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Abstract

The paper studies the strongly nonequilibrium vibrational and chemical kinetics in a reacting gas flow in the state-to-state
approach. Considered are exchange reactions, dissociation and recombination. The algorithms for calculation of reaction rate
coefficients, depending on vibrational levels of components are developed on the basis of the kinetic theory. Formulas for
reaction rate coefficients are obtained taking into account non-maxwellian velocity distributions. © 1999 Elsevier Science

B.V. All rights reserved.

1. Introduction

The influence of chemical reactions on the molec-
ular distributions and gas flow parameters is of great
importance in many problems of aerothermodynam-
ics, chemical technology and other fields of science
and applications. This subject has been investigated
on the basis of the kinetic theory by many authors
starting from Refs. [1,2]. The nonequilibrium contri-
butions to the rates of chemical reactions were stud-
ied in Refs. [3,4], later this problem was considered
by several authors using different models for vibra-
tional distributions. The mgjority of the models are
based on the weakly nonequilibrium one-temperature
distribution or on the quasi-stationary multi-tempera-
ture distributions over vibrationa levels. In recent
years the necessity of the detailed multi-level mod-
elling of strongly nonequilibrium flows has been
understood. The approximate solution of the Boltz-
mann equation in the state-to-state approach has
been obtained in Ref. [5] with generalized
Chapman-Enskog method and was used for the in-
vestigation of strongly nonequilibrium transport

properties in various gas flows. behind shock waves
[6,7], in a hypersonic boundary layer [8,9], in a
nozzle expansion [10]. The nonequilibrium non-
Arrhenius dissociation rates have been found in Refs.
[11,12], using the state-to-state vibrational level pop-
ulations with the Maxwell distributions over veloci-
ties. These rates correspond to the zero order gener-
alized Chapman-Enskog solution. However the de-
velopment of the Navier-Stokes computing codes for
viscous heat conductive gas flows with strong vibra-
tional and chemical nonequilibrium requires the sim-
ulation of the state-to-state rates of vibrational and
chemical transitions in the first order non-maxwel-
lian approximation. The first steps in this direction
were done in Refs. [13,14], for a one-component
vibrationally excited gas. Non-maxwellian effects on
dissociation rates were considered in Ref. [15] in the
case of a weak deviation from the equilibrium over
vibrational energy.

The present paper deals with the simulation of the
state-to-state reaction rates under the conditions of
strong both vibrational and chemical nonequilibrium.
The Navier-Stokes equations are coupled with the
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equations for the vibrational level populations for
molecular species. These equations contain the first
order rates of vibrational energy transitions and
chemical reactions depending on the vibrational lev-
els of colliding molecules which, as well as the
transport terms, can be found using the distribution
functions over velocities and internal energies. We
use the distribution functions derived in Ref. [5] in
the state-to-state approximation and develop the al-
gorithms for the calculation of the zero order and
first order rates of vibrational energy transitions,
exchange reactions and dissociation.

2. Macroscopic equations

We consider a nonequilibrium reactive flow of a
gas mixture with internal modes and chemical reac-
tions. In the state-to-state approximation the closed
set of the equations for the nonequilibrium flow
parameters are the equations for the vibrational level
populations of molecular species and number densi-
ties of atomic species, coupled with the conservation
equations for the momentum and total energy:

dng

dt V+V (nCI CI)
c=1,.,L,i=01,..., L, (1)
dv

— +V-P=0, 2
[ (2
du
pa-’rV'quP:Vv:O. (3)
Here ng is the population of the ith level of c

species (for atomic species n; =n.), p, v are the
gas density and macroscopic velocity, L is the num-
ber of chemical species, L, is the number of excited
vibrational levels of species ¢, U is the total energy
per unit mass:

pU = 3nkT + pE, + pE, + pE;.

Here n= X n, isthetota number of particles, k is
the Boltzmann constant, T is the gas temperature,

PE(T) = Z[ i jdug, pE, = Y eing,

cij ci

=Y en,,
C

E, and E, are, respectively, the rotational and vibra-

tional energy per unit mass. Here sti is the rota-
tional energy of a molecule of species ¢ at the ith
vibrational level, f;; =f;;(r,u.,t) isthe distribution
function for every chemical species c, vibrationa i
and rotational energy level j over the velocities ug,
the spatial and temporal co-ordinates, & is the
vibrational energy of amolecule of species ¢, counted

from the minimum of its potential curve, = —D,,
D, isthe energy of dissociation of molecular species
ne=Xng.

