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Abstract

Transport properties of multi-component reacting gas mixtures are studied on the basis of the kinetic theory in the case of
strong vibrational and chemical nonequilibrium. Considered are the conditions when quasi-stationary distributions of the
molecules over vibrational levels do not exist and level kinetic approach is developed. The formulas for the viscosity,
diffusion and thermal conductivity coefficients in terms of the nonequilibrium level populations, gas temperature and elastic
collision integrals are derived. The practical algorithm for the calculation of these coefficients is given and applied for the
investigation of the heat transfer behind a plane shock wave. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Kinetic theory; Strong nonequilibrium; State-to-state kinetics; Transport properties; Heat flux

1. Introduction

The theoretical models of transport processes of reacting gas mixtures are needed for the prediction of
flow-field parameters near space crafts, in nozzles, in high enthalpy facilities and in other problems of
aerothermochemistry and nonequilibrium gas dynamics. In particular the influence of chemical-vibrational
nonequilibrium on heat transfer is very important in high temperature and high enthalpy flows.

The transport kinetic theory of reacting flows is based on the asymptotic solution of the generalized
Boltzmann equations. The most commonly used are the one-temperature and multi-temperature approaches
which are based on the quasi-stationary distributions of molecules over vibrational levels: the equilibrium
Boltzmann distribution in the first case and the nonequilibrium multi-temperature distribution in the latter case.
But there exist the conditions when the quasi-stationary distributions over vibrational energy are not valid due to
the strong vibrational-chemical coupling. Actually the experimental data concerning the relaxation times of
different processes in reacting mixtures [1] show that in many cases of practical interest the following relation
between the relaxation times is valid:

Td < Tr < Tyibr < Treact ~ 0’ (1)

where 74, 7., Ty Trea &€ the mean times between the collisions with the trandational, rotational and
vibrational energy transfer and those with chemical reactions, 6 is the macroscopic time. Trandational energy
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distribution is known to equilibrate fast and the rotational relaxation time is of the same order as the
tranglational one and much smaller in comparison to the vibrational and chemica relaxation time. Therefore
processes of trandational and rotational relaxation may be considered as rapid processes and on the contrary
vibrational and chemical relaxation as the slow ones. The mean time of slow processes is comparable with the
macroscopic time and these processes are strongly nonequilibrium. The condition given in (1) provides the
so-called level approach in nonequilibrium gas dynamics which describes the simultaneous processes of the
vibrational and chemical relaxation. In this case the macroscopic conservation equations for mass, momentum
and total energy should be considered together with the equations for level populations of different chemical
species. This model is important for the study of vibrational-chemical coupling in the boundary layer, in the
short relaxation zone behind a shock wave where steady-state vibrational distributions do not establish. Level
approach can give the limits of the validity of the multi-temperature and one-temperature models.

In the recent years the level approach was used by several researches in a study of vibrational-chemical
coupling behind a shock wave [2—7], in expanding flows and nozzles [8,9], in a nonequilibrium boundary layer
near re-entering bodies [10-12] and in a shock layer [13]. The brief review and bibliography of the papers
concerning the vibrational relaxation coupled to reactive processes in flowing systemsis given in Ref. [8]. These
investigations were performed in the frame of the master equations for vibrational level populations in different
flows and the influence of vibrational-chemical coupling on level populations was examined. In these codes the
effect of vibrational-chemical nonequilibrium on transport coefficients was neglected: either non-viscous flows
were considered or very simple models for the transport coefficients were used.

The present paper deals with the study of transport properties of a reacting mixture in the level approach and
the influence of vibrational-chemical coupling on the transport propertiesis considered. Previously this approach
was developed by us in the case of pure vibrationally excited gas[14,15], in the case of two-component mixture
consisted of atoms and dissociating molecules [6] and was applied to the flow behind a shock wave [6]. In the
present paper the transport kinetic theory of multi-component reacting mixtures is developed under the condition
(1). Heat transfer and diffusion are studied in the case of strong vibrational and chemical nonequilibrium. The
practical algorithms for the calculation of the heat conductivity, viscosity and all diffusion coefficients are
given. The results of the calculation of the gas temperature and total heat flux in the relaxation zone behind a
plane shock wave are shown.

2. Zero order distribution functions

We consider a multi-component reacting gas mixture with rapid and slow processes. The kinetic equations
for distribution functions f J-(r,uc,t) for every chemical species c, vibrational i and rotational energy level |
over the velocities u,, the spatial and temporal co-ordinates have a form [16]:

oy, ofy; 1
=—J®+ 33 2
at ¢ ar e (2)

cij cij"

Here J:F, J8 ; are the collision operators of rapid and slow processes, & = 7,/ 74 is the smal parameter, 7.,
74 are the average times between the frequent and rare collisions respectively. The condition (1) provides the
following form of the collision operators in (2):

