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Abstract 

The mathematical modeling of transport properties in reacting gases on the basis of kinetic 
equations for the distribution functions is given in this paper. Thermal and chemical nonequilib- 
rium conditions are considered. The influence of rotational and vibrational excitation and chemical 
reactions on the pressure tensor, heat flux and diffusion velocity is investigated. The generaliza- 
tion of the Chapman-Enskog method is used at the different levels of the strong nonequilibrium 
mixture description. Three nonequilibrium models are presented: the level approach, the general- 
ized multi-temperature approach and the one-temperature approach. The macroscopic equations 
for macroparameters are derived from the kinetic theory treatment, and the expressions for the 
pressure tensor, diffusion velocity and heat flux as well as for the transport coefficients are given. 
The role of the different rates of the various energy exchanges, the anharmonism of molecular 
vibrations and chemical reactions in the transport properties of reacting mixtures is discussed. 
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1. Introduction 

The prediction of  macroscopic parameters in high-temperature reacting gas flows 

requires adequate models for the transport properties such as heat conductivity, vis- 

cosity and diffusion. The dissipative processes in gas mixtures with internal degrees 

of  freedom and chemical reactions have been largely investigated on the basis of  the 

kinetic theory of  gases. The generalization of  the classical Chapman-Enskog method 

and some algorithms for the calculation of  transport coefficients in gases with internal 

modes were given in the papers [1,2]. The model developed herein was widely used 
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for the investigation of dissipative properties in the case of weak deviation from the 
equilibrium when all inelastic processes are more rapid than the macroscopic processes 
corresponding to the macroparameters change. The conditions when the characteristic 
time of some relaxation processes becomes comparable with the macroscopic time were 
considered later by several authors in gases with rotational and vibrational excitation 
[3,4], in binary mixtures [5], and in mixtures with chemical reactions [3]. Actually, 
many papers devoted to the kinetic theory of reacting gases are reported in a recent 

bibliography [6], and the mathematical aspects of the transport theory in a multicom- 
ponent mixture are discussed in Ref. [7]. However, up to now the transport theory of 
reacting gas mixtures is not sufficiently advanced in order to estimate the impact of 
internal modes and chemical reactions on all transport coefficients. In particular, the 
influence of vibrational-chemical nonequilibrium on the heat flux, pressure tensor and 
diffusion vectors in a reacting mixture is still not clearly understood. In fact, the trans- 
port coefficients in reacting mixtures were mainly studied in the case of weak deviation 
from the one-temperature Boltzmann distribution over internal energies. In this case all 
the collisions with inelastic energy exchanges are supposed to be more frequent in 
comparison to the chemically active collisions. Nevertheless, it is important to take 
into account the different rates of various energy exchanges, because some of them can 
be comparable with the rates of chemical reactions. It becomes particularly significant 
in the case of strongly vibrationally excited gases when the storage of vibrational en- 
ergy exceeds the translational and rotational ones. This fact leads to the non-Boltzmann 
distributions over internal energies and anharmonism of molecular vibrations becomes 
important. The influence of the non-Boltzmann distributions on transport processes in 
gases with rotational and vibrational excitation is considered in Ref. [8]. In the present 
study, the kinetic theory treatment of the heat conductivity, viscosity and diffusion in 
high-temperature reacting mixtures with rotational, vibrational excitation and chemical 
reactions is developed. Different rates of various energy exchanges and anharmonic 
effects in reacting mixtures are taken into account. The formulae for the calculation of 
the dissipative coefficients are derived for different relations between the characteristic 
times of the processes considered in the present work. 

The experimental data concerning relaxation times [9] permit to consider the follow- 
ing three cases. First of them corresponds to the conditions 

"gel ( "gr ~ "gt~ibr < "~react rw O,  (1) 

where Zet, "Or, "gvibr, "greact are the mean times between the collisions with the transla- 
tional, rotational and vibrational energy transfer and those with chemical reactions, 0 
is the macroscopic time. The condition Eq. (1) is valid because translational energy 
distribution is known to equilibrate fast and the rotational relaxation time is of the 
same order as the translational one and much smaller in comparison to the vibrational 
and chemical relaxation time. However, this assumption is no longer valid for slow 
rotational relaxation of light molecules and in the case of hot-atom chemistry. The 
condition given in Eq. (1) provides the so-called level approach in nonequilibrium gas 
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dynamics which describes the simultaneous processes of the vibrational and chemical 
relaxation. This model can be used for the study of vibrational-chemical coupling in the 

boundary layer or in the short relaxation zone behind a shock wave where steady-state 
vibrational distributions do not exist. 

In the second case, the collisions with vibrational energy exchanges have different 
frequencies 

Tel < Tr < TVVI ~"gVVz < TRVT < Treact ~ O .  (2) 

here Tvv, is the mean time between the collisions with the exchange of vibrational 

quanta inside every vibrational mode, Zvv: is that for the exchanges between different 
modes, ZRvr is the time between the collisions with the inelastic rotational-vibrational- 
translational transfer. Condition Eq. (2) is valid in vibrationally excited gases such as 
in nozzle streams and expanding flows. This condition corresponds to the generalized 
multi-temperature approach. 

With increasing gas temperature, the relaxation times "gvv, and "gvv~ become compa- 

rable and of the same order as "gRVr, and the corresponding inelastic exchanges become 
more rapid, so that the following conditions take place, especially for the reactions with 
a high threshold or for slow reactions 

"gel < "gr < "gVVt '~ "CVV,, ~ TRvT~Treac t  ~ O .  (3) 

In this case the one-temperature approach follows from the kinetic equations. This 
model is widely used in chemical kinetics, particularly for the investigation of the 

relaxation zone behind a shock wave. Nevertheless, it does not allow to study the 
vibrational-chemical coupling in the vibrational nonequilibrium zone. 

The comparison of the kinetic theory approach for the calculation of the transport 

coefficients using the different models is discussed hereafter. 

2. Level kinetics approach 

2.1. Zero th  order distribution Junct ions 

We consider the kinetic equations for distribution functions fc.ij(r, uc, t)  for every 
chemical species c, vibrational i and rotational energy level j over the velocities u~,, 
the spatial and temporal coordinates [3] 

~3.f ~ij ~.f cij 1 r.p 
~ -  + Uc -~r -- ~J~i/ + JJ j"  (4) 

Here .1 r~p sl -c, j ,  JW are the collision operators of rapid and slow processes, e = Vr,p/T,l 
is the small parameter, Trup, %t are the average times between the frequent and rare 
collisions, respectively. Under Condition Eq. (1) the collision operators in Eq. (4) 
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can be written in the form: 

J~P = Jel + J:i j , 

4'/5 = J:}~" + J_~;a" , 

where collision integrals 4ei5., J~j, J~i5 b~, j~ ,c t  correspond to the elastic collisions and 
those including rotational, vibrational energy transfers and chemical reactions, respec- 
tively. The expression for J_~sb ~ has such a form 

( c. ) 
.rob" ~ f ;'/k';' 2 - c;j f c i ' j ' f d k ' l '  SijSkl = ~ f c i j f d k l  gacd, i j k ; d Y 2 d u a ,  

dkli' f k  ~ F Si; f Sk' l' 
(5) 

O"k'l' where O'ca ' ijkl is the inelastic collision cross-section of the molecules of chemical species 
c and d, respectively, at the/th and kth vibrational levels and jth and/th rotational ones, 
i', j ' ,  k', 1' are the numbers of the energy levels after the collision, g is the relative 
velocity, d2~ is the solid angle in which the relative velocity after the collision can 
appear, s~ is the statistical weight. It should be noted that the distribution functions 
and the cross-sections are averaged over the internal momentum orientations [10,11]. 
The expressions for je~ and J~:/ can be easily written using Eq. (5) Ref. [3]. 