Egs. (1)—(3) contain the transport terms: the diffu-
sion velocities of ¢ species at the ith level V,, the
pressure tensor  and the total energy flux g, and the
production terms R;. The expressions for the trans-
port properties are given in Ref. [5]. The right hand
sidesof Egs. (1) R,; describe the change of molecules
of ¢ species at ith level due to the collisions and are
expressed in terms of the collision integrals for slow
processes:

Re= Y [35;du,= Zf 34+ ) dug
J

— R+ R, (4)

The collision integrals J" and J{7" corresponding
to the collisions with vibrational energy transitions
and chemical reactions can be found in Refs. [2,16—
18]. For diatomic molecules JY" has the following

Cij
form:

d

vibr _ '
qu E f ci'j’ fdk’l’ d

dli’j’ K'I’ Ser

fcij fde
X go cc;, J|,JIT<,I|, dZ‘Q dud ’ (5)

where s , and s are the statistical weight factors
and o, !kl is the cross section of the collision
leading to the vibrational energy change for the
molecules of chemical species ¢ and d, respectively
at the ith and kth vibrational levels and jth and Ith
rotational ones; i’, |/, k', I’ are the labels of the
energy levels after collision; g=u,— uy istherela
tive velocity, and d2 is the solid angle referring to
the relative velocity after collision. Theintegral J;7
may be split into parts corresponding to collisions
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with chemical exchange reactions and collisions with
dissociation and recombination:

VS TR S TH (6)
202 _ S| skl memy \°
‘qu Z f ci'j’ d KI'' ¢ od
ded'Ki’j’KI ”3< my My
cu dkl)g c(c:JduklllkI dzﬂdud’ (7)

where 0,597 is the cross section of the collision
with a bimolecular reaction. The expression for J3,” 3
in a mixture of diatomic molecules and atoms can be

written in the form:

3
ffhs( - ) —fcij)
Mg My,

X go % dugdug dug duy, (8

chues Z/fdkl

where g% is the cross section for dissociation of
the molecule of cth species at the ith and jth
vibrational and rotational levels in a collision with
the molecule of dth species; ¢/, f' are the atomic
species of dissociation products, u,, uy and ug, Uy,
U, are the velocities of particles before and after
collision respectively. Usudly it is supposed that the
dissociation cross section does not depend on the
internal energy levels of the partner and that these
levels do not change in the result of reaction. Here-
after we use this assumption.

The transport and production termsin Egs. (1)—(3)
are defined by the distribution functions. Previously
we investigated the transport terms in these equa-
tions using the distribution functions found by the
generalized Chapman-Enskog method in the state-
to-state approach [5]. In the present paper we use this
method and consider the production termsin Egs. (1)
in the zero and first order approximation.

The distribution functions in the generaized
Chapman-Enskog method [5] are found as a power
series over a small parameter £ equal to the ratio of
the mean times of rapid and slow processes:
fo, =f +eff + .. (9)

cij cij

The zero order distribution functions are given by:

O ( Me )3/2 ci_ Mo _met g
ol =\ 2mkT JZ“"(T) 2kT KT

(10)

where m, is the molecular mass, Z{' is the rota
tional partition function, ¢, = u. — v is the peculiar
velocity. The first order distribution functions take

the form f ;=) + &£}, where
D — ©) 1 dk
fcu CIJ¢CI] fcu n CIJ VlnT_ﬁZDcu
dk
1 1 1
(11)

dgy. are the diffusion driving forces. The functions
A By, D&, Fy; and G; are found from the
linear integral equations given in Ref. [5]. These
equations contain the linearized operator of rapid
processes. elastic collisions and the ones leading to
the RT exchange. For the unity of solution of the
integral equations the additional constraints on the
functions A}, B;;, D&, F.; and G, are derived
from normalization conditions for the distribution
functions. These constraints are obtained in Ref. [5].

