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Abstract 

Transport properties of carbon dioxide with strongly excited asymmetric vibrational mode are studied on the basis of 
kinetic theory treatment. The kinetic model takes into account anharmonism of molecular vibrations and different rates of 
various energy exchanges. The method of transport coefficients derivation is proposed. The calculation of nonequifibrium 
specific heats is carded out using a non-Boltzmann distribution of the molecules over vibrational energy levels. The effect of 
strong vibrational excitation and anharmonicity on thermal conductivity, shear and bulk viscosity coefficients is estimated. 

1. Introduction 

Development of laser physics, plasma chemistry, atmosphere physics, dynamics of expanding flows and other 
fields of modern sciences requires the prediction of nonequilibrium transport properties in polyatomic gases. 
The first attempt of  description of thermal conductivity in molecular gases was done by Eucken [ 1 ]. He derived 
an empirical model which connects thermal conductivity with heat capacity of internal degrees of freedom. 
More rigorous models were developed for weak-nonequilibrium conditions [2-5] on the basis of kinetic theory. 
Thermal conductivity coefficients of CO2 under strong vibrational nonequilibrium conditions were considered 
in Refs. [6,7]. However, in all these works the complex structure of the molecule CO2 was neglected, and 
various vibrational modes were not distinguished. Actually, a precise description of internal modes and their 
interaction remains complicated. Real gas effects such as anharmonism of molecular vibrations, different rates 
of various energy exchange inside and between modes can disturb the equilibrium distribution functions and 
impact essentially on transport terms. The vibrational kinetics of polyatomic gases taking into account these 
peculiarities was studied in Refs. [8-10].  The kinetic model of dissipative processes in polyatomic gases 
considering the vibrational energy exchange within and between models was proposed in Ref. [ 11 ]. Transport 
properties of CO2 simulated by a set of harmonic oscillators were investigated in Ref. [ 12]. 

Strong excitation of asymmetric vibrations occurs in many cases such as flows in nozzles and gasdynamic 
lasers [13,14], experiments on laser fluorescence [15] or nonequilibrium plasmas and discharges [10]. In 
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the present paper transport coefficients in carbon dioxide with strongly excited asymmetric vibrational mode 
are studied on the basis of the kinetic theory treatment taking into account anharrnonic effects. The linear 
tri-atomic molecule CO2 is simulated by a rigid rotator and a set of three anharmonic oscillators. The modified 
Chapman-Enskog method is used for the determination of distribution functions and evaluation of transport 
terms. It is shown that anharmonism of molecular vibrations and non-Boltzmann distribution of molecules over 
vibrational levels can influence significantly the specific heats and thermal conductivity coefficients. 

2. Kinetic equations 

The carbon dioxide molecule is a linear triatomic molecule which, in the ground electronic state, has three 
vibrational degrees of freedom. The first mode is the symmetric stretching mode with frequency vl, the second 
is the doubly degenerate bending mode with frequency v2, and the third is the asymmetric stretching mode with 
frequency z,3. 

Vibrational energy of linear tri-atomic molecules is defined as follows [ 16] : 

3 3 3 

eei, i~i3=ZWek(ik+ d k ) + E Z X e k j ( i k +  ~ ) ( i j + ~ )  
k=l k=l j ~ k  

e . 2 +~-'~.Y~. ~ Y~qt ik+--  ij+ i l+-- +x~ll2+~"~.yku,kl ... (1) 
k=-I j >k  l>j>k k=-I 

Here il, i2, i3 are the vibrational quantum numbers corresponding to the symmetric, bending and asymmetric 
modes, d~ is the degree of degeneracy of the k th mode, l is the additional quantum number describing the 
projection of the angular momentum of the bending vibrations onto the axis of the molecule, to~ is the wave 
number of k th mode, xekj and Y~jt are the constants of anharmonicity. 

Rotational energy levels are described by the rigid rotator model. Vibrational and rotational energy levels are 
assumed to be independent, i.e. 

eq = ei + ej , (2) 

with j the rotational quantum number and eq the total internal energy of the molecule. 
The system of Boltzmann kinetic equations for the distribution functions fo(r ,u ,  t) of each vibrational 

i = (il, it2, i3) and rotational j species over velocities u and spatial and temporal co-ordinates r and t can be 
written in the form of Wang Chang and Uhlenbeck [3] : 

Ofij afij 
0--/- + u .  -~-7 = Ji~, (3) 

where the collisional operator Jij has the form: 

Ji j  l i,~y,,, f (fi'j'fk't' sijskt f i j f k l )  i ' j 'k ' t '  = 2 kl go'ok t d2/2 d3ltkl, (4) 
l~ Si'j '  St '  I t 

o-~'J'l k'l' is the differential cross section for inelastic scattering into a solid angle d2/2 of the molecules in which 
at the ith and kth vibrational levels and j t h  and / th  rotational ones, g is the relative velocity, while s o = sisj, 
si and sj are the vibrational and rotational statistical weights. The collisional operator represents the sum of 
several terms which describe collisions of different types: 

= J,y + + s,y + J,7' + s U  + JiT + < s) 
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The term J ~  is concerned with elastic collisions, j~R and J ~  represent collisions with rotational and rotational- 
translational energy exchanges, j /~r  corresponds to collisions with exchange of all kinds of energy. The collision 

integrals j w '  and Ji w''  describe collisions with vibrational energy transfer within and between vibrational modes, 
and can be written as a sum of terms: 

JW'=JiWl'+JiW2 +J i  W~ , ( 6 )  

J i ~  . '' = J i ~  .It2' -~ JiV~ ~3' q- J i ~  1~' • ( 7 )  

Collisions with vibrational-translational energy exchange are characterized by the operator Ji~" which can also 
be expressed as a sum of three terms. 

