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Abstract

The paper studies the strongly nonequilibrium vibrational and chemical kinetics in a reacting gas flow in the state-to-state
approach. Considered are exchange reactions, dissociation and recombination. The algorithms for calculation of reaction rate
coefficients, depending on vibrational levels of components are developed on the basis of the kinetic theory. Formulas for
reaction rate coefficients are obtained taking into account non-maxwellian velocity distributions. q 1999 Elsevier Science
B.V. All rights reserved.

1. Introduction

The influence of chemical reactions on the molec-
ular distributions and gas flow parameters is of great
importance in many problems of aerothermodynam-
ics, chemical technology and other fields of science
and applications. This subject has been investigated
on the basis of the kinetic theory by many authors

w xstarting from Refs. 1,2 . The nonequilibrium contri-
butions to the rates of chemical reactions were stud-

w xied in Refs. 3,4 , later this problem was considered
by several authors using different models for vibra-
tional distributions. The majority of the models are
based on the weakly nonequilibrium one-temperature
distribution or on the quasi-stationary multi-tempera-
ture distributions over vibrational levels. In recent
years the necessity of the detailed multi-level mod-
elling of strongly nonequilibrium flows has been
understood. The approximate solution of the Boltz-
mann equation in the state-to-state approach has

w xbeen obtained in Ref. 5 with generalized
Chapman-Enskog method and was used for the in-
vestigation of strongly nonequilibrium transport

properties in various gas flows: behind shock waves
w x w x6,7 , in a hypersonic boundary layer 8,9 , in a

w xnozzle expansion 10 . The nonequilibrium non-
Arrhenius dissociation rates have been found in Refs.
w x11,12 , using the state-to-state vibrational level pop-
ulations with the Maxwell distributions over veloci-
ties. These rates correspond to the zero order gener-
alized Chapman-Enskog solution. However the de-
velopment of the Navier-Stokes computing codes for
viscous heat conductive gas flows with strong vibra-
tional and chemical nonequilibrium requires the sim-
ulation of the state-to-state rates of vibrational and
chemical transitions in the first order non-maxwel-
lian approximation. The first steps in this direction

w xwere done in Refs. 13,14 , for a one-component
vibrationally excited gas. Non-maxwellian effects on

w xdissociation rates were considered in Ref. 15 in the
case of a weak deviation from the equilibrium over
vibrational energy.

The present paper deals with the simulation of the
state-to-state reaction rates under the conditions of
strong both vibrational and chemical nonequilibrium.
The Navier-Stokes equations are coupled with the
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equations for the vibrational level populations for
molecular species. These equations contain the first
order rates of vibrational energy transitions and
chemical reactions depending on the vibrational lev-
els of colliding molecules which, as well as the
transport terms, can be found using the distribution
functions over velocities and internal energies. We

w xuse the distribution functions derived in Ref. 5 in
the state-to-state approximation and develop the al-
gorithms for the calculation of the zero order and
first order rates of vibrational energy transitions,
exchange reactions and dissociation.

2. Macroscopic equations

We consider a nonequilibrium reactive flow of a
gas mixture with internal modes and chemical reac-
tions. In the state-to-state approximation the closed
set of the equations for the nonequilibrium flow
parameters are the equations for the vibrational level
populations of molecular species and number densi-
ties of atomic species, coupled with the conservation
equations for the momentum and total energy:

dnci
qn =Pzq=P n V sR ,Ž .ci ci ci cid t

cs1,.., L, is0,1, . . . , L 1Ž .c

dz
r q=PPs0, 2Ž .

d t
dU

r q=PqqP:=zs0. 3Ž .
d t

Here n is the population of the ith level of cci
Ž .species for atomic species n sn , r, z are theci c

gas density and macroscopic velocity, L is the num-
ber of chemical species, L is the number of excitedc

vibrational levels of species c, U is the total energy
per unit mass:

3
rUs nkTqrE qrE qrE .r Õ f2

Here nsÝ n is the total number of particles, k isci ci

the Boltzmann constant, T is the gas temperature,

rE T s ´ ci f du , rE s ´ cn ,Ž . Ý ÝHr j ci j c Õ i c i
cij ci

rE s ´ cn ,Ýf c
c

E and E are, respectively, the rotational and vibra-r Õ

tional energy per unit mass. Here ´ ci is the rota-j

tional energy of a molecule of species c at the ith
Ž .vibrational level, f s f r,u ,t is the distributionci j c i j c

function for every chemical species c, vibrational i
and rotational energy level j over the velocities u ,c

the spatial and temporal co-ordinates, ´ c is thei

vibrational energy of a molecule of species c, counted
from the minimum of its potential curve, ´ c syD ,c