3. Production terms

The expressions for the production terms R in
Egs. (1) are obtained substituting Eqg. (9) into Eq.
(4). Restricting our consideration to the first order
terms we obtain:

vibr _
Rci - Z (nCI ndk Pcdl 'K
dki'k’

262 _ cdik cdik
RZZ2= ) (n ¢irNar Péatie — Nei Nak Peaik ),
dkcd'i'k

— N Ny Pédi)’ (12)

(13)

R:~°= ank(n Ny P, ak —
dk

naPI%).  (14)
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where the rate coefficients Pl,, PSA'¥, PS

h rec, dk?
P&« correspond to the vibrational energy transfers:
Aci + Ag @ Agir + Ay (15)
exchange reactions:

A+ Agc o Agir + Agie (16)
and dissociation—recombination reactions:
A+ Ay e Ag + Ap + Ay (17)

We would like to note that Eq. (15) describes VT(TV)
exchanges when k' = k or when the particle A, isan
atom, if c=d Eq. (15) corresponds to the VWV ex-
change between the molecules of the same chemical
species, and for ¢+ d Eq. (15) describes the VWV’
exchange between different chemical species. Also,
in reaction Eq. (16) the partner A, may be molecule
or atom. In the last case

A+ A e A+ Ay (18)
For the vibrational energy transitions we have:
ook _ o (1R
K= + it
cdik j|j’|"[ N Ny ( 8(¢CIJ ¢dkl))
X oyl il d¥2 duydu,. (19)

Substituting Eg. (11) to Eqg. (19) and taking into
account the vanishing integrals from the odd func-
tion, one can see that P!¥, depend only on the
functions F;; and G;; involved in ¢;;, and may be
written in the following form [13,17]:
Pl = Pl ”(T)
+ &( Pl (N T) + V- 0P (ng, . T)).
(20)

In this expression

. 477 m, 3/2 Mg g*
pIKO) _ (_°d) exp| — —
cdik Zé?tzé?(t 2 kT j%"/‘ P 2kT

g_ci + gldk
XSJC'SdKEXp(_ l KT gs&cln;li(ujlllldgv
(21)
where my, is the reduced mass, 6.0%Ji" is the

integral cross section of the inelastic collisions:

O-CIdli(kljll (g) = E[(Tcldli(klﬂl (g,!)) dZ\Q dZ\Q’.

The terms PLE®, PIK@ are given by:

e f&faw
Pa = 2 (Gaij + Gyi)
it NeiNak
X gogylfl d¥2duydu, (22)
EPRINSPL [ p
dik” = ij + Fa
« v’ Neing s !
xg(TCIC;JI,]If(,lly dZQ dud dUC. (23)

The rate coefficients P!}(® are defined by the
Maxwell-Boltzmann distribution over velocities and
rotational energies whereas Pl¥™ and PSP are
determined by the weak deviations from this distri-
bution.

Similarly one can obtain the expressions for the
remaining rate coefficients:

— 0
Py = PR(T) + &( PG (nei.T)
+V-vP3(n, ,T)), (24)
where P, at y= 1,23 denote PSS, P 4 and
P, respectively.
In so doing we can write for exchange reactions:

3/2
pedikO) _ am ( Meg )
cdik Z0'700\ 2 KT

M9\
X Zfexp(_ dg )S]usdk

i 2kT

SjCI + 8|dk

kT

B 3 KT
90cqikj dg,

X exp

(25)

ORI
cij "dkl

ATk _
P <® = (Gaj + Gyr)
jlj/lr nci ndk

ngcgfijllzlj/k,ll d*2 dugydu,, (26)
918
AR
Ptk <@ = Zf (Feij + Faw)
il NeiNak

X go g diK" 0?0 duy du,, (27)
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and for recombination-dissociation:

3/2
(mymg my) /

PCi(O) _ PCi(O) _
(2mkT)¥?

rec,dk — "rec,d

m. Uz + my uZ + myu’?
2KT

x Zfexp(—
j
X Gglg(Ug,Up,Uy) dug dug duy, (28)

~cij cij ’
O'rec,ld_fa-recfd( uc”uf’vudvucvud)ducdudv

fOFOF0)