The collision integral JcV~ 'r expresses the VVI and VV2 exchanges of vibrational 
energy within every mode and between different modes and the rotational-vibrational- 
translational energy exchanges: 

JeVSbr = jcv.ijvt + j~v.ijv2 + J,.Ry T . 

The collision integral j~a,..t describes binary collisions (chemical exchange reactions) 
and collisions with dissociation and recombination 

jrejact = jre.jact , 2 ~ 2 ) + jr~act (2~3). 

The collision operator j~ej~,,tl2~2) has the form [3,7]: 

:z jr.. ) 
ij ~-- l l c ' F j ' l d X k ' l '  M -- f c i j f  dkl 

de'd'kli ' j 'k'l '  \ Sffj, Sk, 1, \mc ,  md, J 
ctd #, ., .,.1.1 

×gacd, ij,k/ K ., d~QdUd , (6) 

c 'd ,  { j ' k  t ff 
mc is the molecular mass, %d,;# is the cross-section of the chemically active 

collision. The expressions for jre.jact(2~---~3) are given in Ref. [ 12- 15]. 
For the solution of Eq. (4) the generalized Chapman-Enskog method is used, so 

the distribution functions fcij(r, uc, t) are expanded in a power series of the parameter 
~(e ,~ 1 ). The zeroth approach gives the following relation: 

je~(f(o),  f¢0)) + j~ j ( f (o) ,  f~o)) = 0 

It traditionally follows that lnf~}/s~ i (s~ "i is the rotational statistical weight) has to 
be a linear combination of the summational invariants of the most frequent collisions 
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(eigenfunctions of the linearized collision operator of rapid processes J~P). The in- 

variants of any collision are: ~)i ) = 1, ~!i~+l) = mcu~.,, (v = 1,2,3 are the spatial 

indices), ~(5)cij = mcu~./22 ÷ 8j'ci (~.).i is the rotational energy of the molecule of chemical 
species c at the ith vibrational level). Besides that there exist additional invariants of 
the most frequent collisions. In the conditions of slow vibrational exchange and chem- 
ical reactions, any variable aci independent of the velocity and the rotational energy 
level j and depending arbitrary on i and c is conserved: ~ + 5 )  = aci, (Z = 1 . . . .  ,N, 
where N = ~ i  1 ). The conservation of the number of particles is a consequence of 

the conservation of ~(/~+5) (2 = 1, . . . ,N) .  Therefore, there exist N + 4 independent 
f(0) collision invariants in this case. Hence, ~i j  is obtained in such a form [3] 

mc 3/2 ci nci ( mcc 2 ~}.i~ 
f<cT] : ( ~ ) sj ~ e x p  2kT ~ ] "  (7) 

Here ncg is the number density of the molecules of c species at the ith vibrational level, 
k is the Boltzmann constant, Cc = uc - v, v is the macroscopic gas velocity, T is the 
gas temperature, Z~. °t is the rotational partition function. 

The normalization conditions may be classically written in such a form 

Z / f~ij duc = ~ f r I°! z_~ j ~cu duc = l'lci, C = 1,2 . . . . .  L, i = O, 1 . . . . .  Lc, 
.I J 

Z m c f u c f c i j d U c = X f ~ m c  f .  ~-(o) UcJcij duc = pv , 
c U cij 

(8) 

ClJ 

) zj(  ) c ,ci c +e i +ej +e C fcijdu~= +e,i +e~ji +sc fl,O}duc 
CtJ 

= 3 _ n k T + p E r + p E v + p E f  2 

Here n = ~ c i  nci is the total number of particles, p = ~ c  m c  ~-~i Hci is the gas density, 
L is the number of chemical species, Lc is the number of excited vibrational levels 
of species c, 8~ is the vibrational energy of a molecule of species c, counted from 
the minimum of its potential curve, e. C = -De, Dc is the energy of dissociation of 
molecular species c, 

p E r ( T )  = Z.. f e c j i f c i j d u c '  p E  v = ~ 8CFlci, p E f  = Z ECHc' 

c U ci c 

nc = ~-~i nci, Er and Ev are, respectively, the rotational and vibrational energy per unit 
mass. 

The nonequilibrium distribution functions, Eq. (7), are defined in terms of the 
macroparameters nci(r, t), v(r, t), T(r,t). The corresponding macroscopic equations are 
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written as follows: 

dnci 
d---i- + nci~7" ¥ + 17. (nciVci) = Rci, c = 1 . . . .  L, i = 0, 1 . . . .  (9) 

dv 
p ~ -  + ~ 7 . P  = O, (10) 

dU 
p ~ _ + g T . q + p ,  g 7 v = 0 .  (11) 

Here U is the total energy per unit mass: 

pU = 3nkT + pEr + pEt, + pEf . 

The right-hand sides of  the equations for nci are defined as 

Rci Z / sl _ Rvibr react = Jcij duc - -c i  -~ Rci , (12)  
) 

Vci is the diffusion velocity of  c component molecules at the ith level 

nciVci = Z. / Ccfci/duc, 
J 

P is the tensor of  pressure 

P = ~_~.. / mceceefci/duc, 
c U  

q is the heat flux 

clJ  

In the zeroth approximation qCO) = O, V(e~ ) = O, p(0) = pI ,  I is the unit tensor, p is the 
pressure, 

R~.O) = V ~ f js:!O) due L.~ / c. 
J 

J_Si~°) corresponds to the collision operator o f  slow processes after the substitution of  

the zeroth-order distribution function f(0! 
d C l J  " 

The expressions for R vibr and react --ci Rci are given in Ref. [3,16] in the zeroth- and the 
first-order approximation. In the first-order approximation R~I ) contains terms propor- 
tional to g7. v. 
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2.2. First-order distribution Jhnctions and transport terms 

For the first-order distribution functions f( i)  cij 
follow from Eq. (4): 

-- Z #1cindklcidk(O)- dfl '~ J~il~ O) 
dt 

dk 

: f(°)A .. Jc~i "Y~'v the linear integral equations 

(13) 

Here lcidk is the linearized operator of rapid processes: 

Icidk((a) -- 1 K-" f f<O)f~O) ' /  I cij dkl (~)cij q- Odkl --  (9cij' --  ~)dkl') ,qO'~cidk, j l d 2 f 2 d U d  . 
nci?ldk (]'1' ~ 