D is the energy of dissociation of molecular speciesc

c, n sÝ n .c i ci
Ž . Ž .Eqs. 1 – 3 contain the transport terms: the diffu-

sion velocities of c species at the ith level V , theci

pressure tensor ¶ and the total energy flux q, and the
production terms R . The expressions for the trans-ci

w xport properties are given in Ref. 5 . The right hand
Ž .sides of Eqs. 1 R describe the change of moleculesci

of c species at ith level due to the collisions and are
expressed in terms of the collision integrals for slow
processes:

R s J sl du s J vibr qJ react duŽ .Ý ÝH Hci ci j c ci j ci j c
j j

sR vibr qR react , 4Ž .ci ci

The collision integrals J vibr and J react correspondingci j c i j

to the collisions with vibrational energy transitions
wand chemical reactions can be found in Refs. 2,16–

x vibr18 . For diatomic molecules J has the followingci j

form:

sc sd
i j k lvibr

X X X XJ s f f y f fÝ Hci j c i j dk l ci j dk lc d
X X X Xž /X X X X s si j k ldkli j k l

=gs iX jX kX lX

d2V du , 5Ž .cd , i jk l d

where sc and sd are the statistical weight factorsi j k l

and s iX jX kX lX

is the cross section of the collisioncd, i jk l

leading to the vibrational energy change for the
molecules of chemical species c and d, respectively
at the ith and k th vibrational levels and jth and l th
rotational ones; iX, jX, kX, lX are the labels of the
energy levels after collision; gsu yu is the rela-c d

tive velocity, and d2V is the solid angle referring to
the relative velocity after collision. The integral J react

ci j

may be split into parts corresponding to collisions
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with chemical exchange reactions and collisions with
dissociation and recombination:

J react sJ 2 l 2 qJ 2 l 3 , 6Ž .ci j c i j c i j

3c ds s m mi j k l c d2 l 2
X X X X X XJ s f f X XÝ Hci j c i j d k l c d ž /X XX X X XžX X X X X X m ms s c di j k ldc d kli j k l

yf f gs cX dX , iX jX kX lX

d2V du , 7Ž .ci j dk l cd , i jk l d/
where s cX dX , iX jX kX lX

is the cross section of the collisioncd, i jk l

with a bimolecular reaction. The expression for J 2 l 3
ci j

in a mixture of diatomic molecules and atoms can be
written in the form:

3mc2 l 3 3 c
X XJ s f f f h s y fÝHci j dk l c f i j c i jž /X Xž /m mc fdkl

=gs diss du du X du X duX , 8Ž .ci j , d d c f d

where s diss is the cross section for dissociation ofci j, d

the molecule of cth species at the ith and jth
vibrational and rotational levels in a collision with
the molecule of dth species; cX, f X are the atomic
species of dissociation products, u , u and u X , u X ,c d c f

uX are the velocities of particles before and afterd

collision respectively. Usually it is supposed that the
dissociation cross section does not depend on the
internal energy levels of the partner and that these
levels do not change in the result of reaction. Here-
after we use this assumption.

Ž . Ž .The transport and production terms in Eqs. 1 – 3
are defined by the distribution functions. Previously
we investigated the transport terms in these equa-
tions using the distribution functions found by the
generalized Chapman-Enskog method in the state-

w xto-state approach 5 . In the present paper we use this
Ž .method and consider the production terms in Eqs. 1

in the zero and first order approximation.
The distribution functions in the generalized

w xChapman-Enskog method 5 are found as a power
series over a small parameter ´ equal to the ratio of
the mean times of rapid and slow processes:

f s f Ž0.q´ f Ž1.q ... 9Ž .ci j c i j c i j

The zero order distribution functions are given by:

3r2 2 cim n m c ´c ci c c jŽ0. cif s s exp y yci j j rotž / ž /2p kT 2kT kTZ TŽ .ci

10Ž .

where m is the molecular mass, Z rot is the rota-c ci

tional partition function, c su yz is the peculiarc c

velocity. The first order distribution functions take
the form f s f Ž0.q´ f Ž1., whereci j ci j c i j

1 1
Ž1. Ž0. Ž0. dkf s f f s f y A P=lnTy DÝci j c i j c i j c i j c i j c i jž n n dk

1 1 1
Pd y B :=zy F =Pzy G ,dk ci j ci j c i j /n n n

11Ž .

d are the diffusion driving forces. The functionsdk

A , B , Ddk , F and G are found from theci j c i j c i j c i j c i j
w xlinear integral equations given in Ref. 5 . These

equations contain the linearized operator of rapid
processes: elastic collisions and the ones leading to
the RT exchange. For the unity of solution of the
integral equations the additional constraints on the
functions A , B , Ddk , F and G are derivedci j ci j c i j c i j c i j

from normalization conditions for the distribution
w xfunctions. These constraints are obtained in Ref. 5 .