It is known that in real gas flows the rates of various processes can differ significantly. Thus, for the 
equilibration of the translational degrees of freedom, only a few collisions are needed, whereas vibrational 
relaxation requires several thousand collisions [9,17]. The macroscopic kinetic model depends essentially 
on the relations between characteristic times of different processes. Strong nonequilibrium conditions appear 
when some of characteristic relaxation times become comparable with the macroscopic time 0, and hence the 
right-hand side of the kinetic equation (3) can be written as a sum of terms of different orders [7,18]: 

+ "  = + @ '  (8) 

where e = rrap/rsl is a small parameter, trap and rsl are the mean times between frequent and rare collisions, jr~p 
and jsJ are the collision operators for rapid and slow processes. The structure of these operators is determined 
by the specific flow conditions. Thus, in the general case, for a linear triatomic molecule with strongly excited 
vibrational degrees of freedom, nonresonant W'-exchange within modes is much more probable than exchange 
of vibrational energy between different modes and V/" exchange [9]. In the particular case of the CO2 molecule, 
Fermi resonance [ 16] results in increasing the probability of near-resonant exchange between the symmetric and 
bending modes. Strong coupling of the symmetric and bending modes is typical for flows behind shock waves, 
in nozzles and discharges [ 14,15]. Under conditions of essential excitation of the third mode the equilibration 
of the combined Fermi-resonance mode is found to be more rapid when compared to the relaxation of the 
asymmetric vibrations [ 15]. A number of experiments on laser fluorescence [ 13,15] and measurements of 
vibrational temperatures in laser mixtures containing CO2 [ 14] show that the symmetric and bending modes 
can often be considered to be in equilibrium with the rotational and translational degrees of freedom. In this 
case the hierarchy between relaxation times is the following: 

rTI" < rRT "~ rRR < rW(.2. ~ "~ rW[; 2 " rW,.2 << rW3 "~ rVV3" ~" "rVRT ~ /9. (9) 

This relation is also valid for flow behind a strong shock wave, except for the zone of relaxation of the 
combined mode, which is rather short when compared to the length of the relaxation zone for the vibrational 
energy. 

3. Zeroth-order approximation 

For the solution of Eq. (8) the generalized Chapman-Enskog method is used. Distribution functions 
f i j ( r ,  Uc, t) are expanded in power series of the parameter e (e << 1). The zeroth approach gives the fol- 
lowing relation [ 18] : 

jr~p (f<0), f¢0) ) = O. (10) 

Under conditions (9) integral operators of rapid and slow processes can be written as: 
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JSJ=j~jl'3-I- Ji~4 + Ji~. (12) 

The logarithm of the zeroth order distribution function In fi~°)/sij is found to be a linear combination of the 

summational invariants ~b/~a)(A = 1,2 . . . .  ) of the most frequent collisions (eigenfunctions of the linearized 
collisional integral of rapid processes J~jP). The invariants for all collisions are the number of particles 

1), the momentum (~/(j2) = mu, m is the molecular mass), and the total energy of the molecule 

(tp/~ 3) = mu 2/2 + ei + t~j ). In strong nonequilibrium conditions there exist also additional invariants of the rapid 
process. For the harmonic oscillator model W exchange is resonant, and the vibrational energy of the molecule 
is conserved in rapid processes. For the anharmonic oscillator models this quantity is not conserved due to 
the nonequidistant separation of the vibrational levels. The number of vibrational quanta was found to be an 
additional collisional invariant for diatomic gases [ 19]. For polyatomic molecules under conditions (9),  the 
number of vibrational quanta of the asymmetric mode is conserved in nonresonant W 3' exchange (~/(:) = i3). 

Actually, this last invariant exists only for the lower vibrational levels, when the most frequent collisions 
do not include resonant exchange between the neighboring levels in each mode. In addition, the probability 
of V/' exchange increases rapidly with vibrational quantum number for the anharmonic oscillator, and for the 
upper levels becomes comparable with the probability of W transfers [ 19]. Taking these features into account 
leads to a complex form for the distribution function. Such a distribution has been derived for diatomic gases 
in Refs. [20,21]. It is also known that for a high degree of vibrational excitation, a strong interaction occurs 
between vibrational modes, and that in the quasi-continuum region they cannot be distinguished. The vibrational 
kinetics of  the CO2 molecule with mixed modes in the upper levels has been studied in Ref. [ 10]. The present 
work is restricted to those levels of the asymmetric mode for which nonresonant processes are more probable. 
Vibrational modes are assumed to be separable. 

The normalizing conditions for the distribution function are written using the system of collision invariants: 

n= ffijd = /f  °) du, (13) 
tJ tJ 

pv=~ f mufij . . . .  d u = E  f m u f } ° ) d u ,  (14) 
t.l U 

PU=" ~ f (m.~ -[-~,i--~,j) fij du ~ f (m__f_~ ~'i = + + e j ]  f~o) du, ( 15) 
tJ tJ 

/ 

ow3=Zi3 f :.du= ig f ::°) du. (16) 
u ij 

Here n is the total number of particles, v is the macroscopic velocity, p is the density, W3 is the average number 
of vibrational quanta in the asymmetric mode per unit mass, U is the total energy per unit mass: 

pU = 3nkT + pEr + pEv, (17) 

where k is the Boltzmann constant, T is the gas temperature, and Er, Ev, are respectively the rotational, 
vibrational energy per unit mass. 