~ dki
Peak= 2 | ————(Gx + Gy + Gyy)
’ T nengng

X 081 du, dug duydu.dug, (29)

rec,d
w11
i _
PeZi= 2 (Fe +F+ Gyy)
7/ nengng,

X all du,dug du,du.dug, (30)

ec,d

3/2
pge0 = pg0= 27 (T )
ci, ci, t
zot\ 277 kT

Mgy g? i ngi
X JZfeXp(_ 2KT )S‘ eXp(_ﬁ
Xg%% dg, (31)
&C(Ijzssd - fo-c?;ssd( Ug,Ugp 'u’d'uc'ud)dud dug du,d’

0)£ (O
(91

Nei Nk

(Gaij + Gyyi)

diss(1)
PITO - X |
il

X o8 du.dug dug dug, duy, (32)

fOF0)

diss(2) __ cij "dkl
Paee) = Z/ (Feij + Faw)
it 7 NeiNak

X 0% du.dug dug dug duyy. (33)

Here ¢dl, is the cross section of the collision
leading to the formation of cth molecule at the ith
and jth vibrational and rotational levels due to re-
combination.

The formulas for al rate coefficients P®), P

) ()
@ i ; :
Py contain the cross sections of the corresponding

slow process. The zero order rate coefficients P}
depend only on the gas temperature. On the contrary,
the first order rate coefficients R} and P} depend
on al level populations and atomic number densities.
Moreover, the first order rate coefficients in a mov-
ing gas contain the terms proportional to V - v. It can
be noticed that this term is equal to zero if there is
no any rapid inelastic process and only the elastic
collisions determine the rapid process. It takes place
in a mixture of light molecules where the rotational
relaxation is much slower than the translational one
or in the case when the rotational degrees of freedom
are neglected.

It can be noticed that the equations connecting the
zero order rate coefficients of forward and backward
reactions follow from the detailed balance principle
for the inelastic cross sections [2,19], after averaging
over the Maxwell-Boltzmann distributions over ve-
locities and rotational energies [20,21]. For vibra-
tional energy transitions (15) one can write

Ccad rot=7rot
i'k'(O) S S( ZCi ZCk

pikO) _ pi'k
cdi’k cdik c d rot—rot
S S ZLei Law

X exp (34)

c d_ .c_ _d
&l + eg— & sk)

KT

Similarly for reactive collisions (16) and (17):

5’5 ( m.m, )3/2 2873

cdik(0) _ pcdi’K(0)
P = Peaik

TRy —
cd! sisd \memy ) ZIZL
ef +ed —ef—gf
xexp KT
D, + Dy — D, — Dy
Xexp( c dkT c d ) (35)
m. \¥2
i i e ~3/2
P2~ PR oy | Czmkr) ez
c
‘9ic — D,
xexp| — T (36)

Here m,=m, + m;, h is the Planck constant.

For diatomic molecules usualy sf=1. If the
vibrational and rotational energies of a molecule can
be considered independently (like for the rigid rota-
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tor model), the rotational partition function does not

depend on the vibrational level i1 z'= 2z [22].
Then
, ef+el—et—&f
Pedre = Peaiiexp . ) (37)
3/2 —rot—rot
Pcd,l k) — pc d| K'(0) M My 2oLy
o memy | ZPZ
&f +el — & — &
e KT
D, + DUI — D, — Dy
X exp (38)

PrC::(Od)k _ Pdlss(O)(

h3(2mkT) ¥z
s mf,) (27kT) ™7 Z
-D,

x exp| —

SLIN

4. Zero order rate coefficients

The zero order rates of vibrational energy transi-
tions have been widely studied by many authors both
theoretically and experimentally. Theoretical models
based on different methods of the calculation of
inelastic cross sections can be found in Refs. [23,24],
and in other works, some results are given in Refs.
[25,26]. The cross sections of chemically reactive
collisions with dissociation, recombination and ex-
change reactions are not sufficiently elaborated.
Therefore the phenomenological approximate models
are often used for the calculation of the reaction
rates. A review of the different models of the disso-
ciation rates is given in Ref. [27]. One of the first
simple models for the cross sections of reactive
collisions was proposed by Prigogine [1]. This model
takes into account the threshold character of chemi-
cal reaction and represents the dependence of the
Cross sections on the translational energy of colliding
particles, but does not reflect the dependence of the
cross sections on the internal energy of reagents. The
most often used models are ladder-climbing one and
the Treanor-Marrone model for dissociation—recom-
bination processes [28], the generalization of the
Treanor-Marrone model for exchange reactions is