Using the peculiar velocities cc and taking into account Eq. (7) the following expression 
(0) . is obtained for dfc  q/dt. 

dt - y c i j  t 2kT 2 + Cc " V" In T 
r 

n mc (CcC c 1 2 + - - C c '  dci + ~ - gccl ) " Vv 
Hci 

+ - l + . , .  v .  v + - -  
r Hci 

_ ~ciR(c~ ) (3/2kTpT(Gr+Crot)Ie':il r e,i e c) t2kT(mCc2 23 + LKIA'V~" rI~: /]  ' )  } . (14) 

Here the diffusion driving forces Gi are defined as follows: 

(15) 

Pc = mc ~inci,  Ctr and C~ot denote the translational and rotational specific heats at 
constant volume: 

3k ~']~ci nci ~Er 
Ctr Crot 

2 ~ci  mcnci OT 

and the following notation is used 

is the averaged value of (ij over a rotational spectrum 

_ciY ^x-+ gci/kT~ 

((i/)r = y~/s)iexp(_e~i/kT) 
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Proceeding from Eq. (14) the solution of Eq. (13) may be found under the form: 

f ( ! ? = f ( o ) (  ~ 1 Z  a k 1 ~7v c U cij - -  Acij • V In T - - Dci j • dak - Bcij : 
n dk n 

1 F c i / g T v  ~ G c i j )  ( 1 6 )  
n " 

The functions At,7, Bcij, Dc~ ., F~.ij and Gc~/depend on the microscopic velocities u~. and 
macroparameters nci(r, t),  v(r,t), T(r, t), and can be obtained from the linear integral 
equations which follow from Eq. (13) after the substitution of Eq. (16) into Eq. (13) 
and identifying the coefficients at the gradients of the same macroparameters. The 

dk following additional constraints on the functions Ac~/ = A c i j ( C c ) C c ,  Dca,~ = Dcij(Cc)Cc, 
Fcij, Gc~/ can be obtained from the normalization conditions, Eq. (8): 

Z / , ° ,  2 m c  fci jAcijccduc = 0, (17) 
cij 

f g.(O)r,~dk~2d,, ~-~m, l jcu, . , . j~ . .c=O, d= l,...,L, k = 0 , 1  . . . . .  La, (18) 
cij 

• Jcij c i jduc=O,  c =  1 . . . . .  L, i = O ,  1 , . . . , L c ,  (19) 
J 

Jr,o, d cijGcq u c = O ,  c =  1 . . . .  . L, i = O , l , . . . , L c ,  (20) 
) 

~ [ f~°~ " + ~}" + ~ Fc~jauc = 0 (21) 
• . J cU ~ 

cU 

j ~cu + ~) + e[ Gcijdu~ = 0. (22) 
cu 

It is obvious that the diffusion driving forces Eq. (15) are not linearly independent 
because ~ci  dci = 0 due to the relations Y"~.ci nci/n = 1 and Y~.ci P~i/p = 1. Similar to 
Ref. [17] the additional condition for Dca~. is easily obtained in the form: 

E Pdk dk 
- - ~ O c i  j : O .  (23) 

dk 

Now the functions A~ij, Dca~ •, Bcij, F~ij and G~ij are uniquely determined by the corre- 
sponding integral equations and constraints Eqs. (17)-(23). 

The first-order distribution functions Eq. (16) provide the following expressions for 
the pressure tensor: 

P = ( p  - p r d ) I  - 2pS - t/~7. vI. (24) 

Here /,, r/ are the shear and bulk viscosity coefficients, P m  is the relaxation pressure 

kT  B p =  ~-~[ ,B], t l = k T [ F , F  ], prel = k T [ F , G ]  (25) 
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the bracket integral [A,B] is defined by analogy with Ref. [17] as 

RciFIdk { r A  ly#]t tt 
[A,/7] = ~ ---;Ty--tt.,,,_,j<.id ~. + [A,nl<.idk) , 

cidk 

m ~ l - -  - -  
B ] c i d k  

A, ,t _ 
B ] c i d k  

2n !ndk [" rl°) cl°)tB , /  JcU J d k l  t c(I - -  B c i j '  ) 

j l j ' l '  
• t [i 

× (A cij - A c(i' )g~.iak, jl dz ~Tduc dud,  

l _ 

2n<,indk Z i " B<'(i' ) 
flj' z' 

"l '  2 
× ( A d k l  - -  Adkz, ),qo'~cidk, jld Y2duc d U d  . 

The additional terms in the pressure tensor such as the relaxation pressure and bulk vis- 
cosity appear in this case due to the inelastic translational-rotational TR energy transfers 
in the collisions between molecules of different vibrational and chemical species. 

The diffusion velocity in the first approximation may be written as follows: 

V c i  = - ~ D c i d k d d k  - -  Drci E 7 In T ,  (26) 
dk 

where Dcm~ and Dr~.i are the diffusion and thermal diffusion coefficients for every 
chemical and vibrational species: 

Dcidk= j~[DCi, D dk] Drci : j~[DCi, A] .  (27) 

The expression for the total heat flux has the next form: 

+ D v ,. e'i n<.iVci, (28) 
ci ci 

where 

= 2t + 2r = ~[A,A] (29) 2' 

is the coefficient of thermal conductivity. The coefficients 2t and 2r express thermal 
conductivity connected with elastic and inelastic translational-rotational TR energy 
transfers. 

Thus, at this stage we obtain the momentum and energy conservation equations and 
the equations for the populations of vibrational and chemical species. In the zeroth ap- 
proximation the equations for n~.i are widely used in the investigation of vibrational and 
dissociation coupling [ 18 20]. However, in the case of multi-component vibrationally 
excited mixtures, such a detailed description becomes strongly difficult because of the 
large number of equations for nci, and the lack of data concerning the microscopic 
rate constants for vibrational-chemical reactions. A practical implementation of Eqs. 
(9)-(11 ) in the first approach for a multi-component mixture of viscous gases requires 
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the modeling of the kinetic coefficients Eq. (25), (27) and (29) for all energy levels 

and chemical components. Unfortunately, an experimental approach does not seem to 

be easy. 
Therefore, the derivation of an adequate multi-temperature model and its validation 

has a great importance mainly for multi-component mixtures. 

3. Generalized multi-temperature approach 

3.1. Zeroth order approximation 

The model developed in the previous section and based on the detailed description 

of level vibrational and chemical kinetics can be simplified due to the reduction of the 

number of macroparameters. It is possible in the case when there exist some additional 
rapid processes with additional summational invariants of the most frequent collisions. 
In vibrationally excited gases the various vibrational energy exchanges have different 

rates. Actually, it is known [21,22] that the VVI exchange of vibrational quanta within 
every vibrational mode occurs more often than the exchange between different modes. 

