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Abstract

Transport properties of multi-component reacting gas mixtures are studied on the basis of the kinetic theory in the case of
strong vibrational and chemical nonequilibrium. Considered are the conditions when quasi-stationary distributions of the
molecules over vibrational levels do not exist and level kinetic approach is developed. The formulas for the viscosity,
diffusion and thermal conductivity coefficients in terms of the nonequilibrium level populations, gas temperature and elastic
collision integrals are derived. The practical algorithm for the calculation of these coefficients is given and applied for the
investigation of the heat transfer behind a plane shock wave. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theoretical models of transport processes of reacting gas mixtures are needed for the prediction of
flow-field parameters near space crafts, in nozzles, in high enthalpy facilities and in other problems of
aerothermochemistry and nonequilibrium gas dynamics. In particular the influence of chemical-vibrational
nonequilibrium on heat transfer is very important in high temperature and high enthalpy flows.

The transport kinetic theory of reacting flows is based on the asymptotic solution of the generalized
Boltzmann equations. The most commonly used are the one-temperature and multi-temperature approaches
which are based on the quasi-stationary distributions of molecules over vibrational levels: the equilibrium
Boltzmann distribution in the first case and the nonequilibrium multi-temperature distribution in the latter case.
But there exist the conditions when the quasi-stationary distributions over vibrational energy are not valid due to
the strong vibrational-chemical coupling. Actually the experimental data concerning the relaxation times of

w xdifferent processes in reacting mixtures 1 show that in many cases of practical interest the following relation
between the relaxation times is valid:

t -t <t -t ;u , 1Ž .el r vibr react

where t , t , t , t are the mean times between the collisions with the translational, rotational andel r vibr react

vibrational energy transfer and those with chemical reactions, u is the macroscopic time. Translational energy

0301-0104r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0301-0104 98 00092-5



( )E.V. KustoÕa, E.A. NagnibedarChemical Physics 233 1998 57–7558

distribution is known to equilibrate fast and the rotational relaxation time is of the same order as the
translational one and much smaller in comparison to the vibrational and chemical relaxation time. Therefore
processes of translational and rotational relaxation may be considered as rapid processes and on the contrary
vibrational and chemical relaxation as the slow ones. The mean time of slow processes is comparable with the

Ž .macroscopic time and these processes are strongly nonequilibrium. The condition given in 1 provides the
so-called level approach in nonequilibrium gas dynamics which describes the simultaneous processes of the
vibrational and chemical relaxation. In this case the macroscopic conservation equations for mass, momentum
and total energy should be considered together with the equations for level populations of different chemical
species. This model is important for the study of vibrational-chemical coupling in the boundary layer, in the
short relaxation zone behind a shock wave where steady-state vibrational distributions do not establish. Level
approach can give the limits of the validity of the multi-temperature and one-temperature models.

In the recent years the level approach was used by several researches in a study of vibrational-chemical
w x w xcoupling behind a shock wave 2–7 , in expanding flows and nozzles 8,9 , in a nonequilibrium boundary layer

w x w xnear re-entering bodies 10–12 and in a shock layer 13 . The brief review and bibliography of the papers
w xconcerning the vibrational relaxation coupled to reactive processes in flowing systems is given in Ref. 8 . These

investigations were performed in the frame of the master equations for vibrational level populations in different
flows and the influence of vibrational-chemical coupling on level populations was examined. In these codes the
effect of vibrational-chemical nonequilibrium on transport coefficients was neglected: either non-viscous flows
were considered or very simple models for the transport coefficients were used.

The present paper deals with the study of transport properties of a reacting mixture in the level approach and
the influence of vibrational-chemical coupling on the transport properties is considered. Previously this approach

w xwas developed by us in the case of pure vibrationally excited gas 14,15 , in the case of two-component mixture
w x w xconsisted of atoms and dissociating molecules 6 and was applied to the flow behind a shock wave 6 . In the

present paper the transport kinetic theory of multi-component reacting mixtures is developed under the condition
Ž .1 . Heat transfer and diffusion are studied in the case of strong vibrational and chemical nonequilibrium. The
practical algorithms for the calculation of the heat conductivity, viscosity and all diffusion coefficients are
given. The results of the calculation of the gas temperature and total heat flux in the relaxation zone behind a
plane shock wave are shown.

2. Zero order distribution functions

We consider a multi-component reacting gas mixture with rapid and slow processes. The kinetic equations
Ž .for distribution functions f r,u ,t for every chemical species c, vibrational i and rotational energy level jci j c

w xover the velocities u , the spatial and temporal co-ordinates have a form 16 :c

E f E f 1ci j ci j rap slqu s J qJ . 2Ž .c ci j c i jE t E r ´

Here J rap, J sl are the collision operators of rapid and slow processes, ´st rt is the small parameter, t ,ci j c i j rap sl rap
Ž .t are the average times between the frequent and rare collisions respectively. The condition 1 provides thesl

Ž .following form of the collision operators in 2 :

J rap sJ el qJ r , J sl sJ vibr qJ react ,ci j c i j c i j c i j c i j c i j

where collision integrals J el , J r , J vibr, J react correspond to the elastic collisions and those includingci j ci j c i j c i j

rotational, vibrational energy transfers and chemical reactions respectively. The collision integral J vibr describesci j

the exchange of vibrational energy within every mode and between different modes and also the vibrational-ro-
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tational-translational energy exchange. The collision integral J react describes the binary collisions with chemicalci j

exchange reactions and collisions with dissociation and recombination. The expressions for all collision integrals
w xcan be found in Refs. 16–20

Ž .For the solution of Eq. 2 the Chapman-Enskog method generalized for reacting mixtures with rapid and
w x Ž .slow processes is used 16,20 . The distribution functions f r,u ,t are expanded in a power series of theci j c

