = T). 

Eq. (21) corresponds to the correction obtained previously by Hirschfelder [2] for slightly nonequilibrium 
gas. Under strong nonequilibrium conditions the specific heats in Eq. (21) are defined by Eqs. (8) and (11). 

If one sets pD/rl = 1 then Eq. (21) transforms into 

5 k  ( 1 3Cr+C~)~lcu. (22) 

In fact Eq. (22) represents the Eucken formula with real gas specific heats. The results of the A-coefficients 
calculation in molecular nitrogen on the basis of different models are given in Figs. 4-6. Fig. 4 depicts the 
thermal conductivity A dependence on T deduced from our model (Eq. (20)) ,  from the Eucken formula (22) 
with the nonequilibrium specific heats (AME), and from experiment (Aexp) [ 13]. It is evident that the percentage 
deviation of the thermal conductivity coefficient defined by Eq. (20) from experimental data does not exceed 
3.5% whereas the Eucken correction (22) gives a deviation up to 9.8%. 

Fig. 5 gives the dependence of A-coefficient on 7"1 calculated on the basis of the kinetic theory (A), the 
modified Eucken formula with the real gas specific heats (AME), the Eucken formula with the equilibrium 
specific heats (Ae). Taking into account the nonequilibrium specific heats in the empirical Eucken formula 
results in its refinement which appears to be important under the condition Tl /T > 3. For TI/T < 3 the 
distinction between A obtained from the kinetic model and AME does not exceed 6-7% and both of them 
are close to AE. One can see a considerable discrepancy with vibrational temperature rising. The increase of 
the difference between A and AME at 2500 K < T~ < 4000 K is connected with the rising of specific heat 
values. Under these conditions the deviation of the factor pD/~7 from unit must be taken into account in (21). 
Hirschfelder [ 2] has calculated this factor for Lennard-Jones and Buckingham (6-exp) potentials and deduced 
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¢ NNI2_N9 
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Fig. 5. Thermal conductivity coefficient A = At + ar + at,t versus TI calculated for N 2 on the basis of the present model: (1) Eq. (20), 
(2) AME, Eq. (22), with the real specific heats, (3) AE, Eq. (22), with the equilibrium specific heats, and ( 0 )  AMtq, Eq. (23), with the 
nonequilibrium specific heats. T = 500 K. 

that its dependence on temperature is very weak. Then he suggested to replace pD/r/ by its average value 
1.328. In so doing the expressions for the thermal conductivity can be further simplified: 

+c,) 
A= 2 m  +0"5312cr  r/c,, Av = 1.328 r/c~'. (23) 

Cu 

The difference between A values coming from (21) and (23) is not more than 1.5%. In Fig. 5 A values 
taken from (23) are also shown and denoted by AMH. 

Formulas (23) present a and hv in terms of only nonequilibrium specific heats and a shear viscosity 
coefficient and are suitable for calculations. It is seen that this approximate model gives a good agreement with 
a rigorous kinetic theory results in a wide range of temperatures. 

The unusual behaviour of a at high vibrational temperatures TI > T is explained by the strong impact 
of non-Boltzmann distribution (7).  Anharmonic effects lead to the negative c r and Art, and A,,t magnitude 
becomes much more than At and Ar [8,9]. It can be noticed that the peaks of ~-ME, ~-MH and A correspond 

r Under close examination of the vibrational energy distribution over to the maximum absolute value of c,.. 
vibrational levels it is shown that these peaks are achieved at the maximum vibrational energy store at several 
lower levels. 

Fig. 6 shows the vibrational thermal conductivity coefficient A,, versus T for anharmonic oscillators (Eq. 
(20)) ,  for the harmonic oscillator (av(h.o.)) and Av from Ref. [6], obtained for a N2-O2 mixture (A,,( [6] ) ). 
The difference between A,, values calculated for harmonic and anharmonic oscillator decreases with TIlT 
reduction and practically disappears for T1/T < 0.5. At high temperature the anharmonic effects are of the 
importance for Av corresponding to the equilibrium case (T = 7"1 ) like that for c~. 
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Fig. 6. Vibrational thermal conductivity coefficient Av versus T calculated for N2 using (1) the anharmonic oscillator model, (2) the 
harmonic oscillator model and (3) taken from Ref. [6]. Tl = 3000 K. 