given in Ref. [29]. These models simulate the depen-
dence of the microscopic reaction rates on the vibra-
tional energy of the molecules participating in a
reaction but do not describe the cross sections of the
reactive collisions and their dependence on the rela
tive velocity. The ladder-climbing model is based on
the assumption that molecules dissociate only from
the last level and each molecule reached this level
dissociates immediately with the probability equal to
unit. Thus the dissociation rate is determined by the
stream of molecules to the last level from lower
levels due to VW and VT vibrational energy ex-
change (see for example Refs. [11,30]). The
Treanor-Marrone model permits dissociation not only
from the last level supposing the preferential dissoci-
ation from high levels. The probability of dissocia
tion is expressed in terms of the arbitrary parameters
which should be found from the fitting of the experi-
mental data.

5. First order rate coefficients

For the calculation of the first order rate coeffi-

cients the linear integral equations for the functions

G,i; and F;; have to be solved. These equations are
obtained in Ref. [5] in the following form:

Nei Nak
Z - 2 CIJdk(F)

a N
2
- Ef(m R
n '\ 3KT pT(Cy + Cror)
m.c2 3 & ’
S 40
2KT KT . ( )
Nei Ny
Z nz cudk(G)
dk
l R
-J3 ](O) + — féﬂ) ~
Y Rc(io)(<ej°i »+ef+ ec)
ci
pT( Cy t Crot)
mc? 3 [
— — . 41
2KT KT ) ( )
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In this eguation ¢, and c,,, are the trandationa and
rotational specific heats, [£], = & — m E", E/' is
the rotational energy of ¢ species at the ith vibra-
tional level, averaged over rotational spectrum:

po ES = Z/ajdfcij du,= <3jCi>r Ngi,
i

lijax 1S the linearized operator of rapid processes:

leija( @) = ffc(uoj)fé% &eij T Pan — Peij

nCI r1dk Ij'r

¢dk|’)g |dk il dx2duy, (42)
o

ik, ji 1S the cross section of the elastic collisions
and collisions resulting in the RT exchange (for the
elagtic collisions j’ =j, I’ =1). In Ref. [5] it is shown
that the functions F;; and G;; define the nonequi-
librium terms in the diagonal elements of the pres-
sure tensor such as bulk viscosity and relaxation
pressure. These terms appear because of the inelastic
rapid RT energy exchange.

Now, the solutions of Egs. (40), (41) are ex-
panded in the series of the Sonine and Waldmann-
Trubenbacher [31] orthogonal polynomials over re-
duced trandational and rotational energy:

m C2 g_ci
CIJ merp /Z(ﬁ)ﬂ(p)(ﬁ)a (43)

CI] ng rpq/Z( 2k(-:|- ) J(p)( i—l- ) (44)

Following [5], in order to obtain the algebraic
equations for the coefficients f,;; and g;;, we sub-
stitute expansions (43), (44) into Egs. (40), (41) and
multiply them by the corresponding polynomial.
Then, we integrate these equations over the velocity
and make a summation over the rotational levels.
Thus the algebraic equations for the expansion coef-
ficients f are obtained in the form:

ci,rp

Z Z Brcr”:)kp fdk,r'p’

dk r'p

Ng; 1
= #( Cr015 5 * Crot ci 5r08pl)'
n Ctr + Crot

c=1,...,L,i=041,..., r,p=0,1,. (45)

c!