Ž .parameter ´ ´<1 . The peculiarity of this expansion is that the zero order distribution functions are already
nonequilibrium. Actually, the equations for the zero order distribution functions f Ž0. contain only the integralci j

operator of rapid processes and have the following form:

J el f Ž0. , f Ž0. qJ r f Ž0. , f Ž0. s0. 3Ž .Ž . Ž .ci j c i j

w xThe solution of these equations is obtained in Refs. 16,20 . For molecular species it is given by

3r2 2 cim n m c ´c ci c c jŽ0. cif s s exp y y . 4Ž .ci j j rotž / ž /2p kT 2kT kTZ TŽ .ci

and for atomic species

3r2 2m m cc c cŽ0.f s n exp y . 5Ž .c cž / ž /2p kT 2kT

Here m is the molecular mass, sci is the statistical weight, n is the number density of the molecules of cc j ci

species at the ith vibrational level, n is the number density of chemical species, k is the Boltzmann constant,c

c su yz, z is the macroscopic gas velocity, T is the gas temperature, Z rot is the rotational partition function.c c ci
Ž . Ž .The distribution functions 4 , 5 describe the equilibrium Maxwell-Boltzmann distribution over velocities

and rotational energy and nonequilibrium distribution over vibrational energy and chemical species.
Ž . Ž . Ž . Ž .The distribution functions Eq. 4 are defined in terms of the macroscopic parameters n r,t , z r,t , T r,tci

and are normalized in such a form:

f du s f Ž0. du sn , cs1,2, . . . , L, is0,1,... L ,Ý ÝH Hci j c ci j c ci c
j j

m u f du s m u f Ž0. du srz, 6Ž .Ý ÝH Hc c ci j c c c ci j c
cij cij

m c2 m c2
c c c cc ci c c ci c Ž0.q´ q´ q´ f du s q´ q´ q´ f duÝ ÝH Hi j c i j c i j c i j cž / ž /2 2cij cij

3s nkTqrE qrE qrE .r Õ f2

Here nsÝ n is the total number of particles, rsÝ Ý n is the gas density, L is the number of chemicalci ci cc i ci

species, L is the number of excited vibrational levels of species c, ´ c is the vibrational energy of a moleculec i

of species c, counted from the minimum of its potential curve, ´ c syD , D is the energy of dissociation ofc c

molecular species c,

rE T s ´ ci f du , rE s ´ cn , rE s ´ cn ,Ž . Ý Ý ÝHr j c i j c Õ i c i f c
ccij ci

n sÝ n , E and E are, respectively, the rotational and vibrational energy per unit mass.c i ci r Õ
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3. The macroscopic equations

Ž .The closed system of macroscopic equations for n , z, T follows from the kinetic equation 2 and containsci

the equations of nonequilibrium kinetics and conservation equations of the momentum and total energy. The
Ž .equations for level populations are obtained after integration of Eq. 2 over velocities and summation over

rotational levels. Finally we derive:

dnci
qn =Pzq=P n V sR , cs1,.., L, is0,1, . . . , L , 7Ž . Ž .ci ci ci ci cd t

dz
r q=PPs0, 8Ž .

dt

dU
r q=PqqP:=zs0. 9Ž .

d t

Here U is the total energy per unit mass:
3

rUs nkTqrE qrE qrE .r Õ f2

Ž .Eqs. 7 contain the production terms

R s J sl du sR vibr qR react , 10Ž .ÝHci ci j c ci ci
j

and the diffusion velocity V of c chemical species at the ith vibrational level:ci

n V s c f du . 11Ž .ÝHci ci c ci j c
j

P is the tensor of pressure:

Ps m c c f du , 12Ž .ÝH c c c ci j c
cij

q is the heat flux:

m c2
c c ci c cqs q´ q´ q´ c f du . 13Ž .ÝH j i c ci j cž /2cij

In the zero approximation qŽ0.s0, V Ž0.s0, P Ž0.spI, I is the unit tensor, p is the pressure,ci

RŽ0.s J slŽ0 . du ,ÝHci ci j c
j

J slŽ0 . corresponds to the collision operator of slow processes after the substitution of the zero order distributionci j

function f Ž0..ci j
vibr react w xThe expressions for R and R are given in Refs. 16,21 in the zero and the first order approximation.ci ci

In the zero order approximation RŽ0. contain the microscopical rate constants of vibrational transitions,ci

dissociation from each vibrational level and recombination on each vibrational level and also the microscopical
rate constants of exchange reactions depending on vibrational levels of molecules before and after collision. In
the first order approximation the expressions for the rate constants take into account weak deviations from the
Maxwell-Boltzmann distribution over translational-rotational energy and contain the terms proportional to =Pz.
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Ž . Ž .Eqs. 7 – 9 describe the flow of a multi-component reacting gas mixture in the case of strong vibrational
and chemical nonequilibrium.

4. First order distribution functions and transport terms

Now we consider the linear integral equations for the first order distribution functions f Ž1.s f Ž0.f whichci j c i j c i j
Ž .follow from Eq. 2 :

d f Ž0.
ci j slŽ0 .y n n I f s yJ . 14Ž . Ž .Ý ci dk ci jdk ci jd tdk

Here I is the linearized operator of rapid processes:ci jdk

1 X XŽ0. Ž0. j l 2
X XI f s f f f qf yf yf gs d V du . 15Ž . Ž .Ž .ÝHci jdk ci j dk l ci j dk l ci j dk l cidk , jl d

X Xn nci dk lj l

Here s jX lX

is the cross section of the collision of two molecules c and d chemical species at the ith and k thcidk , jl

vibrational and jth and l th rotational levels leading to the change of translational and rotational energy, d2V is
the solid angle where the relative velocity after the collision can appear, g is the relative velocity before the
collision, jX, lX are the rotational levels after the collision. This integral operator describes the elastic collisions if
js jX, ls lX.