— 1d s _ ib t
it =3¢+ s =3 + I
where collision integrals J&,, J5;, JuP, Ji= correspond to the elastic collisions and those including

rotational, vibrational energy transfers and chemical reactions respectively. The collision integral Jc‘fijbr describes

the exchange of vibrational energy within every mode and between different modes and also the vibrational-ro-
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tational-translational energy exchange. The collision integral J7* describes the binary collisions with chemical
exchange reactions and collisions with dissociation and recombination. The expressions for all collision integrals
can be found in Refs. [16—20]

For the solution of Eg. (2) the Chapman-Enskog method generalized for reacting mixtures with rapid and
slow processes is used [16,20]. The distribution functions f;;(r,u,t) are expanded in a power series of the
parameter ¢ (& < 1). The peculiarity of this expansion is that the zero order distribution functions are already
nonequilibrium. Actually, the equations for the zero order distribution functions % contain only the integral

cij
operator of rapid processes and have the following form:
J(ij‘j(fw),f(o))+Jgij(f(°),f<°))=0. (3)

The solution of these equations is obtained in Refs. [16,20]. For molecular species it is given by

o _ m, \¥% N m.c; & A
S exp| — -—.
°i (27TkT) " Zzio(m) OP\ T 2k T kT (4)
and for atomic species
m, \3/2 m,.c?
f<o>=(_°) _ MeCe ) 5
o "\ 2mkr) P kT ®)

Here m, is the molecular mass, sf‘ is the statistical weight, n.; is the number density of the molecules of ¢
species at the ith vibrational level, n, is the number density of chemical species, k is the Boltzmann constant,
Cc. = U, — v, v isthe macroscopic gas velocity, T is the gas temperature, Z" is the rotational partition function.
The distribution functions (4), (5) describe the equilibrium Maxwell-Boltzmann distribution over velocities
and rotational energy and nonequilibrium distribution over vibrational energy and chemical species.
The distribution functions Eq. (4) are defined in terms of the macroscopic parameters ng;(r,t), o(r,t), T(r,t)
and are normalized in such a form:

Y [faduc= X [fdu=ng, c=12,...,L,i=01,.L,
j j
meu fg du, = meu f¥du,= (6)

2]( - Tf|

cij

ci 0
j | du,

= 3nkT + pE, + pE, + pE;.

Here n= X n isthe tota number of particles, p =¥ .2, n is the gas density, L is the number of chemical
species, L, isthe number of excited vibrational levels of species c, &° is the vibrational energy of a molecule
of species ¢, counted from the minimum of its potential curve, £¢= —D,, D, isthe energy of dissociation of
molecular species c,

PE(T) = L [&f'fy;dug, pE, = 28 N, pE= Ze ne,

cij

n.=Xx;n,, E and E, are, respectively, the rotational and vibrational energy per unit mass.
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3. The macroscopic equations

The closed system of macroscopic equations for n;, v, T follows from the kinetic equation (2) and contains
the equations of nonequilibrium kinetics and conservation equations of the momentum and total energy. The
equations for level populations are obtained after integration of Eq. (2) over velocities and summation over
rotational levels. Finaly we derive:

dn..

dtc' +nV-v+V-(ngV,) =Ry, c=1,,L,i=01,...,L,, (7)
dv V-P=0 8
_+ . — s

L (8)
du

pE-{—V'q-FP:VD:O. (9)

Here U is the total energy per unit mass:
pU = 3nkT + pE, + pE, + pE;.
Egs. (7) contain the production terms

cij

Rei= L [ 35 du, =R + RE™, (10)
j
and the diffusion velocity V,; of ¢ chemical species at the ith vibrational level:
N Ve = JZ[chcij du,. (11)
P is the tensor of pressure:

P= Z,fmcccccfCij du,, (12)
Cij
g is the heat flux:

q=Zf(m°C5

cij 2

+&f + &l + &% fy; du,. (13)

In the zero approximation @ =0, V% =0, P© = pl, | is the unit tensor, p is the pressure,
RO = ¥ [35 du,
j

Jgf}o) corresponds to the collision operator of slow processes after the substitution of the zero order distribution

function .

The exprons for RYP and RI& are given in Refs. [16,21] in the zero and the first order approximation.
In the zero order approximation R contain the microscopical rate constants of vibrational transitions,
dissociation from each vibrational level and recombination on each vibrational level and also the microscopical
rate constants of exchange reactions depending on vibrational levels of molecules before and after collision. In
the first order approximation the expressions for the rate constants take into account weak deviations from the

Maxwell-Boltzmann distribution over translational -rotational energy and contain the terms proportional to V - v.
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Egs. (7)—(9) describe the flow of a multi-component reacting gas mixture in the case of strong vibrational
and chemical nonequilibrium.