Here €, and €., are the dimensionless (divided by
the gas constant R) trandlational and rotational spe-
cific heats, the dimensionless rotational specific heat
of ¢ species at the ith vibrationa level ¢ is
defined as:

rot,Ci

m, JES
rot,ci T T

C

In the case when the rotational and vibrational en-
ergy of a molecule are considered independently (in
particular, for the rigid rotator model), C.q ¢ = Cyq.c-
The coefficients of system (45) are expressed in
terms of bracket integrals and level populations:

i bI
rCrI'dpkp' = V (SCdSIkZ 2 Qrp Qr v ]Clb|

nm dk

[@p@phwy (46)
and

m,c2 sd
P =S, p| 2
o) 2kt ) kT

The partial bracket integrals are introduced as fol-
lows [5,32]:

[AaB]’cidk - ndk m I,[féﬂ)féa? cij cu )
CI ]J
X(ACiJ cu)g cndk jld'Qdu dud'
[A B]udk fféloj)fé% cij CI] )
CI dk il
X (Agi — Agirr) 90k, ;i d22duduy.

For r =p =0, system (45) is not linearly inde-
pendent. In that case it should be supplemented by
the constraints derived from normalization condi-
tions for the distribution functions [5]:

faoo=0, €=1,...,L, i=01,.., L, (47)

n.
Z % ( Cyr f(:i,lO + Cot ci fci ,Ol) =0. (48)

Ci
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Egs. (45), (47)—(48) for the coefficients f;; ,, of
expansion (43) have a unigue solution in any approx-
imation.

The equations for the coefficients gy ,,, of expan-
sions (44) are obtained using the similar procedure.
The system of algebraic equations takes the form:

Z Z Brcri’(:)kp’ gdk,r’p’

dk r'p
ZR((:?)(<8jCi>r + ‘9ic+ gc)
_ _¢
n pT(Ctr + Crot)
: RO
X (Esrl‘spo + Crot,ci Sroapl) + Téroapo
- ngr) P(PISO dug,
c=1,...,L,i=0,...,L,r,p=01,..., (49)

and the constraints, providing the unique solution,
are given by

Qeioo=0,¢c=1 L,i=01,..., L, (50)
Nei .
Z 7(:( Ctr gci ,10 + Crot,ci gci ,01) =0 (51)

ci

Substituting expansions (43), (44) into expres-
sions (22), (23), (26), (27), (29), (30), (32), (33) we
obtain the formulas for the first-order rate coeffi-
cients P((ylg and P?). These coefficients are ex-
pressed in terms of f; ., O, and the integrals
containing the cross sections of the collisions in the
inelastic slow processes. Actually, the expressions

for PIX® have the form [13,17]

9 1

K1) —

Pcld|k() chupin n
il ci kl

W 42
XQgfh g Idlijkl d2duduy+ ngk,rp
p

cij dkl ik
X ) f__Qdklg Tl

it ” Nei Nig

X d42 du,duy. (52)

These expressions can be simplified. Let us intro-
duce the averaging operator for any function F
connected to the process a (a stands for any pro-
cesses considered: elastic collisions, RT exchange,
vibrational energy transitions and chemical reac-
tions)

KT 1/2 CIS
(P = ) Sfot o [ Foi
2mmy | i ZEZe

*)o ) d2 dg,.
(53)

XeXp(_gg - EjCi -

Here g,=(m./2KT)"2g is the dimensionless
value of the relative velocity. € = & /KT is the
dimensionless rotational energy. The cross section
o in Eq. (53) should be replaced by the cross
section of the corresponding process. Thus, for the
most frequent collisions (a = ‘rap’), o' = o lg\ i1,
for the vibrational energy transitions (o = ‘vibr’),
o =gl kl" In so doing the integrals in (52) can
be reduced to the average values of the relative
velocity and rotational energy of the type:

b
P = (g () DU,

It can be noticed that Y09 s proportiona to
P

The expressions for the remaining rate coeffi-
cients are written similarly and expressed in terms of
the inelastic collision integrals with the correspond-
ing cross sections for exchange reactions and disso-
ciation—recombination. However one should take into
account that the averaging operators for recombina
tion and dissociation differ from (53) and are derived
from expressions (28) and (31), respectively.