Ž0. Ž . Ž .The expression for d f rd t in Eq. 14 is obtained using Eq. 4 :ci j
XŽ0. 2 cid f m c ´ n mci j c c j c5 1Ž0. 2s f y q c P=lnTq c Pd q c c y c I :=zŽ .ci j c c ci c c c2 3½ ž /d t 2kT kT n kTcir

X2 2 ci Ž0.m c p m c ´ Rc c c c j ci3q y1y y q =Pzq2ž /ž /3kT rT c qc 2kT kT nŽ .tr rot cir

3Ž0. ci c c² : XR kTq ´ q´ q´Ž .Ý rci j i2 ¶2 cim c ´c c jci 3 •y y q . 16Ž .2ž /rT c qc 2kT kT ßŽ .tr rot r

Here d are the diffusion driving forces for each chemical and vibrational species:ci

n n rci ci ci
d s= q y =ln p , 17Ž .ci ž / ž /n n r

r sm Ý n , n sn for atomic species. c and c denote the translational and rotational specific heats atc c i ci ci c tr rot

constant volume:
3k n E Er

c s , c s .tr rot2 r E T
Ž . w xX ² : ² :In Eq. 16 the notation z sz y z is introduced, z is the averaged value of z over a rotationalr ri j r i j i j i j i j

spectrum:

sciz exp y´ cirkTŽ .Ý j i j j
j² :z s .ri j c i c is exp y´ rkTŽ .Ý j j

j

Ž . Ž .Taking into account Eq. 16 the solution of Eq. 14 may be found under the form:
1 1 1 1 1

Ž1. Ž0. dkf s f y A P=lnTy D Pd y B :=zy F =Pzy G . 18Ž .Ýci j c i j c i j c i j dk ci j c i j c i jž /n n n n ndk
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The distribution functions f Ž1. contain the gradients of vibrational level populations of all molecular species nci j ci

and number densities of atoms through the diffusion driving forces. The scalar term G is connected with slowci j

processes: nonequilibrium chemical reactions and vibrational relaxation.
dk Ž . Ž .Equations for the functions A , B , D , F and G follow from Eq. 14 after substituting Eq. 18ci j ci j c i j c i j c i j

Ž .into Eq. 14 and identifying the coefficients at the gradients of the same macroscopic parameters. Finally we
dk Žobtain the linear integral equations for the functions A , B , D , F and G cs1, . . . , L, is0,1, . . . , L ,ci j c i j c i j c i j c i j c

.js0,1,... :
X2 cin n 1 m c ´ci dk c c j5Ž0.I A s f y q c , 19Ž . Ž .Ý ci jdk ci j c22 ž /n 2kT kTndk r

n n 1 rci dk cibn Ž0.I D s f d d y c , bs1, . . . , L, ns0,1, . . . , L , 20Ž . Ž .Ý ci jdk ci j cb in c c2 ž /n rn cidk

n n mci dk c 1Ž0. 2I B s f c c y c I , 21Ž . Ž .Ž .Ý ci jdk ci j c c c32 nkTndk
X2 2 cin n 1 m c p m c ´ci dk c c c c j3Ž0.I F s f y1y y q , 22Ž . Ž .Ý ci jdk ci j 22 ž /ž /n 3kT rT c qc 2kT kTn Ž .tr rotdk r

3Ž0. ci c c² :R kTq ´ q´ q´Ž .Ý rci j i2Ž0.n n 1 Rci dk ci cislŽ0 . Ž0.I G syJ q f yŽ .Ý ci jdk ci j c i j2 n n rT c qcn Ž .� ci tr rotdk

X2 cim c ´c c j3= y q . 23Ž .2ž / /2kT kT
r

One can see that the equations for the functions A , B , D dk , F contain only the linearized integralci j ci j c i j c i j

operator of rapid processes whereas the equation for G depend on both operators of rapid and slow processes.ci j
Ž . Ž .For the unity of the solution of integral equations 19 – 23 the following additional constraints on the

Ž . dk dkŽ .functions A sA c c , D sD c c , F , G can be obtained from the normalization conditions Eq.ci j ci j c c ci j c i j c c ci j c i j
Ž .6 :

m f Ž0.A c2 du s0, 24Ž .Ý Hc ci j ci j c c
cij

m f Ž0.Ddk c2 du s0, ds1, . . . , L, ks0,1, . . . , L , 25Ž .Ý Hc ci j c i j c c d
cij

f Ž0.F du s0, cs1, . . . , L, is0,1, . . . , L , 26Ž .ÝH ci j c i j c c
j

f Ž0.G du s0, cs1, . . . , L, is0,1, . . . , L , 27Ž .ÝH ci j c i j c c
j

m c2
c cŽ0. ci cf q´ q´ F du s0, 28Ž .ÝH ci j j i c i j cž /2cij

m c2
c cŽ0. ci cf q´ q´ G du s0. 29Ž .ÝH ci j j i c i j cž /2cij
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w x dk Ž .Similarly to 22 the additional condition for D should be added to Eq. 25 :ci j

rdk dkD s0. 30Ž .Ý ci j
rdk

Ž . Ž . Ž .Eq. 30 is needed because the diffusion driving forces 17 are not linearly independent Ý d s0 due to theci ci

relations Ý n rns1 and Ý r rrs1.ci ci ci ci
Ž .The first order distribution functions 18 correspond to weak deviation from the equilibrium over velocities

Ž .and rotational energy and strong vibrational and chemical nonequilibrium. Substituting 18 into the expression
Ž .12 for the pressure tensor we obtain:

Ps pyp Iy2mSyh=PzI 31Ž . Ž .rel

Here S is the tensor of deformation velocities, m, h are the shear and bulk viscosity coefficients, p is therel

relaxation pressure:

kT
w x w x w xms B,B , hskT F ,F , p skT F ,G . 32Ž .rel10

w xw xThe bracket integral A , B is defined by analogy with 22 as
n nci dk X XXw x w x w xA , B s A , B q A , B , 33Ž .Ž .Ý cidk cidk2ncidk

the partial bracket integrals are introduced as follows:

1 X XX Ž0. Ž0. j l 2
X Xw xA , B s f f B yB A yA gs d V du du ,Ž . Ž .Ý Hcidk ci j dk l ci j ci j c i j c i j c i dk , jl c d

X X2n nci dk jlj l

1 X XXX Ž0. Ž0. j l 2
X Xw xA , B s f f B yB A yA gs d V du du .Ž .Ž .Ý Hcidk ci j dk l ci j c i j dk l dk l cidk , jl c d

X X2n nci dk jlj l

The bracket integrals contain the cross sections of the most frequent collisions: the elastic collisions and those
leading to the rotational energy exchange.

The additional terms in the pressure tensor such as the relaxation pressure and bulk viscosity appear in this
case due to the inelastic translational-rotational TR energy transfers in the collisions between molecules of
different vibrational and chemical species.

The first order distribution function provides the following expression for the diffusion velocity of the
molecules of each chemical and vibrational species:

V sy D d yD =lnT , 34Ž .Ýci cidk dk T ci
dk

where D and D are the diffusion and thermal diffusion coefficients for every chemical and vibrationalcidk T ci

species:

1 1
ci dk ciw x w xD s D , D , D s D , A . 35Ž .cidk T ci3n 3n

The expression for the total heat flux in the first order approximation has the next form:
X 5 ci c c² :qsyl =Typ D d q kTq ´ q´ q´ n V , 36Ž .Ž .Ý Ý rT ci ci j i c i ci2

ci ci

where

k
X w xl sl ql s A , A 37Ž .t r 3
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is the coefficient of thermal conductivity. The coefficients l and l express thermal conductivity connectedt r
Ž . Ž . Ž .with elastic and inelastic translational-rotational TR energy transfers. From Eqs. 34 , 36 , 17 one can see that

the expressions for the heat flux and diffusion velocity contain not only the gradient of the gas temperature but
also the gradients of all level populations of molecules of the different species and number density of atoms
with corresponding diffusion coefficients which are different for various vibrational and chemical species.

The expressions for V , q reported above differ from those in a multi-component mixture with frozenci
w xchemical reactions 22 . In the latter case the number densities of all chemical species are found from the

conservation equations for number density of chemical species. In our case nonequilibrium level populations nci

should be found from the equations of detailed vibrational and chemical kinetics coupled with the macroscopic
Ž . Ž .conservation equations 8 – 9 .

Ž . Ž .The expressions 34 and 36 differ also from the formulas for the diffusion velocity and heat flux in the
w xone-temperature and multi-temperature approaches considered by us previously 20 . In the one-temperature

approach the heat flux is defined by the gradients of the gas temperature T and number density of chemical
species n which are obtained as a solution of the equations of one-temperature chemical kinetics based on thec

Boltzmann distribution over vibrational levels with the gas temperature T. In the multi-temperature approach T ,
n and vibrational temperatures of molecular species T Žc. satisfy to the equations of nonequilibrium gasc Õ

dynamics in the multi-temperature approach based on the quasi-stationary nonequilibrium multi-temperature
distribution over vibrational levels.

In the case of equilibrium chemical reactions number density of species are the functions of the gas
temperature and may be found from the equations of equilibrium chemical kinetics. The transport coefficients in

w xthis approach are calculated in Refs. 23–25 .

5. The transport coefficients

In this section we derive the expressions for the shear viscosity, thermal conductivity, diffusion and thermal
Ž . Ž . dkdiffusion coefficients using Eqs. 19 – 21 for the functions A , D and B . The functions are expandedci j c i j c i j

w xinto finite series of Sonine and Waldmann-Trubenbacher 26 orthogonal polynomials over reduced translational¨
and rotational energy correspondingly:

m c m c2 ´ ci
c c c c jŽ r . Ž p.A sy a S P , 38Ž .Ýci j c i ,r p 3r2 jž / ž /2kT 2kT kTrp

m c m c2
c c c cdk dk Ž r .D s d S , 39Ž .Ýci j c i ,r 3r2 ž /2kT 2kTr

m 1 m c2
c c c2 Ž r .B s c c y c I b S . 40Ž .Ýci j c c c ci ,r 5r2ž / ž /2kT 3 2kTr

dk Ž . Ž .To derive the equations for the coefficients a , d , b one can substitute the series 38 – 40 intoci,r p ci,r ci,r
Ž . Ž .integral equations 19 – 21 and multiply them by the velocity. After the integration over the velocities and

summation over the rotational, vibrational quantum numbers and chemical species the systems of the linear
algebraic equations are obtained. Thus the system of equations for the expansion coefficients a has theci,r p

following form:

15kT n nci cicidk
X X X XL a s d d q3kT c d d ,Ý Ý r r p p dk ,r p r1 p0 rot ,ci r 0 p1

X X 2 n nr pdk

cs1, . . . , L, is0,1, . . . , L , r , ps0,1,... . 41Ž .c
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Ž .Here c is the dimensionless divided by the factor krm rotational specific heat of c species at the ithrot,ci c

vibrational level:

m E Eci
c r ci cic s , r E s ´ f du .ÝHrot ,ci ci r j c i j ck E T j

In the case when the rotational and vibrational energy of a molecule are considered independently the specific
heats c are equal one to another for any vibrational level: c sc . The calculations also show that therot,ci rot,ci rot,c

Ž . Ž .coefficients of the expansions 38 , 40 for A and B do not depend on the vibrational level in thisci j ci j

particular case. This fact gives an essential simplification of the algebraic equations and the algorithm of their
solution.