4. First order distribution functions and transport terms

Now we consider the linear integral equations for the first order distribution functions f{? = f{P¢;; which
follow from Eq. (2):

dfc(,ol)
an Naileijax( @) = Jcsulfo)- (14)
Here 14 is the Imearlzed operator of rapid processes:
Lijax( @) = b ffc(loj)fcg% ¢’cij + b — beiy — ¢dk|’)go-cijd,:<',jl d*2 du,. (15)
Nei Nak 1j

Here oyl ;i isthe cross section of the collision of two molecules ¢ and d chemical species at the ith and kth
vibrational and jth and Ith rotational levels leading to the change of trandational and rotational energy, d2 is
the solid angle where the relative velocity after the collision can appear, g is the relative velocity before the
collision, j’, I are the rotational levels after the collision. This integral operator describes the elastic collisions if
=i 1=V

The expression for df® /dt in Eq. (14) is obtained using Eq. (4):

cij

ci ]’

dfc(f’J) m,c2 n m,
=fOl == -3+ |-2=| |c.- VINT+ —c,-d C.C.— 2¢21):Vv
dt U\l 2kt 2 [ kT] [ G ° w( )

mccg 11— p mccf 3 i ’ Vov+ R(col)

3kT pT(Cy+Co) | 2KT 2 | KT | N

ZR(C?)(%kT+ <8J-°i>r+ai°+8°) ) i1

__di MeCe _3 i (16)
pT(Cy + Croy) 2kT % | KT |

Here d,; are the diffusion driving forces for each chemical and vibrational species:
d=V“E)+FE—fﬂﬁ| (17)
ci n n p np,

pe=m.X;ng, n,=n, for atomic species. ¢, and c,, denote the trandational and rotational specific heats at
constant volume:

3k n =

Ctr=?;’ Crot = 57 -

In Eq. (16) the notation [ ;1 = ¢;; — <& )r isintroduced, ({;;): is the averaged value of ¢;; over arotational
spectrum:

Zsjci ijexp( —SjCi/kT)

< i'>r= J : ; .
gJ ZSjCIGXp(—EjCI/kT)
J

Taking into account Eq. (16) the solution of Eq. (14) may be found under the form:

fFO_fOf -d 1B Vv — 1FVv 1G~ (18)
cij cij n cu dk — n cij |-

wm——ZD

cij cij- cij
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The distribution functions fc(llj) contain the gradients of vibrational level populations of all molecular species n;
and number densities of atoms through the diffusion driving forces. The scalar term G;; is connected with slow
processes. nonequilibrium chemical reactions and vibrational relaxation.

Equations for the functions A, B, DJ¥ Fy; and G; follow from Eq. (14) after substituting Eq. (18)
into Eq. (14) and identifying the coefficients at the gradients of the same macroscopic parameters. Finaly we

obtain the linear integral equations for the functions A, B;;, D&%, F,; and G, (c=1,...,L,i=01,...,L
i=01,.):
Nei Mgk 1 : & /
Z nz cudk( A) - éﬂ) 2kT _g E Ce» (19)
dk ;
Nei Nk Pei
ZTlcudk(Dbn)_n_fc(loj)(scbsln_7)cc' b=1,...,L, n=0,l,...,Lc, (20)
dk ci
nCI ndk
% n2 cudk(B) kT cij (C C.— _C l) (21)
Nei Nk 1 (0) 2 p mccg 3 ngi ,
L=z taad F) = F 3kT S opT(ca+Cy) | 2kT 2 kT )] (22)
dk P tr rot r
e N RO Z R(C?)(ng + <8]~Ci W+ et + ac)
G)=—J3O+— f<°> — =
% n Clldk( ) < ! Ng; pT(C" + Crot)
mec2 , [&]
_3 R 23
2kT 2| KT | (23)

One can see that the equations for the functions A;, By, D;‘I'J‘ F.i; contain only the linearized integral
operator of rapid processes whereas the equation for G;; depend on both operar[ors of rapid and slow processes.

For the unity of the solution of integral equations (19)—(23) the following additional constraints on the
functions A = Ay;(c)c., DSs = Dg4(c.)c,, Fyj, Gy; can be obtained from the normalization conditions Eq.

(6):

Ym 1A c2du =0, (24)
cij
mefg?gogfc du,=0, d=1,...,L,k=01,...,L,, (25)
cij
Z[fg?ch”du c=1,...,L,i=01,..., L, (26)
i
foCﬂGCIJdu -0, ¢c=1,...,L,i=01,..., L, (27)
>/ féﬂ’( R [T (28)
cij
foéﬂ’( 2+s°'+g Gy du, = (29)
cij
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Similarly to [22] the additional condition for DJ* should be added to Eq. (25):

¥, P pak_o, (30)
dk P
Eq. (30) is needed because the diffusion driving forces (17) are not linearly independent (X ; d,; = 0) due to the
relations X n,/n=1and X pi/p=1

The first order distribution functions (18) correspond to weak deviation from the equilibrium over velocities
and rotational energy and strong vibrational and chemical nonequilibrium. Substituting (18) into the expression
(12) for the pressure tensor we obtain:

P=(P—Pe)l —2uS— V-l (31)

Here S is the tensor of deformation velocities, u, n are the shear and bulk viscosity coefficients, p,, is the
relaxation pressure;

kT
w=15[BBl n=KI[F.F], p,=KI[FG] (32)
The bracket integral [ A,B] is defined by anaogy with [22] as
Nei Nak
[AB]= ¥ L ([ A BLu+ [ AB]u). (33)
cidk

the partial bracket integrals are introduced as follows:

[ ABloia= ff(o)fég? cij Bcij’)(Acij - Acij')ggci{;L,jl d*2du.duy,

cij
CI ndk jlj 1

[ABlGa= ffc(uoj)fég? cij — Bcij’)( Adgu — Agirr) 90, |dk il d*2du.duy.