3. Production terms

The expressions for the production terms R inci
Ž . Ž .Eqs. 1 are obtained substituting Eq. 9 into Eq.

Ž .4 . Restricting our consideration to the first order
terms we obtain:

R vibr s n X n X P X X
i k yn n P iX kX

, 12Ž .Ž .Ýci ci dk cdi k ci dk cdi k
X Xdki k

R2 l 2 s n X X n X X P X X X X
cdi k yn n P cX dX iX kX

,Ž .Ýci c i d k c d i k ci dk cdi k
X X X Xdkc d i k

13Ž .

R2 l 3 s n n X n X P ci yn P diss , 14Ž .Ž .Ýci dk c f rec , dk ci ci , dk
dk
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where the rate coefficients P iX kX

, P cX dX iX kX

, P ci ,cdi k cdi k rec, dk

P diss correspond to the vibrational energy transfers:ci, dk

A qA lA X qA X , 15Ž .ci dk ci dk

exchange reactions:

A qA lA X X qA X X , 16Ž .ci dk c i d k

and dissociation–recombination reactions:

A qA lA X qA X qA . 17Ž .ci dk c f dk

Ž . Ž .We would like to note that Eq. 15 describes VT TV
exchanges when kX sk or when the particle A is and

Ž .atom, if csd Eq. 15 corresponds to the VV ex-
change between the molecules of the same chemical

Ž . Xspecies, and for c/d Eq. 15 describes the VV
exchange between different chemical species. Also,

Ž .in reaction Eq. 16 the partner A may be moleculed

or atom. In the last case

A qA lA X X qA X . 18Ž .ci d c i d

For the vibrational energy transitions we have:

f Ž0. f Ž0.
X X ci j dk li kP s 1q´ f qfŽ .Ž .Ý Hcdi k ci j dk l

X X n nci dkjlj l

=gs iX jX kX lX

d2V du du . 19Ž .cd i jk l d c

Ž . Ž .Substituting Eq. 11 to Eq. 19 and taking into
account the vanishing integrals from the odd func-
tion, one can see that P iX kX

depend only on thecdi k

functions F and G involved in f , and may beci j ci j c i j
w xwritten in the following form 13,17 :

P iX kX

sP iX kXŽ0. TŽ .cdi k cdi k
X X Ž . X Xi k 1 i k Ž2.q´ P n ,T q=PzP n ,T .Ž . Ž .Ž .cdi k ci cdi k ci

20Ž .
In this expression

3r2 24p m m gX X cd cdi k Ž0.P s exp yÝ Hcdi k rot rot ž / ž /X X2p kT 2kTZ Zci dk jlj l

=
´ ci q´ dk

X X X Xj lc i dk 3 i k j ls s exp y g s d g ,˜j l cd i k jlž /kT

21Ž .
where m is the reduced mass, s iX kX jX lX

is the˜cd cd i k jl

integral cross section of the inelastic collisions:

1X X X X X X X X Xi k j l i k j l 2 2s g s s g ,V d V d V .Ž . Ž .˜ Hcd i k jl cd i k jl4p

The terms P iX kXŽ1., P iX kXŽ2. are given by:cdi k cdi k

f Ž0. f Ž0.
X X ci j dk li k Ž1.P s G qGŽ .Ý Hcdi k ci j dk l

X X n nci dkjlj l

=gs iX jX kX lX

d2V du du , 22Ž .cd i jk l d c

f Ž0. f Ž0.
X X ci j dk li k Ž2.P s F qFŽ .Ý Hcdi k ci j dk l

X X n nci dkjlj l

=gs iX jX kX lX

d2V du du . 23Ž .cd i jk l d c

The rate coefficients P iX kXŽ0. are defined by thecdi k

Maxwell-Boltzmann distribution over velocities and
rotational energies whereas P iX kXŽ1. and P iX kXŽ2. arecdi k cdi k

determined by the weak deviations from this distri-
bution.