Finally, we can conclude that the calculation of
PS} and P?) reduces to the solution of the linear
algebraic equations and to the computing of the
collision integrals containing the cross sections of
corresponding slow inelastic process (vibrational and
chemical transitions). In the next section some sim-
plifications of the linear systems and integral brack-
ets are proposed.
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6. Simplified formulas for the rate coefficients

The systems of algebraic equations for the expan-
sion coefficients fg; ., and g ., (45) and (49) can
be simplified if one keeps only the first non-vanish-
ing terms of the expansions(r =1, p=0and r =0,
p=1. In this case systems (45) and (49) take the
form:

_ . N Co
Z C|dkfdk + BCIdkfdk _ __° _ “’N ,
dk( 1100 Tdk,20 T P1oo1 ,01) n & +¢,
i . N C t,cCi
Z Bmdkf +BC|dkf __° _ ro Sl
dk( 0110 Tak,20 T Poo11 dk,Ol) n & +¢&,
(54)
> ( B1166 Yak 10 + Bioor Yaik.01)
dk
3 ng 3 mc?
S - S o= gdogy,,
2 n ?f(z 2KT | e T
)y ( Bglifrl)(gdk,lo + B&iﬂ(gdk,m)
dk
Nei ‘("JCi , sl(0)
= Cora P+ ;f P chij du,.  (55)
Y Rg?’((gjd w+et+ sc)
&= ci

pT( Cy + Crot)

The integral brackets in the left hand sides of
these systems may be calculated using the assump-
tions discussed in Refs. [5,33-35]. First, al complex
collisions are assumed to be rare and are neglected,
i.e. we neglect the collisions in which the internal
states of both colliding molecules change, or in
which both internal modes of one of the molecules
change in one collision. Furthermore like in Ref. [34]
we consider the internal and translational motions as
the uncorrelated ones. Then, following [5] we sup-
pose that in the most frequent collisions the collision
diameter and deflection angle do not depend on the
vibrational level of a molecule. Therefore the cross
sections of the elastic collisions and the collisions

leading to the RT exchange are independent from
the vibrational state. Finaly, the simplified expres-
sions for the bracket integrals are obtained:

5 Xci an mc mb

Al Hen (Mg + my)?

cici _

1100 — kT Z
b#c
n#i

2
AT X Xpn my,

T Hop (mc+mb)2

C Crot,bn

gcibn gbnci

rot,ci rot,ci

X

4T X2 ¢

+ —_—
T MK gcici
(56)

Xei Xgk m. My

cidk _ __ 5KT
1100 *
Acd Med ( m, + md)2

AT X Xgx m.my
+— 2
T Mg ( m, + md)
C ; C
x( e o) (c+dori k),
Ceigk Lk
(57)
cici _ _ hil Xci Xpn m,,
1001
T prc HMcb (mc+mb)
n#i
Coi i AT X2 Coy o
rot,ci o i rot,ci , (58)
Leibn T e Lo
cak _ AT Xei Xax my Crot, dk
1001 — ,
T Mgk (Me+My) Lok
(c#dori=#k), (59)
cici 4T Xci an Crot,ci 4T Xgi Crot,ci
0011 = —_— ,
T prc Mech gcibn T M gcici
n#i
(60)
Gd%k =0, (c#dori#k), (61)
6156 = Biog (62)

Here the following notations are introduced: X, =
ng/n is the dimensionless number density of
molecules of ¢ chemical species at the ith vibra
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tional level, 4 are the rotational collision num-
bers, u, and u 4 are the fictitious viscosity coeffi-
cients:

5 (27mkT)"?

He™ 16 mo20007

5 (2mm KT)"?

16 753087 (63)

Meg =

0.4 1S the collision diameter.

The collision integrals Q¢;" are introduced as
follows:

KT
2T My

2
) foexp( 92) g2 32 dg,,

(64)

ay - |

aly = wa(l — cosly,4(b,g))bdb.

Here x.«(b,g) is the deflection angle, b is the
impact parameter. The reduced collision integrals
04" have such a form:

Q(I "
0t = (65)
(25 )
where the collision integrals (2$"), . are calcu-

lated for the hard spheres model. The function Ay
is given by:

. oG (66)

ed — Qéé'l)*
We would like to note here that in the general case
al the quantities A, 2", w4 should depend on
the vibrational state of the particles. In the present
paper we use the assumption about the independence
of the collision diameter and deflection angle on the
vibrational level: Xeia(b,9) =
Xeiak(D, 9).