Starting from the system of collisional invariants and using the normalizing conditions (13 ) - (16 ) ,  the 
distribution function in the zeroth Chapman-Enskog approximation method is found to be 

f~o) nSij ( m c 2 ~ ' J  F'i ) 
= Zt---t-t~v exp 2kT kT -£-T Xi. (18) 



A. Chikhaoui, E.V. Kustova/Chemical Physics 216 (1997) 297-315 

Here c = u -- v is the peculiar velocity. Partition functions are defined as follows: 

301 

(U) Zt = , Z: = sj exp _ e J  , Zv=  si exp _ e l  Xi .  (19)  
j i 

The term Xi describes the deviation of the zeroth-order distribution function from the equilibrium Maxwell-  
Boltzmann distribution, and is due to the conservation of some additional quantities in the most frequent 
collisions [ 18]. In the present case Xi is determined by the conservation of the number of  vibrational quanta 
in the asymmetric mode i3: 

Xi = exp ( ' y 3 i 3 )  • (20) 

The parameter Y3 is defined from the normalizing condition (16) and can be expressed in terms of the 
"effective" temperature of the first level of the asymmetric vibrational mode: 

")/3 = T -- , ~13 = Co,00,1 • (21) 

Thus the distribution function (18) takes a form 

_ nsij I mc2 ej ~i - i3~13 i3t~13 
ZtZrZv e x p ,  2kT kT  kT kT3 J " (22) 

Nonequilibrium populations of  vibrational levels ni = nil,it2,i3 are obtained from Eq. (22) as follows: 

nsi ( ~i - i3E13 i3813 ) (23) 
n i  = ~ exp kT kT3 " 

One can see that the distribution (23) represents a Boltzmann distribution of the molecules over the vibrational 
levels in the symmetric and bending modes and an analogue of the Treanor distribution in the asymmetric 
mode. For vibrational equilibrium, with T3 = T, it reduces to the equilibrium Boltzmann distribution with 
temperature T. I f  the anharmonism of the vibrations is negligible, then Eq. (23) reduces to the nonequilibrium 
multi-temperature Boltzmann distribution, with the vibrational temperature of  the asymmetric mode T 3 = 7"3. 

Fig. 1 represents reduced level populations of asymmetric mode no,oo,iJn as functions of i3 at T = 1000 K for 
different T3 as well as the corresponding Boltzmann distributions for the harmonic oscillator model. One can 
conclude that for 7"3 < T the deviation of (23) from the Boltzmann distribution is negligible. The discrepancy 
becomes noticeable for equilibrium conditions (i.e. T3 = T), and increases essentially with the nonequilibrium 
factor T3/T. Populating the more energetic higher levels will therefore have a significant effect on nonequilibrium 
specific heats. 

4. Macroscopic equations 

The macroparameters p, v, U and W3 are found from the following system of equations. 
Equation of mass conservation: 

dp + p~Tv = 0; 
dt 

Equation of momentum conservation: 

dv 
p ~ -  + ~TP=O;  

(24) 

(25) 
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Equation of total energy conservation: 

dU 
p--~- + ~Tq + P : XTv = 0 ; (26) 

Relaxation equation for the mean number of vibrational quanta in the third mode (it is written in the 
dimension of energy): 

d (e13W3) f 
P dt 4- ~7q3 = ~- -~ i3e l3  .J~ du. (27) 

/j  

Here P is the pressure tensor: 

P = ~ : m ccfij du ; (28) 
J q 

q is the heat flux: 

q = ~ - ' ~ f  ( ~ + e i + e j )  (29) 
u 

and q3 is the flux of vibrational quanta in the third mode: 

q3 = ~ i 3 e 1 3  fcy0 du. (30) 
0 

In the zeroth approximation qC0) = q~0) = 0, pt0) = pl, p = nkT, ! is the unit tensor. For the derivation of 
the first-order distribution functions and transport terms nonequilibrium specific heats must first be defined. 

5. Nonequilibrium specific heats 

On the basis of zeroth-order distribution functions (22) the nonequilibrium specific heats at constant volume 
are introduced, as follows: 

a E t  3 k aE r  
. . . .  , Cr = - -  (31) Ct= 0T 2 m  o'¢T ' 

7, aEv(T, T3) r3 0Ev(T, T3) 
Cv = aT ' Cv - ~/'3 

Here translational, rotational and vibrational energy per unit mass Et, Er, Ev are defined as: 

p~fT) =~nkr, 

(32) 

f n pEr(T)  = ~.. ej f :  °) du = -~ ~ ej exp ej 

q J 

f n ( ~i--i3~,13 i3~.13) pEv(T, T3) = ~f-~ 8if} O) du= ~"~eini= -~v ~'~ eiex p - -kT kT3 " (33) 
ij i i 

For gas temperatures higher than room temperature the rotational specific heat can be defined classically: 
Cr = k/m (except for the light molecules H2, D2). Vibrational specific heats depend on both gas temperature 
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and the temperature T3; they differ from the equilibrium specific heats and those calculated with the harmonic 
r crv(r) andcr  cr3(T3). oscillator model. Thus, for the harmonic oscillator c v = = 

It is conventional to introduce the definition of the averaged value (S~)v of ¢i over the vibrational spectrum: 

1 ( ei - -  i3e13 i3e13~ 
(()v = nl ~~¢ini=i -~v Z ~: iexPi  kT kT3 ] '  (34) 

and (sO)r, the averaged value of s~j over the rotational spectrum: 

1 Z ~ j e x p ( - ~ - ~ )  
(¢)' = Z .# 

(35) 

T k ( /  e i ei --~/3813 ~ ~i ( -i3~13~ 
m kr Iv) 

Crv,=k (/eii3e,3) ei /i3el3~ ~. 
m t \  kr kr3 v- ( 7 ) v  \ kr3 IU 

(36) 

(37) 

For a clearer understanding of further developments, it is necessary to introduce additional modified specific 
heats: 

T a (eI3W3(T, T3)) l"3 09 (813W3(T'T3)) 
Cw = ff'l" , c w -- o~T3 , (38) 

and total specific heat: 

OU 7" 
Cu = ~ = ct + Cr + Cv. (39) 

r and r3 have the forms: The expressions for Cw Cw 

r k T 3 ( (  i3e'13ei-i3el3 ) / i3e i3~(ei - - - i - -3el3~ (40) 
Cw = T kr3 v - \ / v  k r  / U ' 

cT3= k ( ( ( i 3 e 1 3 ~ 2  1 /i3~13~2~ 
m k kT3 ] v - \ kT3 / v  J "  (41) 

r CvrL This value has been For thermal equilibrium (T3 = T) the total vibrational specific heat is Cv = Cv + 
calculated for CO2 in the temperature range 300--4500 K for varying numbers of vibrational energy levels. The 
results are plotted in Fig. 2. Furthermore, the dimensionless specific heats (divided by k/m) are considered 
with the same notation. One can see that by increasing the gas temperature the upper levels become populated 
significantly, and consideration of only the lower levels leads to irregular behavior of cv, with a consequent 
underestimation of its values. Thus, consideration of the 10 first levels in each mode gives reasonable values 
for Cv up to temperatures of 1000 K. Then, for temperatures up to 2500 K 30 levels are sufficient for a good 
estimation of Cv. Finally, for higher temperatures (T < 6000 K) 60 vibrational levels in each mode need to be 
taken into account. The influence of anharrnonism on the equilibrium specific heat reaches 5% at T = 4500 K, 
and increases with temperature. 