The collisions leading to the VVt exchange may be considered as the most frequent, 

together with the ones involving translational and rotational energy transfer. 
.l vv' with the exchange .l rap includes the collision integral -cij Therefore, the operator -cij 

of vibrational quantum within every mode 

jcra.p el r .] vvi 
,, = J~ij  q- Jci j  q - - c i j  • 

Besides the common summational invariants ~11(.;~ ) (2 = 1,2, 5) there exist ad- •CI] ~ " " " ' 
~(~+5) ditional summational invariants of  the most frequent collisions: cij = ic (p = 

1 . . . . .  Lmol, Lmol is the number of molecular species), i~ is the number of vibrational 
i[1( v+L,,,,,t +5) quanta of  the cth species, Tcij = a~. ( v  = 1,... ,L), ac is any variable independent 

of rotational and vibrational energy levels and depending arbitrarily on the chemical 
species. Invariants ~//(~+5) "rcij ( ~  = 1,...,Lmol) are connected with the conservation of 

~//(v+L'''~+5) (v = the number of vibrational quanta of every molecular species, and ~cij 
1 . . . . .  L) appear because chemical reactions are frozen in the frequent collisions. There 
a r e  Lmo ! q- L + 4 independent collision invariants in this case because the conservation 

~v+C,,,,,~+5) (v = of the number of  particles follows from the conservation of invariants cij 
1 . . . . .  L). We consider here the mixture of diatomic molecules where every molecule 
contains one vibrational mode. Proceeding from the set of collision invariants the zeroth 
order distribution functions have such a form: 

f (o)= ncs~.exp ( mcCZc 6~i 13 c Ocic) (30) 
Zc 

and are expressed in terms of the macroparameters n,, 0c, T, v. Here n~ is a number 
density of  the molecules of  c species, Zc is the total partition function for c species, 
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gc is defined in terms of  the total number of  vibrational quantum W~. of  cth component 

pcW~, = Z i i f c i jduc .  (31) 
ij .i 

(Hereafter, the index c at ic is omitted for the simplicity of  designations.) Similarly 
to a one-component gas [21], it is possible to introduce the temperature of  the first 

vibrational level for c species T~' as follows: 

 C(l ,) 'b;i _ ~ c  c c O<.=-ff T~ ' el = e l - % "  

Vibrational and rotational energy spectra are simulated, respectively, as an anharmonic 
oscillator and a rigid rotator [23]. Then Z,. = ztrz¢r°tzc vibr, the vibrational partition 

functions Z~. "ibr are expressed as follows: 

ZcVibr vibr Z sCexp ( e~' - ig~' ig~' 
=Z:, (T,T~ ~)= kT kT~J " 

i 

The set of  normalization conditions has the following form: 

f [ r~7'du<. = nc, c = 1,2 . . . . .  L . . . .  f<,j duc = ~ j .  'tJ 
U t,l 

Z m c  f = Z m c i t l c J c i  j;(O)duc = pv  , (32) 
Cll cij 

C U CtJ 

\ 

< <' ).r ,77du< + si + ~!i + ~<' 

= 3nkT + pEr + Z p<E~,'(T, T~') + PEr ,  
c 

= Pc W~., c = 1,2 . . . . .  L m o l  . z i i ' f Cij duc = Z " 
f 

t J ,lcij£(O) duc 
ij ij 

Proceeding from Eq. (30) the level populations can be expressed as 

Zvibr;CT ' Tc s~exp ( ~ - ig~" ig~' = c , , l ,  kT k T f J  " (33) nci 

In fact Eq. (33) describes the Treanor distribution [21] in a multicomponent mixture. 

It should be pointed out that the Treanor distribution is valid only at the levels i<. <<.it., 
where ic. corresponds to the minimum of  the function nci over i for every mode 
because the additional summational invariant i/sci j = ic exists only at the levels ic ~< i,... 
The magnitude of  ic. may be easily found from the equation 

¢?i 4. = 0  
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and equals [22] 
g~ T 1 

ic. -- 2~chV~c T~ + -2" 

Here h is the Planck constant, vc is the frequency of molecular vibrations, ~c is the 
anharmonism parameter. 

At higher temperatures when T>> T~ the level ic, appears to be close to the last 
vibrational level ic = Lc, which can be found by equating the vibrational energy cc to L~ 
the energy of dissociation D o  Therefore, in the case T >> T~ the Treanor distribution is 
valid practically up to the higher levels. 

For strongly vibrationally excited gases with T~" >> T the refinement of the distribu- 
tions Eq. (30), and Eq. (33) is considered in Refs. [24,25]. 

If the anharmonic effects are negligible, ~' = e~ + ig[', the distribution expressed in 
Eq. (33) becomes 

with 

( ec~ (34) 
nci -- z~sCe xp  - k T ~ j  

Z~J br zvibr(T c) = ~s~ 'exp  ( -  ~:;' / 
• = c , \ kT~'J ' 

i 

which is the multi-temperature Boltzmann distribution with the vibrational temperatures 
of components T~ = T~'. 

In the equilibrium case (T = T~') from Eq. (33) we obtain the one-temperature 
Boltzmann distribution: 

n c i -  z~sCexp  ( -  ~" / (35) 
c k T J  ' 

> 

zvibr vibr = Z  c ( T ) =  Z s C e x p ( - ' ; ~ ' ~  
-c  \ k T J "  

i 

3.2. Macroscopic  equations 

The nonequilibrium distribution functions, Eq. (30) are determined in terms of the 
macroparameters: nc(r, t ) ,  v(r,t), T(r,t), T~(r,t), which are governed by the macro- 
scopic equations: 

dnc 
- -  = - - c  , c =  1 , . . . , L ,  dt  + nc~7" v + ~7. (ncVc) 1?react 

where 

[ [~et2Cl--'c,all / R~ceaCt = Z j ~ c i j  HcVc = Z j C c f e i j d U c "  
u u 

(36) 
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The momentum and total energy conservation equations coincide with Eqs. (10) and 
(I1). In this case the vibrational energy is a function of the temperatures T and T~': 

pE,, = Z pcE~"(T' T~') = Z eCnci(T' T~). 
c c i  

The additional relaxation equations for the number of vibrational quanta W, of the cth 
species take the form 

d Wc w W~ m R react p ~ _ + g T . q ~ , = R ~  - ~ ~ c + W , g  7.(p.V~,), c =  1,2 . . . . .  Lmot, (37) 

i j  u 

q~. is the flux of vibrational quanta. 
Thus, the equations for the number densities of chemical species, momentum and 

energy conservation equations and relaxation equations for the number of vibrational 
quanta of every component are obtained. 