ZnC,ndk TG
The bracket integrals contain the cross sections of the most frequent collisions: the elastic collisions and those
leading to the rotational energy exchange.

The additional terms in the pressure tensor such as the relaxation pressure and bulk viscosity appear in this
case due to the inelastic trandational-rotational TR energy transfers in the collisions between molecules of
different vibrational and chemical species.

The first order distribution function provides the following expression for the diffusion velocity of the
molecules of each chemical and vibrational species:

= — ) Dgigkdgx — Dy VINT, (34)
dk

where D4 and D+ are the diffusion and thermal diffusion coefficients for every chemical and vibrational
Species:

1 , 1 .
Dcidk=§[DCI’de]! DTci:%[DCI’A]' (35)
The expression for the total heat flux in the first order approximation has the next form:
q= —XVT=pY Drgdg + 2 (SKT+ (&) + &+ &%)V, (36)
ci ci
where

k
X=+A=2[AA] (37)
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is the coefficient of thermal conductivity. The coefficients A, and A, express thermal conductivity connected
with elastic and inelastic translational -rotational TR energy transfers. From Egs. (34), (36), (17) one can see that
the expressions for the heat flux and diffusion velocity contain not only the gradient of the gas temperature but
also the gradients of al level populations of molecules of the different species and number density of atoms
with corresponding diffusion coefficients which are different for various vibrational and chemical species.

The expressions for V., q reported above differ from those in a multi-component mixture with frozen
chemical reactions [22]. In the latter case the number densities of all chemical species are found from the
conservation equations for number density of chemical species. In our case nonequilibrium level populations n
should be found from the equations of detailed vibrational and chemical kinetics coupled with the macroscopic
conservation equations (8)—(9).

The expressions (34) and (36) differ also from the formulas for the diffusion velocity and heat flux in the
one-temperature and multi-temperature approaches considered by us previously [20]. In the one-temperature
approach the heat flux is defined by the gradients of the gas temperature T and number density of chemical
species n, which are obtained as a solution of the equations of one-temperature chemical kinetics based on the
Boltzmann distribution over vibrational levels with the gas temperature T. In the multi-temperature approach T,
n. and vibrational temperatures of molecular species T® satisfy to the equations of nonequilibrium gas
dynamics in the multi-temperature approach based on the quasi-stationary nonequilibrium multi-temperature
distribution over vibrational levels.

In the case of equilibrium chemical reactions number density of species are the functions of the gas
temperature and may be found from the equations of equilibrium chemical kinetics. The transport coefficientsin
this approach are calculated in Refs. [23—25].

5. The transport coefficients

In this section we derive the expressions for the shear viscosity, thermal conductivity, diffusion and thermal
diffusion coefficients using Egs. (19)—(21) for the functions A;, DJ and B;;. The functions are expanded
into finite series of Sonine and Waldmann-Triibenbacher [26] orthogonal polynomials over reduced translational
and rotational energy correspondingly:

A = — M. Ce a r mccg p(P ic' (38)
el 2KT = cLrp=S/2| opT | KT |’
m.c m.c?
dk _ c™~C dk c~cC
Déii = 2 Xr:dci,r '/)z(m), (39)
B Me | b meCe 40
cij — ZKT(C C.— C )Z C|r%/2 2KkT ( )

To derive the equations for the coefficients a; ,, d3¥,, b, one can substitute the series (38)—(40) into
integral equations (19)—(21) and multiply them by the velocity. After the integration over the velocities and
summation over the rotational, vibrational quantum numbers and chemical species the systems of the linear
algebraic equations are obtained. Thus the system of equations for the expansion coefficients a has the

i Ci,rp
following form:

cidk
Z Z Arr pp’ a‘dk,r’p’
dk r'p

c=1,...,L,i=01,...,

15KT n

T n 6r1 p0+3kT rot,ci8r08p1!

L., r,p=01,. (41)
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Here ¢, o is the dimensionless (divided by the factor k/m,) rotational specific heat of ¢ species at the ith
vibrational level:
m, JES i i
Crot.ci = - g7 0 P B = Zj:fgjc feij duc.

In the case when the rotational and vibrational energy of a molecule are considered independently the specific
heats ¢, .; are equal one to another for any vibrational level: ¢, . = C,y .. The calculations also show that the
coefficients of the expansions (38), (40) for A; and B;; do not depend on the vibrational level in this
particular case. This fact gives an essential simplification of the algebraic equations and the algorithm of their
solution.