The effect of strong excitation of the asymmetric mode on specific heats is presented in Figs. 3 and 4 where 
their dependence on T3 is plotted at different T. Both Cv r and cv r3 increase with T3 and T. The comparison with 

After carrying out differentiation one can obtain the following expressions for the vibrational specific heats: 
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Fig. I. Level populations of the CO2 asymmetric mode no,ooi 3/n 
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Fig. 2. Thermal equilibrium CO2 specific heat Cv as a function of 
T calculated with different numbers of vibrational levels. Compar- 
ison with the harmonic oscillator model. 

specific heats calculated for the harmonic oscillator model  shows the essential discrepancy for large values 
o f  the nonequilibrium factor y = T3/T. This deviation is related to the increased populations o f  the upper 
vibrational levels in the case of  the anharmonic oscillator (see  Fig. 1). The surprising behavior of  the specific 
heat cv T3 at T -- 500 K is explained by the strong influence of  the non-Boltzmann vibrational distribution at high 
values o f  the nonequilibrium factor, y > 5 -6 .  It is interesting to note that peaks, corresponding to y ~ 6 -8 ,  
are achieved at the maximum vibrational energy store at several lower levels. Further decreasing of  the specific 
heat cv T3 with increasing y is due to the re-distribution of  vibrational energy over vibrational levels and the shift 
of  its max imum towards the higher levels. A similar behavior of  the specific heat in excited diatomic gases was 
obtained in Ref. [21 ] .  

6. F irs t -order  ap p rox imat ion  

The first-order distribution functions are found from the fol lowing linear integral equation: 

(f(o,. df} °) = dt  ( f ( 0 ) ,  f ( 0 ) )  . ( 4 2 )  

Here ~bij is the perturbation term, f~jl) = q~ijf~o). 
Upon converting to the peculiar velocity c and taking into account the zeroth-order distribution functions 

(22 )  and macroscopic equations ( 2 4 ) - ( 2 7 )  in zeroth-approach, one can express d f } ° ) / d t  in the form: 
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3 [~i ~ /3~13  ] 
:2 + kr ]v 

) ) ;) [~,] c:~ f,~,~] c. m c  2 

+ -if - - f - - L k r 3 ] v ~  +3--ff - 1  . v v  

p(c.c~-cwcv ~ ~') \ 2 k r  2 + kr j 

)! 
+ ~-~ , - ~ - -  LkT3jv ~ ' 

where  
# # 

[¢ i ]v  = ~:' -- (~:)V, [~:j]r  = ~:j -- (~ ' ) , ,  

with  average values  def ined by Eqs.  ( 3 4 )  and ( 3 5 ) ,  and R g iven by: 

( 4 3 )  

( 4 4 )  
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f Z R sl (0) 
el3 ] J i j ( f  , (45) f(o)) du. 

ij , #  

Proceeding from Eq. (43), the solution of Eq. (42) can be found to have the form 

~ij =fD °) - A o V I n T - 1 A ! 3 ) V l n T ,  - BO ~Tv FijVU Gij (46) 
n ij : - -  - -  , 

(3) Bij, Fij, Gij depend on the microscopic velocities u and the macroparameters in which functions Aij, Aij 
n ( r , t ) ,  v ( r , t ) ,  T ( r , t ) ,  T , ( r , t ) ,  and can be obtained from the linear integral equations which follow from 
Eq. (42) after substituting Eq. (43) into Eq. (42) and equating the coefficients of the gradients of the same 
macroparameters. Finally, these integral equations take the forms: 

nli j(A) =f[°)c  C 2 - ~ + ~ r + lcT ' (47) 

# 

nlij(A(3)) (o)_ [i3e13] 
= f~J '; [ kT3 J r '  (48) 

nlq(B)  =2fD °) ( C C -  ~C21), (49) 

- - r  r3 ~ + kr  I nli j( F) = f~o) t p(cucw - CwCv ) C 2 - 

+ 
tcs r "T'--  LkT, Jv~3 ' 

(50) 

( (( R c 2 3 ~ - 6 e ~ , ]  
nlij(G) =_f[o)  p(cuc~--- . r . r3)  -- 7 + kr  J 

~ W  ~ V  V 

cT3 [ e , '  [/,el,] _ ~ ( f ( o ) , f ( o ) )  (51) 
+ ~-~. T - L k T 3 J ~  

where 

c =  c 

is the reduced peculiar velocity, and lij is a linearized operator of rapid processes: 

1 f ,p(O) ,e(O) i' "'k'l"O" I/j(@) ~ ~ (~bij + @kt - duq d2,O. / J i j  £kl  --  • i ' j '  W k ' F I  ,5Vijkl (52) 
k,l,i~,j I ,M ,l t o 

From the normalizing conditions (13)-(16) additional constraints for the functions A = A(e)c, A (') = 
A(3)(c)¢, F, G are derived: 

U I j  

(53) 

si::°>Od.:O. 
U U 

(54) 
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) .. .'0" +e . j+e . i  F d u = O ,  (55) 
tJ 

Eif(ifl)(m---~--~+.j+.i)Gdu=O. (56) 
tJ 

These constraints should be taken into account for the solution of the integral equations (47) - (50) .  