In the zeroth approximation q~0) = 0, V~ °) = 0, p(0) = pl,  

RcW(°) = Z.. f U,~ (°) du~ , 
tj  

l r e a c t (  ,..]. Rrc eact(O) = ..~-" j -c~j  ~,,c. 
(1 

3.3. First-order solution 

In the generalized multi-temperature approach the linear integral equations for the 
first order distribution functions take the next form 

_ Z ncndlcd((O)_ dfl~) jJ)o) (38) 
dt 

d 

with the following linearized operator of the rapid processes: 

ncnd j J c i j  Jdkl~, 'C'cu - -  O d k l  - -  ~ c i ' j '  - -  ~)dk / l  ' )gac~, i/kl d2f2dUd " 

i j k l i ' j /  k '  l' 

The expression (Eq. (14)) of c0) d f ~.ij /dt becomes 

{ .) .:'c°: _ : !  ( m : :  5 - 1 
dt :c,j \ 2kT 2 + r+ [ kT J e~ .gTlnT 

i 

+ [kTfJ ~ec" ~71nTf+--c~.d~+nc ~ e~e~- ~ccl • ~Tv 
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Here 

+ \ 2kT 2 -]- - ~  r -~- L kT  J r d t  

[ ig~] '  1 d ,~  {mcC2c ) Rreact(O) ~ 

+ IkT~I~T-~ ~ ~ +23kT -1 V.V+--nc J " 
(39) 

d c : ~ 7 ( ~ £ ) + ( ~  ' P~)~7lnp,p  

Notation [~i]'~ corresponds to ~ i -  (~i)~. The averaging over vibrational and rotational 
spectra in this case is performed as follows: 

c X c ~ i  sC~iexp(-(~c _ ig~ ) /kT - ( ig; /kT~)) ,  ~-~d s).~je p(-~)/kT) 

The system of the equations for the determination of dT/d t  and dT~/dt  follows from 
Eq. (11) and Eq. (37): 

d T  v "  v I dT~" ~- ,  i~react(O)[[ 
p c u ~ + Z _ ~ p c C v  - - ~ -  PV"v-/_._~--c ~c, (40) 

c c 

T d T  r~ dT~" =R~(0) ' c =  1, . . .Lmol.  (41) PcCw,~-~ + pcCw,~ dt  

where 

c e~, R~(o) gfRW(O) _ Rre~ct(O) (ig~) v . U e = ~ k T + ( ~ ) )  + ( i ) v + e  c, = _.~ 

The following notations are used for the modified specific heats: 

C u Ctr JF Crot -IF C T T --  OE~, _ 1 Z P~c~T~ 1 aE~" = o r  p ' 
c c 

Cv,c-  OTf'  Cw'¢-  OT ' Cw,c-  OTf 

The derivatives dT/dt ,  dT~/dt  can be found from Eqs. (40) and (41) in the explicit 
form 

l~react(O)[[ ~ ~ T~, T I x n ~ ( 0 )  
d T  - p ~ 7  • v - L-~c-c ~c - 2.~ctC~ ICw,~.)K~ 
dt  pc~ ~ r r i r~ , - pcCw,c(cL, Icw,c) 

_ P~Cw,c(p~ 7.  v + z_~ ~ c~ + pc~R~ (°) + PcCw,c ~-]~b~c dT~ r X-" R r e a c t ( ° ) U  "~ T __ R~c(O) T T~ T(' 
pbCw, b(CV lOw,b)  

T h T h \ 
" '  pcc.,c'  ( o . . -  gbOb '/wb))c, 

c = 1 ,2 , . . . ,Lmol .  

The positiveness of the determinant of the system (40) and (41) is evident for the 
harmonic oscillator model, when Cw, cr = C,,T = 0. When e~ is simulated by an anharmonic 
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oscillator, the positiveness of the determinant is proved starting from the properties of 
the modified specific heats introduced above. It is seen that the derivatives dT/d t ,  

dT~'/dt are linear functions of W.v, R~ ~(°) and R~Y "al°). 
Using the solution of the system (40) and (41) and Eq. (39), the first-order distri- 

bution functions are found under the form 

,:cuf('') .:ci/f(O) ( ! A c i j  " _ l ~ A,  qd(l) T{, 1 _  _ ,._-, D d = - V'lnT - ~  .Win ~--" cq'dd 
• g/ d / l  d 

, ) 1Bci/ . ~ T v  -F, , i /~7.  v -G.~/  (42) 
n 11 " n 

The equations for Aci/, --ct/Ad!l), Bcij, Dcdij, Fcij. and Gci j, are obtained substituting Eq. 
(39) into Eq. (38) and equalizing the coefficients of the gradients of the same macro- 
parameters. 

The set of the normalization conditions, Eq. (32), gives the following additional 
constraints: 

Z / "  x.(O)~d(l ) 2 mcJcu~c( i c~.du, = O, d = 1 . . . . .  Lmo:, (43) 
c t /  

Z f,o, 2 m,  jcqAc(/Cc duc O, (44) 
('U 

f :-(O)~d .2 
mc ] . l e o  ~ . i jcc  duc = O, d = 1 . . . . .  L ,  (45) 

cU 

Y 4 / r " q  auc = O, c 1 . . . . .  L ,  (46) 
U 

y~... f .,,.~/:~°) O,,.., du~ • = 0 ,  c =  1 . . . . .  L ,  ( 4 7 )  

I] 

Z r(O) " + c ~ + e , ~  F , .qdu<.=O (48) • . .: CI] 

c11 

Z ~ </ Gcq duc = 0, (49) 
c t l  

• J '  (0) 
Z 1 f~q  F,  ij du ,  = O, c = 1 . . . . .  Lmo/, (50) 

l j  

• J" (o) ..du, Z t  f~.(/Gc~.l ~ = O, c = l , . . . , L m , :  (51) 
4/ 

The expression (Eq. (23)) in this case has the form: 

z Pd d 
d 7Dciy = 0 " (52) 
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3.4. Transpor t  t erms  

Now, we consider the transport terms in Eq. (36), (37), (10) and (11) and write 
them in a generalized multi-temperature approach on the basis of Eq. (42). The ex- 
pression for the pressure tensor coincides with Eq. (24) with the same definition of the 
corresponding transport coefficients Eq. (25). In the present case the bracket integrals 
[A,B] are written in the form 

[A,B] = Z ncnd tra m '  t, 
7 - ~ t ~ ,  ~qcd + [A, B]cd) , 

cd 

where 

[A, B ] ' c d  - -  

(53) 

1 [ t(o) ¢(O)IB 
-- 2ncn~ Z J J~,ij Jclk, ~, cij - Bci'j' ) 

ijkli ' j 'k'  l' 

i' "'k'l' 2 
x (Acij - Aci,j, )gac~ ' ijkt d Y2 due d u d ,  

[A, B]" -- 1 [ ,.(o) ¢(O)tB 
ca 2ncnd Z J Jcij  Jdl, l ,  cij -- Sci, f )  

ijkli'j '  k' l' 

i ' j 'k ' l '  2 
x (Adkl -- Adk, l' ),qacd" (ikl d Q duc dud .  

The linear integral equations for the functions Fcij and Gcij are determined by Eq. 
(39) and differ from those obtained in the level approach. Here the relaxation pressure 
Pret and the bulk viscosity t/ are expressed as a sum of two terms 

rl = rlr + rh,, Prel = P'rel + ~' Prel , 

which are related in this case to the inelastic TR and VVI energy exchanges inside 
every mode. 