In the general case the coefficients of the system (41) are expressed in terms of bracket integrals defined by
(33) and level populations:

A(r:IrdFI)(P yMe md(80d5|k2 2 bl [QP, Qrp]clbl+ ki dk[Qrp Qrp]mdk ) (42)

M. m,c2 &
QP = D pmf 2|
Vsz €32\ S |5 kT

Egs. (41) occur not to be linear independent in the case r=p=20. It follows from the momentum
conservation and the symmetry of the bracket integrals: A, = AP . Taking into account the normalizing
conditions (24) one can derive the additional equation for the coefficients a ,,:

> — a acu 00 = (43)

ci

The system (41) completed by Eq. (43) has a unique solution.
Similarly the equations for the coefficients dZf, can be written:

and

Pci ;
ZZy,i'dkddk, 3kT(5cb6”—7°)8r0, bc=1,...,L,i,l=01,...,L, r=01,., (44)
dk r’
where
i Ny Ny
yrcrdk /mCmd(SCdSikZ © [Q Q' ]Clb|+ o [Q Q' ]Cldk ’ (45)
bl

r mC r) mCC(2)
S )

It is obvious that the bracket integrals %" represent the particular case of the bracket integrals A, at
p = p = 0 due to the normalizing conditions of the Wadmann-Trubenbacher polynomials:
Wi = A5 (46)
Linear independent system can be derived taking into account constraints (25) which have the next form in
terms of coefficients dgf,:
Pi
r—
p

ci

—d¥,=0,d=1,...,L, k=01,..., L. (47)
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The equations for the coefficients b, , are obtained in the form:

ci,r

. 2 ng
Y Y HC b, = ——8,, c=1,...,L,i=01,...,L, r=0.1,.., (48)
dk 1’ ' KT n
where
: i bI i dk
M = g ot = P10 T+ (010 o (49)

@ = Mg (M | (e, 2
2KT 2KT sre
One can see that the coefficients of the linear algebraic equations (41), (44) and (48) are expressed in terms
of partial bracket integrals of the most rapid processes. They depend on the cross sections of the elastic
collisions and the collisions with the rotational energy exchange.
Substituting the expansions (38)—(39) into Egs. (37), (35), (31) and using the normalizing conditions for the

polynomials, one can express the thermal conductivity, diffusion and thermal diffusion coefficients and the
shear viscosity coefficient in terms of the expansion coefficients:

k n

ci

Z__ 10+ 2 = —Ciotci8ion (50)
4k n CI S 2 n rot,ci “*ci,
1 ci
Deigk = %ddk,m (51)
1
Drei= — zaci,OO' (52)
KT N
M=727bci,0' (53)

Cl

One can see that just zero order terms of the expansions appear in the formulas for the diffusion and thermal
diffusion coefficients. However, maintaining only the equations for a o, in the system (41) leads to the zero
values of thermal diffusion coefficients. The simplest way to yield nonzero thermal diffusion is to keep the
terms involving the coefficients a oo, a0y @d &g o, for the determination of Dy [22]. The resulting system
must be solved for a; .

6. The bracket integrals

In the previous section the expressions for all transport coefficients are given in terms of the coefficients of
polynomial expansions (38)—(40). These coefficients should be found from the systems of algebraic equations
(41), (44), (48). The coefficients of these equations depend on the bracket integrals and level populations. In this
section the bracket integrals are considered and the simple formulas for their calculation are presented.

First, we keep only the first non-vanishing terms of the expansions (38)—(40). Also, following [27], all
complex collisions are assumed to be rare and are neglected, i.e. we neglect the collisions in which the internal
states of both colliding molecules change, or in which both internal modes of one of the molecules change in
one collision. Furthermore like in Ref. [27] we consider the internal and translational motions as the
uncorrelated ones. Therefore one can suppose that

(aﬁi — sﬁi)g' = (sti — sfi)g.
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These assumptions alow us to express al bracket integrals as a linear combination of the elastic collision
integrals and the integrals depending on the change of the rotational energy A g% at the inelastic collisions:
Aglidk= aJ-?i + gk — aJ-Ci — g%
It is known [22] that the rotational quantum for gases at ordinary temperatures is much smaller than the relative
kinetic energy of a colliding pair. And in collisions between rotating molecules generally only one or few quanta
of rotational energy are exchanged. Therefore one can ex_pec'g A% to be close to zero. This fact permits us to
suppose that al collision integrals depending on (Aer‘g'tdk) , are much less compared to the elastic collision
integrals. This assumption was Qroved in Refs. [28,29], it was shown that the contribution of the collision
integrals depending on (A £%™)” to the thermal conductivity coefficients does not exceed 1-2%. It should be

rot
noticed that neglecting A £S5 cannot be alowed at the calculation of rotational bulk viscosity because this
coefficient appears only in the case when A g5 = 0.
Finally the rather simple approximate expressions for the bracket integrals and correspondingly for the

coefficients of algebraic equations are obtained:

Ay = 485, (54)
- TBKT X, X
A = = (55)