Ž .In the general case the coefficients of the system 41 are expressed in terms of bracket integrals defined by
Ž .33 and level populations:

n n n nX X X Xci b l ci dkX XXcidk r p r p r p r p
X X w x w xL s m m d d Q ,Q q Q ,Q , 42Ž .( Ý cib lr r p p c d cd i k cidk2 2ž /n nbl

and

2 cim m c ´c c c jr p Ž r . Ž p.Q s c S P .( c 3r2 jž / ž /2kT 2kT kT

Ž .Eqs. 41 occur not to be linear independent in the case rsps0. It follows from the momentum
conservation and the symmetry of the bracket integrals: L X X

cidk sL X X
dk ci . Taking into account the normalizingr r p p r r p p

Ž .conditions 24 one can derive the additional equation for the coefficients a :ci,r p

rci
a s0. 43Ž .Ý ci ,00

rci

Ž . Ž .The system 41 completed by Eq. 43 has a unique solution.
Similarly the equations for the coefficients ddk can be written:ci,r

rcicidk b l
X Xg d s3kT d d y d , b ,cs1, . . . , L, i ,ls0,1, . . . , L , rs0,1,... , 44Ž .Ý Ý r r dk ,r cb i l r 0 cž /X rrdk

where

n n n nX Xci b l ci dkX XXcidk r r r r
X w x w xg s m m d d Q ,Q q Q ,Q , 45Ž .( Ý cib lr r c d cd i k cidk2 2ž /n nbl

2m m cc c cr Ž r .Q s c S .( c 3r2 ž /2kT 2kT

It is obvious that the bracket integrals g X
cidk represent the particular case of the bracket integrals L X X

cidk atr r r r p p

pspX s0 due to the normalizing conditions of the Waldmann-Trubenbacher polynomials:¨

g X
cidk sL X

cidk 46Ž .r r r r 00

Ž .Linear independent system can be derived taking into account constraints 25 which have the next form in
terms of coefficients ddk :ci,r

rci dkd s0, ds1, . . . , L, ks0,1, . . . , L . 47Ž .Ý ci ,0 d
rci
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The equations for the coefficients b are obtained in the form:ci,r

2 ncicidk
X XH b s d , cs1, . . . , L, is0,1, . . . , L , rs0,1,... , 48Ž .Ý Ý r r dk ,r r 0 c

X kT nrdk

where

2 n n n nX Xci b l ci dkX XXcidk r r r r
X w x w xH s d d Q ,Q q Q ,Q , 49Ž .Ý cib lr r cd i k cidk2 2ž /5kT n nbl

m m c2
c c c 1r Ž r . 2Q s S c c y c I .Ž .5r2 c c c3ž /2kT 2kT

Ž . Ž . Ž .One can see that the coefficients of the linear algebraic equations 41 , 44 and 48 are expressed in terms
of partial bracket integrals of the most rapid processes. They depend on the cross sections of the elastic
collisions and the collisions with the rotational energy exchange.

Ž . Ž . Ž . Ž . Ž .Substituting the expansions 38 – 39 into Eqs. 37 , 35 , 31 and using the normalizing conditions for the
polynomials, one can express the thermal conductivity, diffusion and thermal diffusion coefficients and the
shear viscosity coefficient in terms of the expansion coefficients:

5 n k nci ciX
l s a q c a , 50Ž .Ý Ýci ,10 rot ,ci ci ,014k n 2 nci ci

1
ciD s d , 51Ž .cidk dk ,02n

1
D sy a , 52Ž .T ci ci ,002n

kT nci
ms b . 53Ž .Ý ci ,02 nci

One can see that just zero order terms of the expansions appear in the formulas for the diffusion and thermal
Ž .diffusion coefficients. However, maintaining only the equations for a in the system 41 leads to the zeroci,00

values of thermal diffusion coefficients. The simplest way to yield nonzero thermal diffusion is to keep the
w xterms involving the coefficients a , a and a for the determination of D 22 . The resulting systemci,00 ci,01 ci,01 Tci

must be solved for a .ci,00

6. The bracket integrals

In the previous section the expressions for all transport coefficients are given in terms of the coefficients of
Ž . Ž .polynomial expansions 38 – 40 . These coefficients should be found from the systems of algebraic equations

Ž . Ž . Ž .41 , 44 , 48 . The coefficients of these equations depend on the bracket integrals and level populations. In this
section the bracket integrals are considered and the simple formulas for their calculation are presented.

Ž . Ž . w xFirst, we keep only the first non-vanishing terms of the expansions 38 – 40 . Also, following 27 , all
complex collisions are assumed to be rare and are neglected, i.e. we neglect the collisions in which the internal
states of both colliding molecules change, or in which both internal modes of one of the molecules change in

w xone collision. Furthermore like in Ref. 27 we consider the internal and translational motions as the
uncorrelated ones. Therefore one can suppose that

´ X
ci y´ X

ci gX s ´ ci y´ ci g .Ž . Ž .j l j l
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These assumptions allow us to express all bracket integrals as a linear combination of the elastic collision
integrals and the integrals depending on the change of the rotational energy D´ cidk at the inelastic collisions:rot

D´ cidk s´ X
ci q´ X

dk y´ ci y´ dk .rot j l j l

w xIt is known 22 that the rotational quantum for gases at ordinary temperatures is much smaller than the relative
kinetic energy of a colliding pair. And in collisions between rotating molecules generally only one or few quanta
of rotational energy are exchanged. Therefore one can expect D´ cidk to be close to zero. This fact permits us torot

suppose that all collision integrals depending on D´ cidk 2
, are much less compared to the elastic collisionŽ .rot

w xintegrals. This assumption was proved in Refs. 28,29 , it was shown that the contribution of the collision
integrals depending on D´ cidk 2

to the thermal conductivity coefficients does not exceed 1–2%. It should beŽ .rot

noticed that neglecting D´ cidk cannot be allowed at the calculation of rotational bulk viscosity because thisrot

coefficient appears only in the case when D´ cidk /0.rot

Finally the rather simple approximate expressions for the bracket integrals and correspondingly for the
coefficients of algebraic equations are obtained:

L X X
cidk sL X X

dk ci , 54Ž .r r p p r r p p

75k 2T x xci bnciciL s , 55Ž .Ý0000
)16 A lcibn cibnb/c

n/i

75k 2T x xci dkcidkL sy , c/d or i/k 56Ž .0000
)16 A lcidk cidk

75k 2T x x mci bn bcici )L sy 6C y5 , 57Ž .Ž .Ý1000 cibn
)32 A l m qmcibn cibn c bb/c

n/i

75k 2T x x mci dk ccidk )L s 6C y5 , c/d or i/k 58Ž .Ž .1000 cidk
)32 A l m qmcidk cidk c d

15 252 2 2 2 2 ) )75k T x x x m q m y3m B q4m m Aci ci bn c b b cibn c b cibn2 4ciciL s q 59Ž .Ý1100
) 28 l 2 A l m qmŽ .ci cibn cibn� 0b/c c b

n/i

75k 2T x x m mci dk c d 55cidk ) )L sy y3B y4 A , c/d or i/k , 60Ž .Ž .1100 cidk cidk4
) 216 A l m qmŽ .cidk cidk c d

m mc bcici 2 Ž1 ,1. Ž1 ,1.L s4 x m c V q8 x x c V , 61Ž .Ý0011 ci c rot ,ci ci ci bn rot ,ci cibnm qmc bb/c
n/i

Lcidk s0, c/d or i/k . 62Ž .0011

All the remaining integrals L X X
cidk are equal to zero.r r p p
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Here the following notations are introduced: x sn rn is the dimensionless number density of moleculesci ci

of c chemical species at the ith vibrational level, l and l are the following coefficients:ci cidk

1r275k p m kTŽ .c
l s , 63Ž .ci 2 Ž2 ,2.)64m ps Vc ci ci

1r275k 2p m kTŽ .cd
l s , 64Ž .cidk 2 Ž2 ,2.)128m ps Vcd cidk cidk

s is the collision diameter, m is the reduced mass:cidk cd

m mc d
m s .cd m qmc d

The coefficients l and l have the form similar to the expressions for the heat conductivity coefficientsci cidk

in a pure gas and in a binary mixture and may be considered as the fictitious heat conductivity coefficients.
The collision integrals V Ž l ,r . are introduced as follows:cidk

1r2
`kT

Ž l ,r . 2 2 rq3 Ž l .V s exp yg g QQ d g , 65Ž .Ž .Hcidk cidkž /2p m 0cd

QQ Ž l . s2p 1ycos lx b , g b db.Ž .Ž .Hcidk cidk

Ž .Here x b, g is the deflection angle, b is the impact parameter.cidk
) ) ) w xThe functions A , B , C are given by analogy to 22 :cidk cidk cidk

V Ž2,2.)
cidk

)A s , 66Ž .cidk Ž1 ,1.)Vcidk

5V Ž1,2.) y4V Ž1,3.)
cidk cidk

)B s , 67Ž .cidk Ž1 ,1.)Vcidk

V Ž1,2.)
cidk

)C s , 68Ž .cidk Ž1 ,1.)Vcidk

where the reduced collision integrals V Ž l,r .) have such a form:cidk

V Ž l ,r .
cidkŽ l ,r .)V s 69Ž .cidk Ž l ,r .VŽ .cidk h .s .

the collision integrals V Ž l ,r .
h.s. are calculated for the hard spheres model:Ž .cidk

1r2 lkT rq1 ! 1q y1Ž . Ž .
Ž l ,r . 2V s 1y ps . 70Ž .Ž .cidk cidkh .s . ž /2p m 2 2 lq1Ž .cd

Ž .Hereafter we suppose that the collision diameter s and deflection angle x b, g do not depend on thecidk cidk

vibrational level of the molecule. Therefore the cross sections of the most frequent collisions are independent
from the vibrational state and one can write:

l sl , l sl , V Ž l ,r .sV Ž l ,r . , V Ž l ,r .sV Ž l ,r . , V Ž l ,r .) sV Ž l ,r .) ,ci c cidk cd ci c cidk cd cidk cd

A) sA) , B) sB) , C ) sC ) .cidk cd cidk cd cidk cd
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Ž . Ž . Ž .In this case the collision integrals 65 and their combinations 66 – 70 do not depend on the number of
vibrational level. Using this simplification the final formulas for the bracket integrals are obtained in the form:

75k 2T x xci bnciciL s , 71Ž .Ý0000
)16 A lcb cbb/c

n/i

75k 2T x xci dkcidkL sy , c/d or i/k , 72Ž .0000
)16 A lcd cd

75k 2T x x mci bn bcici )L sy 6C y5 , 73Ž .Ž .Ý1000 cb
)32 A l m qmcb cb c bb/c

n/i

75k 2T x x mci dk ccidk )L s 6C y5 , c/d or i/k , 74Ž .Ž .1000 cd
)32 A l m qmcd cd c d

15 252 2 2 2 2 ) )75k T x x x m q m y3m B q4m m Aci ci bn c b b cb c b cb2 4ciciL s q , 75Ž .Ý1100
) 28 l 2 A l m qmŽ .c cb cb� 0b/c c b

n/i

75k 2T x x m mci dk c d 55cidk ) )L sy y3B y4 A , c/d or i/k , 76Ž .Ž .1100 cd cd4
) 216 A l m qmŽ .cd cd c d

m mc bcici 2 Ž1 ,1. Ž1 ,1.L s4 x m c V q8 x x c V , 77Ž .Ý0011 ci c rot ,ci c ci bn rot ,ci cbm qmc bb/c
n/i