The diffusion velocity in the first order approximation takes the next form 

Vc = - Z Dcadd - Drc ~7 In V - Z LITc~"(I )!--7y nil" T d , ( 54 )  
d d 

the diffusion and thermal diffusion coefficients, Dcd and DTc for chemical species be- 
come 

Dcd = I[D",Da],.~, DTc = I [ D C ,  AI,  (55) 

and the additional thermal diffusion coefficients r~a(l) ~rc appear due to the temperature T~ 
gradients 

Dd(I)  = 3~  rc [D~,Ad(1)] • (56) 
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The heat flux and the flux of  vibrational quanta contain the gradients o f  T, vibrational 
temperatures of  the first level of  every component T~ and gradients o f  n~ through d~ 

q = -  /m'VTt + Z..., ~'~' 1 ,  
c " d / 

-eEz, ,¢-pZ >- d,,+Z 
c c d c 

+ n c V c  , 

(57) 

and 

T c 
~c ~cd d vc c gr T ZZ~, rgrT1  ,, 1 g c V ~ / ~ d ( I  

~:1 qw = - z ~ ,  - - ~ ' 7 . 1  A_~ ~ r c  ) d d .  ( 5 8 )  
d d 

The thermal conductivity coefficients are defined as follows: 

[A, A], z,,, kT~" A] )/ = , c  = [ A C ( 1 )  

3T~ , , 

kT 2~.t, ~ ( [ A ,  ACO)I, .~,d = klAd(,),AC{l) l (59) 

In this case, the additional thermal conductivity coefficients appear due to the vibrational 

energy change in the rapid process. For harmonic oscillator ).~i t = ),~, = 0. 
It may be noticed that in the case when the vibrational quanta of  various components 

do not differ considerably, the next condition 

"gVV) #.a TV~ ~TTRV 

can take place. In this case the parameters Oc in Eq. (30) are close to each other. There- 
fore, the temperatures are not independent and are determined by the condition follow- 
ing from the equality of  the parameters vqe. For harmonic oscillators a two-temperature 

distribution with T,, ~ = T,, takes place in that case. Such a suggestion of  equal vi- 
brational temperatures of  different modes is convenient for a practical use, however, 
the range of  its validity is limited. The empirical two-temperature models for reacting 

mixtures are given in Refs. [26,27]. 

3.4.1. Thermal conductivity, diffusion and thermal diffusion coefficients 
In order to calculate the transport coefficients the integral equations for the functions 

Acij, --cijAd(I), Bcij, Dcaj, F,.ij and Gc~j following from Eq. (38) have to be solved. 
d ( l )  d The linear integral equations for the functions A~.(/, Aci j and D~i j defining the 

thermal conductivity, diffusion and thermal diffusion coefficients have the form: 

- - T  mtA  = \ 2kT + LkrJ,. + k kT 3 , }  ec, 

c = 1 . . . . .  L ,  (60) 



A. Chikhaoui et al./Physica A 247 (1997) 526-552 543 

a n ": [kr fJ  v,] ce, 

z + , + , + )  : - '  ,+, (++ - +c, 
d nc  J c u  

b,c = 1,...,Lmot , (61) 

b , c =  1, . . . ,L .  (62) 

e k nc T k nc 7" I c(l) 
2vt = -~ --ff Cw,eae,om, 2t c, = -~ -ff Ca,ea ~, 1 , 

where 

~E~ T ~(E~ - gf We) r~ t?(E c - g~Wc) 
Cr, c = c~T' Ca'"- c~T , Ca,e- ~T~' ' 

,c k nccTi ae(i ) x c ~ = , ~ c , g ~ , . . , + , +  = ~ - g  w+c ,., . 

T and Cr,e is the dimensionless rotational specific heat (divided by the factor k/me), ca, ,, 
T; 

Ca,c are the modified dimensionless specific heats, connected with anharmonism of 
r r r and r~ cr~ r~ molecular vibrations. One can see that ca, e = c~,e- Cwx C~,e = ~',e- Cw,e. Finally, one 

can express the thermal conductivity coefficients of the gradients of the temperatures 
T and T~', respectively, in the following form 

= L ~k;a<,,00 + ~ .c • 
c c ,' c 

,c knc  T~ e(1) 
;+c = ,~,, + ; L  - +5 -~ ' : ' : e . ,  

(66) 

(67) 

The systems of linear algebraic equations for the expansion 
ded,. are given in Appendix A. 

Substituting the expansions (63)-(65) into Eq. (59), and using the normalizing con- 
ditions for the polynomials, one can express the thermal conductivity coefficients in 
terms of the expansion coefficients: 

5 ne k nc k nc T 
2 ' =  Z ~k nac,100 + Z 2 n cr,cac,OtO + Z 2 nCa, eae,O01' 

e c c 

Dcd7_ mcCe ~ da ,q+i,+) (mcC2e "~ 
2kT ~ +c'r+3/2 ~ 2kT ] " 

F 

(65) 

d (  1 ) coefficients ac , rpq ,  Uc, r , 

d ( l )  mcec ( ig~ ) 
Acij 2kT Z ad(l)P(r) (64) e,r - - i  ~ k r f  /] ' 

r 

In order to solve these equations the functions are expanded into finite series of So- 
nine and Waldmann-Triibenbacher orthogonal polynomials. The following polynomial 
systems are used: 

A e i j - m c e c  (meC2c~ (~JT)  ( e ~ ! ~ [ ~  
2kT Z -  ,,(r) (P) (q) (63) - -  Uc'rpq'33/2 \ 2kT ] P) Pi kT J ' 

rpq 
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and write the heat flux as follows: 

c c ~ d 

c 

(68) 

The nonequilibrium number densities of species nc are tbund from the equations 
of  chemical kinetics Eq. (36) which are considered together with Eqs. (10), (11) 
and (37). 

It can be pointed out that the trial functions of the Waldmann-Triibenbacher poly- 

nomials in expansions, Eqs. (63) and (64) differ from those commonly used for the 
derivation of the transport coefficients [1,2,5,28]. They are chosen in accordance with 

d f ( ° ) / d ~  the right-hand sides of Eqs. (60) and (61), which depend on .,ct/,~.t, and therefore, 
on the collision invariants of  the collision operator of  rapid processes ./"f'.P In the case 

v CIJ " 

of weak deviation from the equilibrium using the Waldmann Triibenbacher polynomi- 
als over the total internal energy gives a good convergence. The problem of choosing 
the trial functions was discussed before by several authors [29,30]. In the case of the 

Boltzmann nonequilibrium multi-temperature distribution fl0) in a system of harmonic 
. ~ c t J  

oscillators, it is reasonable to use the Waldmann-Triibenbacher polynomials over the 
rotational and vibrational energies [5]. In the case of strong vibrational nonequilibrium 

f(0) in a system of anharmonic oscillators and the non-Boltzmann distribution . - c i j ,  the trial 
functions chosen in the present paper (see also Refs. [8,31 ]) permit to get more simple 

systems for the coefficients of the expansions and obtain the main expressions for the 
transport coefficients in terms of the first nonvanishing members of series, Eqs. (63) 

and (64). The thermal conductivity coefficients in this case have been calculated both 
on the basis of  expansions, Eqs. (63) and (64) and the expansions similar to those 

suggested in Ref. [5]. In the first-order approximation of the Chapman-Enskog method 
these calculations give exactly the same results. However, in the first case more simple 
systems are to be solved. 