-
16 b#c cibn/\cibn
n#i

75K2T Xy Xgx

AGIK = — - , c#dori#k (56)
0000 16 AgakAciak
. 75k*T X¢i Xp m,
Al = — —— = 6Ccipn — 5), 57
1000 32 bgc éibn)‘cibn mc + mb( cibn ) ( )
n#i
_ 75k%T X, X m,
ASidk — —atdk  (6Ce—5), c#dori=k (58)
32 AdigkAciak M+ My
Acici _ 75k2T X_gl n Z Xci Xpn %m(z: + 275le3 - 3m% c*ibn + 4mcmb gibn (59)
1o 8 Aci b+#c 2 AdibnAcibn (m,+ mb)2
n#i
4 75K2T Xy Xk m, My ) _ .
Afos = — 6 A 2(5745 —3Bggk— 4Asa), c#dor i#Kk, (60)
cidkAciak (M + my)
. m,m,
Agé)clll = 4X§i mccrot,ci ‘Qéili) +8 Z Xei ancrot,ci mcﬁgéllb%w)’ (61)
b#c c b
n#i
AGSk=0, c+dor ik (62)

All the remaining integrals A, are equal to zero.
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Here the following notations are introduced: X, = n./n is the dimensionless number density of molecules
of ¢ chemical species at the ith vibrational level, A, and Ay, are the following coefficients:

75k (7 mKT)Y?
Ao = —21022)+ (63)
64m, Uci“Qc(i’ )

C
75k (2mm 4 kT)Y?

cidk = 22
128myy w0l 2547

(64)

O.iqx 1S the collision diameter, m., is the reduced mass:
mcmd

m S
4 m,+my
The coefficients A, and A4, have the form similar to the expressions for the heat conductivity coefficients
in a pure gas and in a binary mixture and may be considered as the fictitious heat conductivity coefficients.

The collision integrals 0(:}) are introduced as follows:

I, _
néidnz—(

1/2
_ N2 2r+3 (1)
27Tmcd) j;)exp( g )g @mdkdg’ (65)

c(lr)Jk_ZWf _COSXudk(b g))bdb

Here x.iq(b,g) is the deflection angle, b is the impact parameter.
The functions A4, Bgak» Céax are given by anaogy to [22]:

G-
Al = —ar= 66
cidk ‘-Qc;ld}()x ( )
50§R" — 4058
Bk = , 67
cidk ‘Qéld}()* ( )
a2
x Cl
. , 68
cidk = “Q(;ld}()* ( )
where the reduced collision integrals 2 have such a form:
¢
000+ cidk (69)
(8.
the collision integrals (£2{{4))n.s. are calculated for the hard spheres model:
. KT \Y2 (r+1)! 14 (- 1) -
( Cidk)h.s._ 27Tmcd 2 2(| + 1) Idk' ( )

Hereafter we suppose that the collision diameter o, and deflection angle x,;4(b,g) do not depend on the
vibrational level of the molecule. Therefore the cross sections of the most frequent collisions are independent
from the vibrational state and one can write:

A =Aes A = Aear 257 =00, QiR = 0G", QGR = 0G"",
Aéldk Aéd' Bcxldk Bcd' CC*Idk Ccyd
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In this case the collision integrals (65) and their combinations (66)—(70) do not depend on the number of
vibrational level. Using this simplification the final formulas for the bracket integrals are obtained in the form:

o TBKAT X¢i Xp
Acici Z ‘;' n ' (71)
0000 16 b#c Acb/\cb
n#i
4 75k2T X X
A= — T cxdori#k (72)
16 Acd/\cd
el 75K3T Xei Xpn My (6C2 —5) 73)
1000 T3 = A —mc T m cb )
n#i
75kT X X m
Agidk — ardk ___©  (6C5—5), c+dor ik, 74
1000 32 A;d /\Cd mc + md ( cd ) ( )
el 75k2T x_g Py Xei Xpn  2M2 + 2m2 — 3m2 B, + 4m.m, A, (75)
1100 8 )\c e ZAzb)\cb (mc + mb)z y
n#i
4 75Kk%T X, X m.m
A= —1¢ A‘j' A"k S (% -3By—4AL), cxdori%k, (76)
cdAed (Mg +My)
Adicl — 4y2 0818 Y x. MMy 0aD 77
0011 XCI mcCrot,m c XCI ancrot,m m.+m cbh ( )
b+#c c b
n#i
AG9 =0, c+dori=#k. (78)

It is seen that now in the formulas (71)—(78) the bracket integrals depend on the vibrationa level only through
the level populations of species x.; and not through the collision integrals. For the calculation of Q¢;"-integrals
and functions Ay, By, Cly the existing tables or approximate formulas ([22,30—-32] and others) may be used.