The rotational collision numbers {4, related to

the rotational relaxation times 7%, are introduced
by analogy to Refs. [34,35]:

Ocidk = Ocd»

rot
4 P cidk

H
T Meidk

§C|dk (67)

p is the pressure. The relaxation time ;4 mMeans
the rotational relaxation time for the ¢ species at the
ith vibrational level at the collisions with the
molecules of d species at the kth vibrational level.
These relaxation times are connected with the reso-
nance defect in the inelastic RT exchange and are
given by the expressions similar to those introduced
in Refs. [34,35]:

n
<(A€cici)2>g?ﬁ)!

ot
Crot ,Ci

cici

1 4n
Trot = <AGC|A€c|dk>C|dk (68)

cidk Crot ci

Here the averaging (53) is performed in respect to
the cross sections of rapid processes. elastic colli-
sions and RT exchange, the resonance defects at the
collisions are introduced as

ci _ _dk __ _Ci _ _ci
€/ T+ g% —€ — €, Aei=¢€ — ¢

(69)

AEcldk

The computation or experimental measurement of
the relaxation times 7.5, depending on the partner in
the collision remains a very complicated task. Usu-
aly, all the relaxation times and therefore the colli-
sion numbers (.4 are approximated by the times

7. (collison numbers ¢.) independent on the
chemlcal and vibrational species d, k of the partner.
Furthermore, if one assumes the rotational relaxation
time to be independent of the vibrational state, then
7.2 may be approximated by the relaxation time 7.
of chemical species, its value can be measured exper-
imentally (see, for instance, Refs. [36]) or calculated
using the Parker model [37]. The elastic collision
integrals, that appear in expressions for the bracket
integrals (56)—(62) have been computed and tabu-
lated by many authors (see Refs. [38,39]). The analy-
sis of the transport coefficients calculated on the
basis of different sources for the elastic collision
integrals is presented in Ref. [40], and we can recom-
mend the results of Refs. [41] and [39] for a practical
use. These data were used in Ref. [42].

Finally, the simplified systems (54), (55) with
coefficients (56)—(62) have been derived for the
calculation of the expansion coefficients f; 1o, fio;
and g 10, 9eio1- Keeping only these terms in ex-
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pression (52), one can obtain the simplified expres-
sion for the rate coefficient of vibrational energy

exchange P, in the form:

piK®) _ My 9ei 10 T M Gk, 10 E e (0)
cdik o m 5 Medik
c d

mcd
2KT

( gz%%‘ﬁ’”)

i dk
 9akotM B + Gei s My Ef
KT
X P + g 01 € &R

+ Ga 01€ e Odeer . (70)

The remaining rate coefficients P(} and P% may
be written similarly using the corresponding averag-
ing operator.

It should be noted that systems of algebraic equa-
tions (54), (55) coincide with the systems for the
calculation of the bulk viscosity coefficients and
relaxation pressure [5], and therefore the algorithm
proposed in the present paper may be used for the

calculation of these transport coefficients.

7. Conclusions

In this paper the multi-level kinetic theory ap-
proach is used for the modelling of the nonequilib-
rium rates of vibrational energy transitions, dissocia-
tion, recombination and exchange reactions in a re-
acting gas mixture flow. The zero and first order
approximations of the generalized Chapman-Enskog
method are considered, and the agorithms for the
caculation of the state-to-state transition rates are
presented. The zero order rate constants correspond
to the Maxwell-Boltzmann distribution over veloci-
ties and rotational energies. The first order approxi-
mation takes into account weak deviations from the
Maxwell-Boltzmann distribution over trandational
and rotational energies and strong nonequilibrium
over vibrational energies. The first order rates of the
vibrational energy transitions and chemical reactions
for different vibrational levels depend not only on
the gas temperature but also on all vibrational level
populations and atomic number densities and include
the term proportional to V - v. The formulas obtained

express the first order rate coefficients in terms of
the solutions of the linear algebraic equations, colli-
sion integrals containing the cross sections for slow
processes (vibrationa energy transitions and chemi-
cal reactions), elastic collision integrals and the in-
elastic ones for the rapid process (trandational -rota-
tional energy exchange). The last integrals are con-
nected with the rotational relaxation times that can
be measured experimentally. The formulas derived in
the paper can be inserted to the Navier-Stokes com-
putational codes for the rigorous calculation of the
strong nonequilibrium gas flow parameters.
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