The diffusion and thermal diffusion coefficients can also be expressed in terms of 
the expansion coefficients: 

1 
Dog = - - d  C (69) 

2n a,o, 

1 
D T,, = -- ~n ac,ooo , (70) 

Dd(  t ) 1 d( ~ ) 
T,. - -  f n a c , o  . (71) 

One can see that just zeroth-order terms of the expansions appear in the formulae for 
the diffusion and thermal diffusion coefficients. However, maintaining only the equations 

a( t )  in the systems (A.I)  and (A.4), leads to zero values of thermal for ac.ooo and uc, o 
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diffusion coefficients. The simplest way to yield nonzero thermal diffusion is to keep 
terms involving the coefficients ac,ooo, ac, lOO, ac,010 and ac,001 for the determination of 

d (  1 ) d (  1 ) Dr, and Uc, o and for the calculation of Dd[1)[32,17]. The resulting systems must U c, l 

d ( 1 )  respectively. be solved for ac,oOO and Uc, o , 

4. One-temperature approach 

4.1. Zeroth order approximation 

Now, we consider the case when rvv, is much less than "Ereac t and is comparable with 
the mean time between the collisions with the VV2 exchanges of vibrational energies 
of different modes and with the VTR exchanges. In this case 

j rap . je l  4- f ir  4_ .]vibr 
"ij = - c i j - - = c i j - - - c i j  , 

= j : , 7  c, 

The rapid vibrational exchange between the various modes results in equalizing 
the vibrational temperatures and the VTR exchanges lead to the one-temperature 
distribution. 

The zeroth-order solution f(0) has the following form: co 

f(o)_ nc ~' x / mcC,,2 c.jii +e['~ 
• cij Zc(r)Si j  e P \ ~ ~ j ,  (72) 

tr int zc=z; z~, (r) ,  
ci c ) 

Z~"t = Z s~)exp e) + ~'i 
" - k ' - T  " 

l] 

The vibrational level populations are described by the one-temperature equilibrium 
Boltzmann distribution Eq. (35). 

The equations for nc(r,t), v(r,t), T(r,t) can be obtained in the form given in 
Eqs. (36), (10) and (11). In the zeroth approach we have the system of equations 
for one-temperature chemical kinetics, Eq. (36) in the present case contain the one- 
temperature equilibrium rate constants for dissociation, recombination and binary reac- 
tions, Eq. (11) involves the vibrational energy pE~, = pE,,(T), 

Z ' 
= Pc v ~- Z vibr ~. ~. Z~ (T )  . \ k T J  

(73) 

Zc~'ib'=w'ib,(T)= Zs~ 'exp  ( _  ~)''] 
c \ k r /  

i 
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4.2. First order distribution Junctions and transport terms 

The equations for the first order solution coincides with Eq. (38). Using the zeroth 
order macroscopic equations we represent c0) df~.ij/dt as following: 

d~(O) 
J c i j  

dt a c i j  ~k 2kT 2 + [kTJ J cc • ~7 In T 

n m c 
+- -co  • dc + (CoCo 1 2 nc kT - ~cCI) : 7v  

+ \ 3 k T  - 1 -  + ~ 7 . v + - -  pVcu \ 2kV -2 LkTJ nc 

(74) 

c ,ci ,c here c, ij = ~,j + ei, [(i)]' = (ij - (~ij), the averaging over the internal energy is defined 
in the following way: 

c X ,~c ~-]~ij sij~ije P(-("i j /kT))  
(~ij) = ~ i j  s~jexp(-(s~i/kT)) (75) 

Proceeding from expression (74) we can write the first-order distribution functions 
in the form: 

f ( ' ) =  f(°.) ( - ! A c i / .  V l n T -  1- Z D c d j . d d - -  1-Bcij" ~Tv 
cu J c u  . n d n 

lFci j~Tv !Gci j ) ,  (76) 
n ' 

and traditionally obtain the equations for the coefficients of the gradients. In this case 
they contain the operators of rotational and all vibrational inelastic transfers. Additional 
normalization conditions are given by Eqs. (44)-(49) and (52). 

The pressure tensor is defined by Eq. (24), with the linear integral equations for 
functions Bcij, Fcij and Gcij determined by Eq. (74), the appropriate kinetic coefficients 
can be found from Eq. (25) with bracket integrals determined by expression (53) 
containing not only the cross sections of the VVI exchange but also all the inelastic 
energy transfers. 

The relaxation pressure and vibrational bulk viscosity coefficient also depend on the 
cross sections of all energy exchanges. 

The diffusion velocity is written as 

Vc = - Z Dcddd -- DTcV'ln T (77) 
d 
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with the following definition of the diffusion and thermal diffusion coefficients: 

D c a = l [ D c ,  Da], Dr~ = I [DC,  A]. (78) 

For the total heat flux we have 

q = -)o'~7r - p Z Drcdc + Z (~kT + (e~j) + e c) n~Vc, (79) 
C C 

= k[A, A]. 

The heat conductivity coefficient 2' cannot be measured experimentally because of 
the thermal diffusion presence. It is convenient to define the thermal diffusion rates 
kr~[28,17]: 

Z D,.dkra = DTc, c . . . . .  . 1 L 
d 

Then the heat flux can be expressed as follows: 

q = - )A7T + p ~ kr~ + + + V~ ; (80) 
C 

here 2 is the heat conductivity coefficient for a mixture, 

2 = )f - n k Z k r c D r c .  (81) 
C 

The coefficient 2 may be determined experimentally in a steady-state mixture. 

4.2.1. Thermal conductivity, diffusion and thermal diffusion coefficients 
Now, the expressions for transport coefficients in the one-temperature approach are 

considered. The integral equations for the functions Dc~ j has the same form as in the 
multi-temperature case and are given by Eq. (62). Therefore, we expand these functions 
into the same series of Sonine polynomials, Eq. (65). Functions Acij are found from 
the following equations: 

~ --~--Ica (A) = nje, j \ 2kT 2 + [kT] e¢. (82) 

In order to solve these equations one can expand the functions A~/j into double series 
of orthogonal polynomials 

, - .  o,r, (mock)  ,., ) A~,j 
2k~ ~ a~,rpJ3/2 \ 2kT J P) \ kT J " 

(83) 
rp 

The equations for coefficients ac,~p are given in Appendix B. The thermal conductivity 
coefficient becomes 

5 nc k nc , 
2' = Z -~k-ffac,,o + Z ~-ffci,t,~ac,o, = 2; + )hi, t , (84) 

C ¢ 
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where 

0E~nt ~. f Cin"c --  ~ T  ' pcEim = Z (g~i _]~ F~'lfci j duc. 
U 

In the case where the rotational and vibrational spectra can be separated the thermal 
conductivity coefficient 2~, t may be written as the sum of two terms connected with 
the transfer of rotational and vibrational energy: zi, . = 2,. + z,. 

The diffusion and thermal diffusion coefficients are defined, respectively, by Eqs. (69) 
and (70). The coefficients d~.ar can be found from the same system as in multi-tempera- 
ture approach, i.e. (A.7) and (A.9). 