7. Transport terms 

First-order distribution functions provide the following expression for the pressure tensor P: 

P = (p  - p r e j ) 1  - 2#zS - r fG .  v l .  (57) 

Here/z,  7/are the shear and bulk viscosity coefficients, Prei is the relaxation pressure: 

kT 
#z= ~ [B ,B]  , r l = k T [ E F ]  , Pre~ = k T [ F , G ]  . (58) 

The bracket integrals are as defined in Ref. [22]: 

[ A , B ]  = ~__~ f l i j (A )B i j  du ,  
J 

0 

while the functions B, F and G are determined from the linear integral equations (49) - (51) .  
The bulk viscosity appears in the expression for the pressure tensor as part of viscous dissipation. In a flow 

field, ~7 • v ~: 0 corresponds to pure expansion or compression of the gas. This process involves directly only 
the translational degrees of freedom. A certain time is needed to equilibrate translational and internal degrees 
of freedom through inelastic collisions. This time is determined by nonresonant and inelastic rapid processes: 
RT exchange, W ~ and W "  transfers and V/" exchange in the symmetric and bending modes. The appearance of 
the relaxation pressure p~el is connected with the existence of slow VF3 and VRT processes, together with rapid 
inelastic ones. 

The expression for the total heat flux q is: 

q = - A V T -  A ( v a ) V T 3  . (59) 

It contains the gradients of two temperatures VT and VT3. The thermal conductivity A is a sum of three 
terms A = At + ,~r q- ,~vt, where At and Ar are translational and rotational thermal conductivity coefficients. 

-cl) + Av~2) + A~3), in which the first and second terms are connected to the transfer of The coefficient ~vt = Av 
vibrational energy in the first and second vibrational modes, which are in equilibrium with the rotational and 
translational modes, and the third term appears due to the rapid nonresonant W t vibrational energy exchanges 
in the asymmetric mode, and vanishes for the harmonic oscillator. For the ~i-coefficients the following equations 
are obtained: 

k kT3 (60) ,It= -~ [ A,  A ] + 

arC3) = kT [A,A(3)] (61) 
3T3 

in which the functions A 

[A (3), A] ,  

h-~k [AC3), A(3) ] 

and A (3) are solutions of Eqs. (47) - (48) .  
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One can notice that shear and bulk viscosity coefficients and all thermal conductivity coefficients are deter- 
mined by cross sections for the rapid processes. On the other hand, the expression of the relaxation pressure 
includes in addition cross sections for the slow processes. 

8. Transport  coefficients 

For the solution of the integral equations (47)-(51) the functions A, A (3), B, F and G are expanded into 
triple series of orthogonal Sonine polynomials [ 22] and polynomials used by Wang Chang and Uhlenbeck [ 3 ] 
and by Waldmann and Triibenbacher [23]: 

m ~rpq~'3/2t" J ' J  ( a i j  = "~cZ"~rpq ~(r)(g-'2"~la(P) ( ~ T )  Pi(q) 8i -'~/3~13 ~ k T  j , (62) 

A}3) m (i3e13~ 2kTC~'~ (3) ~(r) = a r r  i , ( 63 )  
r ~'kZ3 J 

(r) 2 Bij= ~-'~bpS;/2(C ) ( C C - ½ C e l ) ,  (64) 
P 

( )  ( rTi3e '3)  ~ ' ~ d  q(r) g f'2~ la(P) ej pi(q ) ei - i3e13 c w 
Fij = Z..,-rpqol/2,~ ~. j ~ -kT Crw 3 T3 kT3 ' (65) rpq 

( )  ( rTi3s'3~ Gij ~ ' ~ o  K'(r) tt'-'2"~p (p) sj  pi(q ) ~'i - i3s13 c u 
= Z"~'rpqol/2"~ J'J -~ -k-T Crv 3 T3 kT3 J" (66) rpq 

Basic functions of the Waldmann-Trtibenbacher polynomials differ from those usually applied for the derivation 
of transport coefficients [2]. They are chosen in accordance with the right-hand sides of equations (47)-(51),  
so that the system of algebraic equations for the coefficients of expansion can be simplified and then the 
transport coefficients can be expressed in terms of the first non-vanishing members of the series (62)-(66).  

Using a procedure similar to that elaborated in Refs. [20,21] for diatomic gases, systems of linear algebraic 
equations for the coefficients of expansions (62)-(66) are obtained. The coefficients of these systems are the 
bracket integrals depending on cross sections of the rapid processes. 

Solution of the systems for arpq and a~ 3) provides the following expressions for the heat conductivity 
coefficients: 

At = 5kA1 Ar kA3 
-~-- -~'-, = ~ -~-Cr, (67 )  

k A2cr ' av(3 ) = 3k2T Cry 3 
av, = ~ ~--  v 8m a22 " 

Determinants A i (i = 1,2, 3) and A are composed of bracket integrals Arr'pp'qq' [20]:  

[q(r) l~(p) p(q) -~/3e13 ~ C .~,r') l~(p') p(q' ) 
m r r t p P ' q q t ~ ' L ° 3 / 2 ~ i ' i  ( ~ i k T  J v'~3/2 ~ j "i ( ~i "-: i3"13 ~ c ] 

k r  ) " 

The integral a22 is also a bracket integral defined as: 

a22=[Pi(')(i3s13~C'Pi(l)(i3e13~C] kT3 J \ kT3 J 

(68) 

(69) 

(70) 
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Once the simplifications based on the assumptions of  Mason and Monchick [2] have been made, the 
bracket integrals Arr'pp'qq' and a22 can be expressed in terms of  the nonequilibrium specific heats, the elastic 
/2(l'r)-integrals [22]:  

• - 2- 2r+3,~(l) /2(t,r) = ~ j expt-gg)g?~ ~ dg0, 

0 

- = costx(b,g)}bdb,  (71)  Q(l) 

and the inelastic collision integral fl containing the inelastic cross sections of  all frequent collisions: 

fl = -~m Z SijSkt exp ~i -- i3~13 i3e13 - 

i j k l  
i ' j 'k ' f  

~:j ~k -- k3fi:13 k3g13 E;l ) . f /  i j k  . . . .  
kT kT kT3 k-T exp(--g2)g3(Ae)2°'-~"/ d2/2 dg.  (72)  

Here Ae is the defect o f  resonance in nonresonant inelastic collisions: 

~ T  (ei,  "~- e j ,  q- e k, + e l, - -  e i  - e.j - -  e k  A e =  ~ ~ l  ) ~ (73) 

Since vibrational and rotational energy have been assumed to be independent, Ae can be represented as a sum 
of  resonance defects of  the rotational and vibrational energy, Ae = Ae r + Ae v. Then, as far as VRT exchange is 
considered to be a slow process, one can neglect the product of  Ae r and Ae v. Therefore integral fl also can be 
divided into two parts, fir and fly, containing, respectively, the cross sections of  RT exchanges and all frequent 
vibrational transfers ( W ' ,  W ' ,  VII, Vl'2). 