Lcidk s0, c/d or i/k . 78Ž .0011

Ž . Ž .It is seen that now in the formulas 71 – 78 the bracket integrals depend on the vibrational level only through
the level populations of species x and not through the collision integrals. For the calculation of V Ž l ,r .-integralsci cd

) ) ) Žw x .and functions A , B , C the existing tables or approximate formulas 22,30–32 and others may be used.cd cd cd

Table 1
Ž .Potential parameters for interactions in an N ,N mixture2

Lennard-Jones potential Repulsive potential
y1˚ ˚Interaction erk, K s , A Source V , eV b , A Source0

w x w xN –N 97.53 3.621 33 415.7 2.573 352 2
w xN –N 82.904 3.459 184.9 2.614 342

w x w xN–N 71.4 3.298 33 86.0 2.68 35
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Similarly the expression for the integral bracket H cidk is derived:00

x 2 2 x x m m 5 mci ci bn c b bciciH s q q , 79Ž .Ý00
)2 ž /m m 3 A mm qmŽ .c cb cb cb/c c b

n/i

2 x x m m 5ci dk c dcidkH sy y1 , c/d , i/k , 80Ž .00
)2 ž /m 3 Am qmŽ .cd cdc d

where

1r25 p m kTŽ .c
m s , 81Ž .c 2 Ž2 ,2.)16 ps Vc c

1r25 2p m kTŽ .cd
m s , 82Ž .cd 2 Ž2 ,2.)16 ps Vcd cd

are the fictitious viscosity coefficients.
Thus all transport coefficients are expressed in terms of the V Ž l ,r . collision integrals which can be easilycd

calculated using numerous existing data and in terms of nonequilibrium level populations n which should beci
Ž . Ž .found from the equations of nonequilibrium gas dynamics 7 – 9 for different flows.

For the calculation of V Ž l ,r . integrals some assumptions about the character of molecular interaction shouldcd
Ž .be made. At the moderate gas temperature T-1000 K using the Lennard-Jones interaction potential provides

Ža good agreement with experimental data. The values of the potential parameters its well depth erk and
.collision diameter s are usually found from the fitting of the experimental data for shear viscosity or second

virial coefficient. The calculation of the transport coefficients for different gases shows that the parameters of
w x w xthe Lennard-Jones potential from Ref. 33 appear to be more precise than those from Ref. 30 and may be

recommended for practical use. With the gas temperature rising using the Lennard-Jones potential for the
calculation of V Ž l ,r . integrals leads to an underestimation of transport coefficients. At the condition kTre)10cd

w xwe apply a repulsive model of interaction potential V in the form suggested in Ref. 34 :

VsV exp yb r ,Ž .0

where r is the distance between the centers of mass of interacting molecules, V and b are the parameters. The0
Ž l ,r . w xapproximate formulas for V given in Ref. 31 with the parameters of repulsive potential taken from Ref.cd

w x35 give a good agreement with experimental data on the transport coefficients in high-temperature gas
mixtures. The set of the potential parameters which we use in the present study for the calculation of transport

Ž .coefficients in an N ,N mixture is given in Table 1. The parameters of the Lennard-Jones potential for N –N2 2
w xinteraction are computed using combining rules 22 :

1r2
1 6 6 6s s s qs , e s s e s e s .Ž . ž /N yN N N N yN N yN N N N N22 2 2 2 2 2

It should be noticed that the assumption about the independence of the cross sections of elastic collisions
from the vibrational level reduces essentially the number of independent diffusion and thermal diffusion

Ž . Ž .coefficients. Substituting the final expressions 71 – 78 for the bracket integrals into the linear algebraic
Ž . Ž . ci cisystems 44 , 47 for the coefficients d one can found that the coefficients d depend on the vibrationaldk ,r dk ,r

level only if csd and isk. It leads to the different self-diffusion coefficients D for each vibrational levelcici

in the molecular species. On the contrary, if c/d or i/k the diffusion coefficients D do not depend on icidk
Ž .and k. Consequently, all coefficients D are equal one to another if i/k. D sD , i/k . Thecick cick cc

coefficients D sD sD . Similarly one can deduce that the thermal diffusion coefficients are alsocidi cidk cd
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independent of the vibrational level and all D sD . Taking into account this simplification the expressionsT Tci c

Ž . Ž .34 and 36 for the diffusion velocity and total heat flux may be written in such a form:

V syD d yD d y D d yD =lnT , 83Ž .Ý Ýci cici ci cc ck cd d T c
k/i d/c

X 5 ci c c² :qsyl =Typ D d q kTq ´ q´ q´ n V . 84Ž .Ž .Ý Ý rT c c j i ci ci2
c ci

Here

n n rc c c
d s d s= q y =ln p. 85Ž .Ýc ci ž / ž /n n ri

Finally in a multi-component mixture under the assumption s ss , x sx we have the followingcidk cd cidk cd

system of the diffusion coefficients: the thermal diffusion coefficients for different chemical species D , theTc

multi-component diffusion coefficients of the molecules of c and d chemical species D , the diffusioncd

coefficients of the molecules of the same chemical species c at different vibrational levels D , and thecc

self-diffusion coefficients for the molecule of c species at the ith vibrational level D . The number of thecici
Ž . Ž . Ž . Ž .diffusion coefficients in Eqs. 83 , 84 is much less compared to 34 – 36 in the general case taking into

account the dependence of the cross sections on i. Therefore the assumption s ss , x sx gives acidk cd cidk cd

noticeable reduction of the computation time. This assumption is usually accepted in the transport kinetic
theory. However the fact that molecules in vibrationally excited states have a larger effective radius than ground

w x w xstate molecules is well established 36–38 . In particular in Ref. 38 it is indicated that nitrogen molecules with
vibrational quantum number greater than about 38 occur more than 50% larger compared to molecules in the

Ž .Fig. 1. Gas temperature behind a shock wave in N , N mixture calculated in different approaches. M s15, T s293 K, p s100 Pa.2 0 0 0
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ground state. But in many cases the population of high vibrational levels in a gas flow is less than the population
of intermediate and low levels and therefore molecules with high vibrational quantum number do not effect
significantly macroscopic gas parameters and transport properties.