Table 1
Potential parameters for interactions in an (N,,N) mixture

Lennard-Jones potential Repulsive potential
Interaction e/k K 7, A Source V,, eV B, A1 Source
N,-N, 9753 3621 [33] 4157 2573 [35]
N,—-N 82.904 3.459 184.9 2.614 [34]

N-N 714 3.298 [33] 86.0 2.68 [35]
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Similarly the expression for the integral bracket HE % is derived:

2
Hge = 20y ZXaton T ( > ﬂ), (79)
M b+#c ) ( m, + mb) me
n#i
. 2X. X m.m 5
Hodk— - ——a7de__© ¢ 2( —1), c+d,i#Kk, (80)
Meg (Mg +my)° | 3Agq
where
5 (wmKT)Y?
He™ 16 72022 (81)
5 (2mmKT)"?
Hrea = 16 T3 30%2 (82)

are the fictitious viscosity coefficients.

Thus al transport coefficients are expressed in terms of the Q" collision integrals which can be easily
calculated using numerous existing data and in terms of nonequilibrium level populations n.; which should be
found from the equations of nonequilibrium gas dynamics (7)—(9) for different flows.

For the calculation of Q¢;" integrals some assumptions about the character of molecular interaction should
be made. At the moderate gas temperature (T < 1000 K) using the Lennard-Jones interaction potential provides
a good agreement with experimental data. The values of the potential parameters (its well depth €/k and
collision diameter &) are usually found from the fitting of the experimental data for shear viscosity or second
virial coefficient. The calculation of the transport coefficients for different gases shows that the parameters of
the Lennard-Jones potential from Ref. [33] appear to be more precise than those from Ref. [30] and may be
recommended for practical use. With the gas temperature rising using the Lennard-Jones potential for the
caculation of Q%" integrals leads to an underestimation of transport coefficients. At the condition kT /e > 10
we apply a repulswe model of interaction potential V in the form suggested in Ref. [34]:

V= Voexp(—Br),

where r is the distance between the centers of mass of interacting molecules, V, and B are the parameters. The
approximate formulas for 2" given in Ref. [31] with the parameters of repulsive potential taken from Ref.
[35] give a good agreement with experimental data on the transport coefficients in high-temperature gas
mixtures. The set of the potential parameters which we use in the present study for the calculation of transport
coefficients in an (N,,N) mixture is given in Table 1. The parameters of the Lennard-Jones potential for N,—N
interaction are computed using combining rules [22]:
1/2
ON,-N= %(&N2+ &N)’ ENZ—NEI\?Z—N (6N O-l\? 6N0'N) ’ .

It should be noticed that the assumption about the independence of the cross sections of elastic collisions
from the vibrational level reduces essentially the number of independent diffusion and thermal diffusion
coefficients. Substituting the final expressions (71)—(78) for the bracket integrals into the linear agebraic
systems (44), (47) for the coefficients df, , one can found that the coefficients dS, , depend on the vibrational
level only if c=d and i = k. It leads to the different self-diffusion coefficients D for each vibrational level
in the molecular species. On the contrary, if ¢# d or i # k the diffusion coefficients D4, do not depend on i
and k. Consequently, all coefficients D are equal one to another if i#k. (D =Dg, i# k). The
coefficients Dg;gi = Deig = Doy Similarly one can deduce that the thermal diffusion coefficients are also
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independent of the vibrational level and all D; = D;. Taking into account this simplification the expressions
(34) and (36) for the diffusion velocity and totaJ heat flux may be written in such a form:

Vci = DCICI d Dcc Z dck - Z Dcd dd - TcVInT' (83)
k#i d#c
q=—XVT-— pz D1.d, + 2( KT+ (g ) + & + 2°)ng V. (84)
ci
Here
n n
dc=2dci=v(—°)+(—°—&)vmp. (85)
i n n p

Finally in a multi-component mixture under the assumption oy g = Ouqs Xciak = Xcq W€ have the following
system of the diffusion coefficients: the thermal diffusion coefficients for different chemical species Dy, the
multi-component diffusion coefficients of the molecules of ¢ and d chemical species D4, the diffusion
coefficients of the molecules of the same chemical species c at different vibrational levels D,,, and the
self-diffusion coefficients for the molecule of c species at the ith vibrational level D. The number of the
diffusion coefficients in Eqgs. (83), (84) is much less compared to (34)—(36) in the general case taking into
account the dependence of the cross sections on i. Therefore the assumption o4 = 0.q: Xcigk = Xcg JIVES @
noticeable reduction of the computation time. This assumption is usually accepted in the transport kinetic
theory. However the fact that molecules in vibrationally excited states have a larger effective radius than ground
state molecules is well established [36—38]. In particular in Ref. [38] it is indicated that nitrogen molecules with
vibrational quantum number greater than about 38 occur more than 50% larger compared to molecules in the
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Fig. 1. Gas temperature behind a shock wave in (N,, N) mixture calculated in different approaches. My =15, T, = 293 K, p, =100 Pa.
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ground state. But in many cases the population of high vibrational levelsin a gas flow is less than the population
of intermediate and low levels and therefore molecules with high vibrational quantum number do not effect
significantly macroscopic gas parameters and transport properties.