Thus we obtain the following expressions for Arr'pp'qq' and t~22: 

A.('~( 1,1 ) ~T3 a22 = - - -  ~w + ¼fly, (74) 

25 25 Alloooo = 4/2 (2,2) + ~ f l r  + i~flv,  A001001 = A00ml0 = 0 ,  

AOOI10O = 4/2(1'1)Cr -k- "]fir, A10OI00 = AOlI00O = - 5 f i r ,  (75) 

A000011 = 4/2 (l'l)~Tt-a + "]fly , Al00001 = A010010 = --"]fly. 

By using the theory of  Parker [24] for the rotational relaxation time ~'r, the integral fir can be written in 
terms of  the time ~'r as 

3 Cr 1 (76) 
fir = 2n Curr " 

Calculation of  the integral fly is rather complicated. Theoretically, it can also be expressed in terms of  relaxation 
times of  each vibrational exchange: W ' ,  W ' ,  V/l, vir2. Nevertheless, there are no experimental data available 
for relaxation times of  the different modes in CO2. For the calculation of  fl~ the generalized SSH theory [9,25] 
has been used to obtain an analytical expression for fl~. This approach is not quite rigorous, but it can be 
applied to estimate the order of  magnitude. In this way /3v is found to be one to three orders of  magnitude 
smaller than fir. 

At this step all A-coefficients have been obtained as functions of  the nonequilibrium specific heats, elastic 
collisional integrals, the rotational relaxation time and the probability of  different vibrational energy transfers. 
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Table 1 
Comparison between the thermal conductivity coefficients (A, 10 -3  W/Kin) calculated on the basis of exact (Eqs. (67 ) - (68) )  and 
approximate (Eq. (77))  models for CO2 at/ '3 = 2000 K 

Eqs. (67) - (68)  Eq. (77) 

r ( g )  A(v 3) Art Ar At A(v 3) Art Ar At 

1000 8.5388 26.600 10,063 29.133 8.5561 26.600 10.168 28.933 
1200 9.8035 31.638 11.495 33.223 9.8241 31.639 11.611 33.002 
1400 10.989 36.220 12.834 37.036 11.013 36.221 12.961 36.794 
1600 12.110 40.452 14.098 40.626 12.137 40.454 14.235 40.365 
1800 13.177 44.412 15.301 44.034 13.207 44.413 15.448 43.753 
2000 14.198 48.150 16.450 47.286 14.231 48.152 16.607 46.987 
2200 15.180 51.708 17.555 50.406 15.216 51.710 17.722 50.089 
2400 16.127 55.113 18.621 53.411 16.165 55.115 18.798 53.075 
2600 17.043 58.388 19.652 56.314 17.085 58.390 19.838 55.960 
2800 17.933 61.549 20.653 59.127 17.977 61.552 20.848 58.756 
3000 18.798 64.610 21.626 61.859 18.844 64.612 21.830 61.470 

The expressions for the thermal conductivity can be further simplified under the assumption that Ae = 0 (in this 
case the integrals fir = fly = 0). The validity of this assumption for diatomic gases, except for light molecules 
with large rotational cross sections, is proved in Refs. [20,21 ]. In the present consideration, it is obvious that 
the term fir contributes much more in the expressions (74) - (75)  than does/3v. Moreover the cross sections of 
RT exchange for CO2 are similar in magnitude to those for Na and Oa. Thus, one can expect that the influence 
of the defect of resonance on the thermal conductivity of CO2 is rather small. Under the assumption Ae = 0 
formulas (67 ) - (68 )  retain only nonequilibrium specific heats and elastic O-integrals: 

75k2T 3kaT 
At = 3 2 m / 2 ( 2 , 2 ) ,  Ar = 8m$_2(l,1)Cr, 

(77) 

~vt = 3k2T r A~v 3) = 3k2T r3 
8m/-2(l--"-'ql) Cv ' 8m---~A) Cv " 

Thermal conductivity coefficients have been calculated on the basis of both exact formulas of the kinetic 
theory (67 ) - (68 )  and approximate expressions (77). A comparison of the results is given in Table 1. Again, as 
in the case of diatomic gases, good agreement between the two approaches is shown, the maximum discrepancy 
of 1% is found in the rotational thermal conductivity coefficient At. However, the influence of inelastic collision 
integrals on the total thermal conductivity coefficient A, in the expression of the total heat flux (59), does 
not exceed 0.5%. Therefore, approximate formulas (77) give a good accuracy, and inelastic collision integrals 
can be neglected in the calculation of the thermal conductivity in CO/ with strong vibrational excitation. 
Nonequilibrium effects are taken into account in the expressions for the specific heats. It is obvious that the 
assumption Ae = 0 cannot be applied for the calculation of the bulk viscosity and relaxation pressure. 