7. Results and discussion

Ž .The approach developed above was applied to the calculation of the heat flux in a dissociating N –N2

mixture behind a plane shock wave. The results are compared to the ones obtained in the two-temperature and
one-temperature approaches based on the steady-state Boltzmann distributions over vibrational energy. The
one-temperature approach corresponds to thermal equilibrium in a dissociating gas, in this case there exists the
equilibrium Boltzmann distribution over internal energy with the gas temperature. In the two-temperature model
the existence of the nonequilibrium Boltzmann distribution with the vibrational temperature T for molecularÕ

species due to the dominant resonant VV vibrational energy exchange was assumed. The macroscopic
parameters in the one-temperature and multi-temperature approaches are computed using the code described in

w xRef. 39 . In the level approach the system of the macroscopic equations is solved using the Gear method. The
distribution of the molecules over vibrational levels in free stream is assumed to be the Boltzmann one, 20
excited vibrational levels in N are taken into account. The molecular spectra are simulated as anharmonic2

oscillators. The transition probabilities are calculated using the SSH-theory generalized for anharmonic
w x w xoscillators 40 . The Treanor-Marrone model 41 is applied for the computation of the probability of

dissociation from each vibrational level. The following conditions in the free stream are considered: T s293 K,0

p s100 Pa, M s15, nŽ0.rnŽ0.s1.0 0 N2

Fig. 2. Total heat flux q, Wrm2, behind a shock wave calculated in different approaches for the conditions of Fig. 1.
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The gas temperature distribution behind a shock wave calculated using three different approach is given in
Fig. 1 as a function of the distance from the shock front x. The curves are cut at xs2 cm before the total
equilibrium is established because at x)2 cm the gradients of the macroscopic parameters are rather small and
therefore their behaviour is not important for the analysis of the total heat flux. It is seen that in the beginning of
the relaxation zone both two-temperature and one-temperature approaches give an underestimation of the gas
temperature compared to the level approach. With increasing the distance from the shock front the temperatures
calculated on the basis of all three approaches become close to each other.

The total heat flux behind a shock wave calculated for the same free stream conditions in the level,
multi-temperature and one-temperature approaches is presented in Fig. 2 as a function of x. One can conclude
that the total heat flux decreases approaching to the equilibrium. At x)1 cm all three approaches give the close
values of q. On the contrary, in the beginning of the relaxation zone there exists an essential discrepancy
between the heat fluxes calculated using different models. The one-temperature approach provides a very strong
peak of the heat flux just behind the shock front. This effect can be explained by the fact that the
one-temperature approach does not describe the process of the vibrational excitation of the molecules just after
the shock. It leads to a more sharp decrease of the gas temperature in the very beginning of the relaxation zone

Ž .compared to the two other approaches see Fig. 1 and therefore to the very high values of the temperature
gradient. The two-temperature approach yields a more smooth behaviour of the macroscopic parameter gradients
and the heat flux but there remains a noticeable distinction between q calculated using the level and
two-temperature approach. Thus in the zone of vibrational excitation where the steady-state vibrational
distributions do not exist the more rigorous level approach should be used for the evaluation of heat transfer in a
reacting gas mixture.

8. Conclusions

The transport kinetic theory of reacting gas mixtures is developed in the case of strong chemical-vibrational
nonequilibrium. The influence of chemical-vibrational coupling on heat transfer is studied. It is shown that the
heat flux in a nonequilibrium reacting gas mixture is determined by the gradients of the gas temperature, number
densities of atomic species and nonequilibrium populations of all vibrational levels of molecular species. The
comparison with the expression for the heat flux derived in the case of multi-component mixture with frozen
chemical reactions and with the one obtained in the one-temperature and multi-temperature approaches is given.
The closed system of the macroscopic equations for nonequilibrium level populations, gas velocity and gas
temperature is obtained. The equations for level populations contain the diffusion velocities for each vibrational
level of molecular species. The formulas for the shear and bulk viscosity, thermal conductivity and diffusion
coefficients different for various vibrational levels are derived. It is shown that in the level approach all
transport coefficients depend on the cross sections of the most frequent collisions: elastic collisions and the ones
leading to the rotational energy change. The simplified algorithm for the calculation of the shear viscosity, heat
conductivity and diffusion coefficients is developed and the final formulas for the transport coefficients are

Ž Ž l ,r . .given in terms of the elastic collision integrals V -integrals and nonequilibrium level populations, numbercd

densities of atomic species and gas temperature.
The formulas obtained may be easily inserted into a numerical code for the solution of the Navier-Stokes

equations for reacting gas mixtures with vibrational relaxation coupled to nonequilibrium chemical reactions.
This approach is particularly important in the case of strong vibrational excitation due to recombination,
intensive VV vibrational energy exchange, expansion of the flow or some kind of vibrational energy pumping.

The calculation of heat transfer in a dissociating gas mixture behind a strong shock wave shows a significant
difference between the total heat fluxes computed using the level, two-temperature and one-temperature
approaches. In the beginning of the relaxation zone where the process of vibrational excitation is of the
importance the more detailed level approach should be used. Both one-temperature and two-temperature models
lead to an unlikely rise of the heat flux just behind the shock front.
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