It can be noted that using the different polynomial expansions for functions A~.ij, 
Dc%, etc., seems to be reasonable and provides a good convergence for all transport 
coefficients. 

5. Conclusions 

The expressions of transport terms are derived, respectively, in (i) level approach, (ii) 
generalized multi-temperature approach and (iii) one-temperature approach. The level 
approach is valid in a wide range of conditions of the rapid exchange of translational 
and rotational energy. In this case, the system of macroscopic equations contains the 
equations for the populations of vibrational levels of every chemical species nci and the 
conservation equations of momentum and total energy. This model gives the detailed 
description of nonequilibrium reacting mixtures, however, it is complicated due to the 
large number of macroparameters and transport coefficients. This approach should be 
used, for example, in a short zone behind a shock wave. The number of macroparame- 
ters is reduced when the exchange of vibrational quanta within every mode occurs more 
frequently than the vibrational energy exchange between modes and chemical reactions. 
Such a condition takes place, for example, in the zone of vibrational nonequilibrium 
behind a shock wave when the steady-state distributions over vibrational levels already 
exist and the multi-temperature approach is valid. It is particularly important in expand- 
ing streams, nozzle flows or high-enthalpy facilities. The anharmonism of molecular 
vibrations and the different rates of the various vibrational energy-exchanges lead to 
the non-Boltzmann distribution functions and to the appearance of additional thermal 
conductivity and thermal diffusion coefficients. The equations of the level vibrational 
and chemical kinetics are reduced in this case to the equations for number densities of 
chemical species n~. and for the "effective" vibrational temperatures of the first level 
of every component T~'. For the harmonic-oscillator model the "effective" temperatures 
coincide with the vibrational temperatures of components and the relaxation equations 
for the number of vibrational quanta are replaced by the relaxation equations for the 
vibrational energy. The one-temperature approach is valid in the conditions of ther- 
mal equilibrium in chemically nonequilibrium reacting gas mixtures. In this regime the 
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number of macroparameters is further reduced, all vibrational temperatures are equal 

to the gas temperature and macroscopic equations are the equations for no, v and T. 
The influence of chemical reactions on transport coefficients is defined by their de- 

pendence on the number densities of chemical species nc which are governed by the 
equations of the detailed chemical-vibrational kinetics, multi- or one-temperature chem- 
ical kinetics. 

In conclusion, it should be added that the choice of one of the three models consid- 
ered in this study is determined by the hierarchy of the relaxation times. It is obvious 
that the distribution function in the zeroth-order approximation can be easily reduced 
going from the most detailed model to the others. Nevertheless, this is not valid for 
the transport terms because they depend on the different inelastic cross sections and 
are defined in terms of macroparameters which are found from different macroscopic 
equations. 
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Appendix A 

To derive the equations for the coefficients ac,rpq in multi-temperature approach one 
should substitute the series (63)-(65) into integral Eqs. (60)-(62) and multiply them by 
the velocity. After integration over the velocities and summation over rotational, vibra- 
tional quantum numbers and chemical species the following system of linear algebraic 
equations is obtained: 

Z Z ca 15 kTnc 3kTnc 
Arr 'pP 'qq 'ad ' r ' p ' q '  - -  2 mc n ~Srl3p°(~qO -'~ --Cr'c(~rO(~pl~qO 

d r~plq ' me n 

3kT nc T 
+ --G,carOapOaql, C = 1 . . . . .  L, r ,p ,q  = 0,1 . . . . .  (A. 1) 

m c 17 

Here the following notation is introduced: 

cd 3-" ,,ncnb rnrp q glr 'p ,q ,  lt  ~-2 [Qrpq, Qr'p'q']lt d (A.2) Arr '  pp'  qq' 

b 

where 

= V 2-k-f~c°3/2 \ 2kT J -  a - '  k-T " 

One can see that the coefficients of the linear algebraic equations (A. 1 ) are expressed 
in terms of partial bracket integrals of the most rapid processes which were defined in 
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Section 3.4. In the multi-temperature approach they depend on the cross sections of  the 
elastic collisions, collisions with the rotational energy exchange and with the transfer 

o f  the vibrational quanta inside every mode. 

Eq. (A. 1) occur not to be linear independent in the case r = p = q = 0. It follows 

from the momentum conservation and the symmetry of  the bracket integrals. Taking 

into account the normalizing conditions (44) one can derive the additional equation for 

the coefficients a c , r p q  

Z ~ a¢°°° = 0" (1 .3)  
C 

The system (A. 1) completed by Eq. (A.3) has a unique solution. 
d (  1 ) The equations for coefficients Uc,r are written as follows: 

~-"~ ~-"~ cd ab(l) 3 k T  nc T' I 
- -  Cw,cOrl , b , c  = 1 . . . . .  L, r = 0, 1 . . . .  (A.4) Z _ . , - -  " rr d,# me n 

d # 

where 

cd (~cd Z ~ 2  [Qr'Qr']:'b -~- ~2 [Q r' r' 11 ~rr' = Q ]cd, (A.5) 
b 

and 

e =  r-z< n,r, 
V tkTr)" 

Adding to the Eq. (A.4) the condition following from the constraint, Eq. (43) 

Z Pc d(l) 
pac ,o  = 0 ,  d =  1 . . . . .  L (A.6) 

C 

d(l) one can obtain the system of  equations for ac,, which are linear independent. 

Similarly, the equations for the coefficients dcdr can be written as 

7rr,  a d , r ,  = 3 k T  ~$cb - ~$rO, b , c  = 1, . . . ,L,  r = 0, 1 . . . . .  (A.7) 
d r r 

where 

~rr' = mk~cmd ~cd Z ncnb [fir f3r']t tlcnd [fir iqr']H ~ 7 - t z  , z  Job + - - -~ - t z  , z  J<.u , (A.8) 
b 

e= (me4) 
V 2--~"°3/2 \ 2kT i t .  

The linear-independent system can be derived taking into account constraints, Eq. (45), 
which have the next form in terms of  coefficients dcdr: 

z Pe ,4d p"C,0 = 0, d = 1 . . . . .  L .  (A.9) 
C 
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Appendix B 

The linear algebraic equations for the coefficients ac,rp in the one-temperature ap- 

proach are given here as follows: 

3kT nc 15 kT nc 6~16pO + --Cint,c(~rOdpl , ZZcd 
Arr' pp'ad'r' P' 2 mc n mc n 

d rrp ~ 

c =  1 . . . . .  L, r , p = 0 , 1  . . . . .  (B.1) 

Here 

and 

cd Arr, pp, z 6cd Z --~'-t~nc?lb [FlrP, ~t3rlP' 3cbq/ _~_ 7 ft'3rP, ~t~r'P~ ]cd ltt 

b 

Q~P = V ~f~.c~,3/2 \ 2kT J P~p) \ kT J " 

(B.2) 

In the one-temperature approach, partial-bracket integrals contain the cross-sections 
of the collisions with all elastic and inelastic energy exchanges. 

The additional equation for ac, rpq follows from Eq. (44) and coincides with Eq. 
(A.3). The system (B.1) and (A.3) has a unique solution. 
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