The following expression is obtained for shear viscosity coefficient: 

5kT 
12, = 8f.2(2,2) . (78) 

The bulk viscosity and relaxation pressure depend upon Ae, and can be divided into two terms: 

r /=  r/r + r/v, prel = Prrel + prVel • (79) 

Finally, the bulk viscosity coefficients can be obtained in the next form: 
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Fig. 6. Thermal conductivity coefficients h.(v 3) , Art, At, at 
(10  - 2  • W / m -  K) as functions o f  T at T3 = 3000 K (curves 
1-4, respectively).  

k T  [ c r  r r3 "x 2 k T  / _r_r3 _ f r e t 3  ~ 2 
r - w  ) ( C a C w - w - a  ) (80) 

~r -~ --~r (~T~1~--"~T~T3 ?Tv -~v \~.u,~W '-'w'v \ c u t ,  w - -  t . w t ,  v / ' = ~ ,..T,-.T3 

The expression obtained for the relaxation pressure is rather complex. Nevertheless, an estimation of  its value 
shows that the contribution of  prel to the pressure tensor is negligible. 

9. Results and discussion 

The transport coefficients for gaseous CO2 have been calculated for various temperatures. In order to validate 
the model, a comparison of  the total equilibrium thermal conductivity coefficient Atot = A+Av(3) with experimental 
values [26,27] is presented in the temperature range 300-1500 K (Fig. 5). The following semi-empirical 
formula fitting the experimental data in this temperature range has been given in Ref. [26]: 

105 Aexp = - 2 4 0 0 +  2.16 x 10 -2 T - 3.244 x 10 -6 T 2 , (81)  

where Aexp is given in calcm -1 s -1 K - ] ,  T in K. The overall uncertainty in h~xp is ±2%. The parameters of  
a Lennard-Jones potential taken from Ref. [28] were used for the calculation of  the elastic collision integrals. 
One observes good agreement between the calculated values of  the thermal conductivity coefficients and their 
experimental values. The mean deviation does not exceed 2.5%. 

The shear viscosity coefficient does not depend on the vibrational temperature, and hence also not on the 
degree of  nonequilibrium. Its comparison with the experimental data given in Ref. [29] for temperatures 
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Table 2 
Shear viscosity coefficient/z, 10 -6  • k g / m .  s, experimental (/aexp [28] ) and calculated (pcatc), tr is the deviation from experiment in % 

T ( K ) /Zexp ,O-calc o" 

300 15.03 15.186 -1 .03792  
400 19.77 19.712 0.293374 
500 24.13 23.841 1.197679 
600 28.1 27.659 1.569395 
700 31.74 31.228 1.613106 
800 35,1 34.595 1.438746 
900 38.23 37.792 1.145697 

1000 41.18 40.843 0.818358 
1100 43.99 43.77 0.500114 
1200 46.69 46.587 0.220604 
1300 49.32 49.308 0.024331 
1400 51.89 51.941 -0 .09828 
1500 54.43 54.497 --0.12309 

300-1300 K is shown in Table 2. Again good agreement is obtained between the calculated values and the 
experimental data. The mean deviation is less than 0.6%. 

Thermal conductivity coefficients for nonequilibrium conditions are presented in Figs. 6-8. In Fig. 6 the 
temperature dependence for each A-coefficient for T3 = 3000 K is shown. All thermal conductivity coefficients 
rise with the temperature. It should be pointed out that for CO2 the contribution of the vibrational degrees of 
freedom to the thermal conductivity is much greater than it is for diatomic gases. Thus, for N2, with moderately 
excited vibrations, the vibrational thermal conductivity coefficient is of the same order as ar and smaller than 
,it. For CO2 the coefficient /~vt exceeds ~-t, and the coefficient )t(~ 3) is close to Ar. 

Fig. 7 gives the temperature dependence of the vibrational thermal conductivity coefficient A(v 3) for different 
values of the vibrational temperature T3. Equilibrium values of this coefficient are also shown. One can see that 
for T3 < T, the values of A(v 3) are less than the corresponding equilibrium ones and at T3 > T the opposite is 
true. The thermal conductivity coefficients A(v 3) and Art are shown as functions of the vibrational temperature T3 
in Fig. 8. B o t h  ,~(v 3) and /~vt increase with T~. Coefficients calculated for the harmonic and anharmonic oscillator 
models are compared. The effect of anharmonicity on ,tvt does not exceed 4-5%, and reaches 10-12% for A~ 3). 

The shear and bulk viscosity coefficients as functions of T for T3 = 3000 K are given in Fig. 9. Both 
the shear and rotational bulk viscosity coefficients increase with temperature. The vibrational bulk viscosity 
coefficient ~Tv is much larger than r/r and/z,  and decreases rapidly with temperature. Such a behaviour arises 
from the temperature dependence of the relaxation times. It is known that at high gas temperatures vibrational 
relaxation becomes more and more rapid, in contrast to rotational relaxation [9,17]. In this context note the 
large values of  r/v compared to those for the other viscosity coefficients. It has been shown for diatomic gases 
[30] that at T ,,~ 500 K the vibrational part of the bulk viscosity far outweighs the rotational part: r/v/r/r ,~ 106. 

Paradoxically, in many experiments on sound absorption it is not noticeable unless quite low frequencies are 
employed. In this case sound absorption is rather difficult to measure. Ultrasonic absorption, which is the 
predominant means for measuring bulk viscosity, reveals only the rotational part of ~7 [30]. However, the 
contribution of the vibrational bulk viscosity to the pressure tensor can be significant. 

10. Conclusions 

Strong excitation of the asymmetric vibrational mode of C02, as simulated by an anharmonic oscillator 
model, leads to a non-Boltzmannian distribution of molecules over the vibrational energy levels. This influences 
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Fig. 8. The thermal conductivity coefficients a(v 3) , ,t~t 
(10 -2 • W/m. K) as functions of 7"3 for T = 1000 K (curves 
1 and 2) and the corresponding coefficients calculated for the 
harmonic oscillator model (curves 3 and 4). 

directly the essentially nonequilibrium specific heats. They differ both from the equilibrium ones and specific 
heats calculated using the harmonic oscillator model. The system of  macroparameters contains the average 
number o f  vibrational quanta in the third mode W3 (or the temperature 7"3 associated with the first vibrational 
level o f  the asymmetric mode),  and the system of  macroscopic equations has to be supplemented by a 
relaxation equation for W3. Transport terms contain additional coefficients, such as bulk viscosity, relaxation 
pressure, and several additional thermal conductivity coefficients. The contribution of  inelastic collision integrals 
to the thermal conductivity o f  CO2 is negligible, nonequilibrium effects can be taken into account through 
nonequilibrium specific heats. The energy storage in the asymmetric mode has no essential effect either on the 
shear and rotational bulk viscosity coefficients or on the thermal conductivity coefficients associated with the gas 
temperature gradient XTT (i.e. At, hr and Art), whereas its impact on the coefficients A(v 3) and r/v is important. 
The effect o f  anharmonicity increases with the temperature, even at equilibrium and increases significantly for 
nonequilibrium conditions. 