Proceeding from the distribution function (7) one can obtain the Prandtl number in a nonequilibrium gas: 

Pr = cv~7 k 
A m '  (24) 

where c/, = 1 + Cu is the dimensionless specific heat at the constant pressure, cu is defined from Eq. (11). Fig. 
7 gives the Pr calculated on the basis of the different models. Curve ! depicts Pr obtained from Eq. (24) 
with cu and A found under the condition Ti = T, curve 2 is taken from Ref. [14], curve 3 is from Ref. [15] 
and curve 4 corresponds to the results of Ref. [6] for N2-O2 mixture. It is seen that taking into account real 
gas effects in the specific heats and the thermal conductivity coefficient leads to the Prandtl number decreasing 
in comparison to near-equilibrium approach. Prandtl number in a mixture appears to be less than that in a 
monocomponent gas. 

6. Conclusions 

In the strongly nonequilibrium gas the anharmonicity of vibrations leads to the distribution (7) and to the 
heat flux depending on the gradients of two temperatures: T (translational-rotational) and 7"1 (the vibrational 
temperature of the first vibrational level). The anharmonic effects become particularly important at T < 7"1. Two 
vibrational thermal conductivity coefficients A,,t and A,, appear at ~ T  and ~rT l respectively. 

The kinetic theory gives the validation of different models of the heat conductivity coefficients in the 
nonequilibrium gas. The vibrational thermal conductivity coefficients Art and A,, are expressed in terms of the 
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Fig. 7. Prandtl number for N2 at equilibrium (Tl = T) as function of T. (I) Present model, Eq. (24), (2) taken from Ref. [ 14], (3) from 
Ref. [ 15], (4) from Ref. [6]. 

nonequilibrium specific heats and do not depend noticeably on the inelastic vibrational collision integrals. This 

conclusion seems to be important because the existing models of inelastic scattering cross sections are not 

sufficiently rigorous. The approximate formulas (21) and (23) obtained above for A =/ i t  + "~r "q'- /~'vt give the 
refinement of the Eucken and Hirschfelder factors respectively due to the real gas specific beats. The minimum 
deviation from the kinetic theory results is achieved with use of Eq. (23) with nonequilibrium specific heats 
and Hirschfelder suggestion about replacing the factor pD/71 by 1.328. The difference between A deduced 
from exact and approximate expressions does not exceed 1.5%. Eq. (23) with real specific heats (8) may be 
recommended as a usable formula for the calculation of heat conductivity coefficients in a nonequilibrium gas. 

The evaluation of the real gas specific heats and the thermal conductivity coefficients under the strong 
nonequilibrium conditions requires an adequate model of the vibrational level populations. More exactly the 
vibrational energy distribution over the vibrational levels becomes particularly important. The dominant role 
of the vibrational energy store at the lower levels is shown. The maximum energy store at three lower levels 
for TI/T ,~ 6-7 corresponds to the peaks of the ,h,,t and A,, which are found on the basis of both exact and 
approximate model. 

The solution of the master equations for level populations is known to be more sensitive to transition 
probabilities. It means that the inelastic cross sections are very important in the code of calculation of the level 
populations. The results obtained in this paper are based on the asymptotic solution (5) of the kinetic equations 
with use of the suggestion only about the characteristic rates between elastic and different kinds of inelastic 
collisions. 

For Tt/T < 1 anharmonic effects on the thermal conductivity are not very important, A,,t is small and A,, is 
close to one calculated on the basis of two-temperature harmonic oscillator model. By contrast, anharmonicity 
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of  vibrat ions affects significantly by A~,t and A, for T i / T > >  1. Also the anharmonic effects become noticeable 
at high gas temperatures even with Ti = T (in the case o f  equil ibrium level popula t ions) ,  and result in increasing 
of  c~ q and A with T rising. 

In conclusion it has to be said that the results obtained are valid at gas temperatures when electronic excitation 
is not very important,  for molecular  nitrogen it is about 7000-8000 K. The transport properties o f  part ial ly 
ionized gases and the role of  different coll is ions were considered in Refs. [4,16].  In particular the increasing 
of  col l is ion integrals with the rising of  principle quantum number of  atoms is shown in Ref. [ 16]. These 
peculiari t ies  should be taken into account in the development of  the simplified models  of  transport coefficients 
in ionized gases. 
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