7. Results and discussion

The approach developed above was applied to the calculation of the heat flux in a dissociating (N,—N)
mixture behind a plane shock wave. The results are compared to the ones obtained in the two-temperature and
one-temperature approaches based on the steady-state Boltzmann distributions over vibrational energy. The
one-temperature approach corresponds to thermal equilibrium in a dissociating gas, in this case there exists the
equilibrium Boltzmann distribution over internal energy with the gas temperature. In the two-temperature model
the existence of the nonequilibrium Boltzmann distribution with the vibrational temperature T, for molecular
species due to the dominant resonant VV vibrational energy exchange was assumed. The macroscopic
parameters in the one-temperature and multi-temperature approaches are computed using the code described in
Ref. [39]. In the level approach the system of the macroscopic equations is solved using the Gear method. The
distribution of the molecules over vibrational levels in free stream is assumed to be the Boltzmann one, 20
excited vibrational levels in N, are taken into account. The molecular spectra are simulated as anharmonic
oscillators. The transition probabilities are calculated using the SSH-theory generalized for anharmonic
oscillators [40]. The Treanor-Marrone model [41] is applied for the computation of the probability of
dissociation from each vibrational level. The following conditions in the free stream are considered: T, = 293 K,
Po = 100 Pa, M = 15, n)/n® = 1.
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Fig. 2. Total heat flux g, W/m?, behind a shock wave calculated in different approaches for the conditions of Fig. 1.
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The gas temperature distribution behind a shock wave calculated using three different approach is given in
Fig. 1 as a function of the distance from the shock front x. The curves are cut at x =2 cm before the total
equilibrium is established because at x > 2 cm the gradients of the macroscopic parameters are rather small and
therefore their behaviour is not important for the analysis of the total heat flux. It is seen that in the beginning of
the relaxation zone both two-temperature and one-temperature approaches give an underestimation of the gas
temperature compared to the level approach. With increasing the distance from the shock front the temperatures
calculated on the basis of al three approaches become close to each other.

The total heat flux behind a shock wave calculated for the same free stream conditions in the leve,
multi-temperature and one-temperature approaches is presented in Fig. 2 as a function of x. One can conclude
that the total heat flux decreases approaching to the equilibrium. At x > 1 cm all three approaches give the close
values of g. On the contrary, in the beginning of the relaxation zone there exists an essential discrepancy
between the heat fluxes calculated using different models. The one-temperature approach provides a very strong
peak of the heat flux just behind the shock front. This effect can be explained by the fact that the
one-temperature approach does not describe the process of the vibrational excitation of the molecules just after
the shock. It leads to a more sharp decrease of the gas temperature in the very beginning of the relaxation zone
compared to the two other approaches (see Fig. 1) and therefore to the very high values of the temperature
gradient. The two-temperature approach yields a more smooth behaviour of the macroscopic parameter gradients
and the heat flux but there remains a noticeable distinction between g calculated using the level and
two-temperature approach. Thus in the zone of vibrational excitation where the steady-state vibrational
distributions do not exist the more rigorous level approach should be used for the evaluation of heat transfer in a
reacting gas mixture.

8. Conclusions

The transport kinetic theory of reacting gas mixtures is developed in the case of strong chemical-vibrational
nonequilibrium. The influence of chemical-vibrational coupling on heat transfer is studied. It is shown that the
heat flux in a nonequilibrium reacting gas mixture is determined by the gradients of the gas temperature, number
densities of atomic species and nonequilibrium populations of all vibrational levels of molecular species. The
comparison with the expression for the heat flux derived in the case of multi-component mixture with frozen
chemical reactions and with the one obtained in the one-temperature and multi-temperature approaches is given.
The closed system of the macroscopic equations for noneguilibrium level populations, gas velocity and gas
temperature is obtained. The equations for level populations contain the diffusion velocities for each vibrational
level of molecular species. The formulas for the shear and bulk viscosity, thermal conductivity and diffusion
coefficients different for various vibrational levels are derived. It is shown that in the level approach all
transport coefficients depend on the cross sections of the most frequent collisions: elastic collisions and the ones
leading to the rotational energy change. The simplified algorithm for the calculation of the shear viscosity, heat
conductivity and diffusion coefficients is developed and the final formulas for the transport coefficients are
given in terms of the elastic collision integrals (Q2¢;"-integrals) and nonequilibrium level populations, number
densities of atomic species and gas temperature.

The formulas obtained may be easily inserted into a numerical code for the solution of the Navier-Stokes
equations for reacting gas mixtures with vibrational relaxation coupled to nonequilibrium chemical reactions.
This approach is particularly important in the case of strong vibrational excitation due to recombination,
intensive VV vibrational energy exchange, expansion of the flow or some kind of vibrational energy pumping.

The calculation of heat transfer in a dissociating gas mixture behind a strong shock wave shows a significant
difference between the total heat fluxes computed using the level, two-temperature and one-temperature
approaches. In the beginning of the relaxation zone where the process of vibrational excitation is of the
importance the more detailed level approach should be used. Both one-temperature and two-temperature models
lead to an unlikely rise of the heat flux just behind the shock front.
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