Acknowledgement 

The authors wish to acknowledge the support of  the DRET Research Grant 93/81100060 and ESA-ESTEC 
Aerochemistry TRP 9 3 9 7 / 9 1 / N L / F G .  



314 A. Chikhaoui, E.V. Kustova/Chemical Physics 216 (1997) 297-315 

2OO 

150 

J 
t o o  

i ~ v b .  bok ~ t y  

1000 1500 2000 2500 3000 

T,K 

Fig. 9. Shear and bulk viscosity coefficients/~, 7/r and ?/v ( 10 -5 • kg/m. s) as functions of T at 7"3 --- 3000 K. 

References 

[1] E. Eucken, Phys. Z. 14 (1913) 324. 
[2] E.A. Mason and L. Monchick, J. Chem. Phys. 36 (1962) 1622. 
[3] C.S. Wang Chang and G.E. Uhlenbeck, Transport phenomena in polyatomic gases, University of Michigan Research Report CM-681 

(1951). 
[4] J.O. Hirschfeider, J. Chem. Phys. 26 (1957) 282. 
[5] W.E Ahtye, ,I. Chem. Phys. 57 (1972) 5542. 
[6] R.M. Thomson, J. Phys. D: Appl. Phys. II (1978) 2509. 
[7] R. Bran, Transport properties in reactive gas flows, A1AA Paper 88-2655 (1988). 
[8] A.A. Likalter, Prikl. Mekh. Tekn. Fiz. 4 (1976) 3. 
[9] B.E Gordiets, A.I. Osipov and L.A. Shelepin, Kinetic processes in gases and molecular lasers (Gordon and Breach, Amsterdam, 

1988). 
[ 10] V.D. Rusanov, A.A. Fddman and G.V. Sholin, Vibrational kinetics and reactions of polyatomic molecules in nonequilibrium systems, 

in: Nonequilibrium vibrational kinetics, ed. M. CapiteUi (Springer, Berlin, 1986) p. 295. 
[ l 1 ] E.A. Nagniheda and M.A. Rydalevskaya, Problemy physicheskoi gasodinamiki, Tmdy TSAGI, vol. 2177 (1983). 
[ 12] E.A. Nagniheda and T.N. Baburina, Transport processes in polyatomic gases with vibrational relaxation, in: Rarefied gas dynamics, 

ed. A.E. Beylich (VCH, Weinheim, 1991) p. 129. 
[13] P. Borrel and G.E. Millward, J. Chem. Phys. 57 (1972) 462. 
[ 14] O.V. Achasov, N.N. Kudryavtsev, S.S. Novikov, R.I. Soloukhin and N.A. Fomin, Diagnosis of nonequilibrium states in molecular 

lasers (Nauka i Tekhnika, Minsk, 1985). 
[ 15] S.A. Losev, Gasdynamic lasers (Nauka, Moscow, 1977). 
[ 16] G. Herzberg, Infrared and Raman spectra of polyatomic molecules (Van Nostrand, New York, 1951 ). 
[ 17] Ye.V. Stupochenko, S.A. Losev and A.I. Osipov, Relaxation in shock waves (Springer, Berlin, 1967). 
[ 18] S.V. Vallander, E.A. Nagniheda and M.A. Rydalevskaya, Some questions of the kinetic theory of the chemical reacting gas mixture 

(Leningrad Univ. Press, Leningrad, 1977). 
[19] C.E. Treanor, I.W. Rich and R.G. Rehm, J. Chem. Phys. 48 (1968) 1798. 



A. Chikhaoui, E. V. Kustova/ Chemical Physics 216 (1997) 297-315 315 

[20] E.V. Kustova and E.A. Nagnibeda, The influence of non-Boltzmann vibrational distribution on thermal conductivity and viscosity, in: 
Molecular physics and hypersonic flows, ed. M. Capitelli (Kluwer Academic, Dordrecht, 1996) p. 383. 

[21] E.V. Kustova and E.A. Nagnibeda, Chem. Phys. 208 (1996) 313. 
[22] J.H. Ferziger and H.G. Kaper, Mathematical theory of transport processes in gases (North-Holland, Amsterdam, 1972). 
[23] U Waldmann and E. Ttiibenbacher, Z. Naturforsch. 17a (1962) 364. 
[24] J.G. Parker, Phys. Fluids 2 (1959) 449. 
[25] R.N. Schwartz, Z.L Slawsky and K.E Herzfeid, J. Chem. Phys. 20 (1952) 1591. 
[26] G.P. Gupta, S.C. Saxena, Mol. Phys. 19 (1970) 871. 
[27] V. Vesovic, W.A. Wakeham, G.A. Oichowy, LV. Sengers, LT.R. Watson and J. Millat, J. Phys. Chem. Ref. Data 19 (1990) 763. 
[ 28 ] R.J. Kee, J.A. Miller and T.N. Jefferson, CHEMKIN: A general-purpose, problem-independent, transportable, Fortran chemical kinetics 

code package, Sandia National Laboratories Report SAND80-8003 (1980). 
[29] R.D. Trengove and W.A. Wakeham, L Phys. Chem. Ref. Data 16 (1987) 175. 
[30] ER.W. McCourt, J.J.M. Beenakker, W.E. Kthler and I. Kuscer, Nonequilibrium phenomena in polyatomic gases (Clarendon, Oxford, 

1990). 