Similarly one can obtain the expressions for the
remaining rate coefficients:

Ž .Ž0. 1P sP T q´ P n ,TŽ . Ž .Ž Ž .Žg . Žg . g ci

q=PzP Ž2. n ,T , 24Ž . Ž ..Žg . ci

where P at gs1,2,3 denote P cX dX iX kX

, P ci andŽg . cdi k rec, dk

P diss respectively.ci, dk

In so doing we can write for exchange reactions:

3r24p mX X X X cdc d i k Ž0.P scdi k rot rot ž /2p kTZ Zci dk

=
m g 2

cd ci dkexp y s sÝ H j lž /X X 2kTjlj l

=
´ ci q´ dk

X X X X X Xj l 3 c d i k j lexp y g s d g ,c̃ d i k jlž /kT

25Ž .

f Ž0. f Ž0.
X X X X ci j dk lc d i k Ž1.P s G qGŽ .Ý Hcdi k ci j dk l

X X n nci dkjlj l

=gs cX dX iX jX kX lX

d2V du du , 26Ž .cd i jk l d c

f Ž0. f Ž0.
X X X X ci j dk lc d i k Ž2.P s F qFŽ .Ý Hcdi k ci j dk l

X X n nci dkjlj l

=gs cX dX iX jX kX lX

d2V du du , 27Ž .cd i jk l d c
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and for recombination-dissociation:

3r2
X Xm m mŽ .c d dciŽ0. ciŽ0.P sP srec , dk rec , d 9r22p kTŽ .

=
m X u X

2 qm X u X
2 qm uX 2

c c f f d d
exp yÝH ž /2kTj

=s ci j u X ,u X ,uX du X du X duX , 28Ž . Ž .r̃ec , d c f d c f d

s ci j s s ci j u X ,u X ,uX ,u ,u du du ,Ž .˜ Hrec , d rec , d c f d c d c d

f X
Ž0. f X

Ž0. f Ž0.
c f dk lciŽ1.

X XP s G qG qGŽ .ÝHrec , dk c f dk l
X Xn n nc f dkjl

=s ci j du X du X duX du du , 29Ž .rec , d c f d c d

f X
Ž0. f X

Ž0. f Ž0.
c f dk lciŽ2.

X XP s F qF qGŽ .ÝHrec , dk c f dk l
X Xn n nc f dkjl

=s ci j du X du X duX du du , 30Ž .rec , d c f d c d

3r24p mcddissŽ0 . dissŽ0 .P sP sci , dk ci , d rot ž /2p kTZci

=
m g 2 ´ ci

cd jciexp y s exp yÝH jž / ž /2kT kTj

=g 3s diss d g , 31Ž .c̃ i j , d

s diss s s diss u X ,u X ,uX ,u ,u du X du X duX ,Ž .˜ Hci j , d ci j , d c f d c d c f d

f Ž0. f Ž0.
ci j dk ldissŽ1.P s G qGŽ .ÝHci , dk ci j dk ln nci dkjl

=s diss du du du X du X duX , 32Ž .ci j , d c d c f d

f Ž0. f Ž0.
ci j dk ldissŽ2 .P s F qFŽ .ÝHci , dk ci j dk ln nci dkjl

=s diss du du du X du X duX . 33Ž .ci j , d c d c f d

Here s ci j is the cross section of the collisionrec, d

leading to the formation of cth molecule at the ith
and jth vibrational and rotational levels due to re-
combination.

The formulas for all rate coefficients P Ž0., P Ž1.,Žg . Žg .
P Ž2. contain the cross sections of the correspondingŽg .

slow process. The zero order rate coefficients P Ž0.
Žg .

depend only on the gas temperature. On the contrary,
the first order rate coefficients P Ž1. and P Ž2. dependŽg . Žg .
on all level populations and atomic number densities.
Moreover, the first order rate coefficients in a mov-
ing gas contain the terms proportional to =Pz. It can
be noticed that this term is equal to zero if there is
no any rapid inelastic process and only the elastic
collisions determine the rapid process. It takes place
in a mixture of light molecules where the rotational
relaxation is much slower than the translational one
or in the case when the rotational degrees of freedom
are neglected.

It can be noticed that the equations connecting the
zero order rate coefficients of forward and backward
reactions follow from the detailed balance principle

w xfor the inelastic cross sections 2,19 , after averaging
over the Maxwell-Boltzmann distributions over ve-

w xlocities and rotational energies 20,21 . For vibra-
Ž .tional energy transitions 15 one can write

scsd Z rotZ rot
X X i k ci cki kŽ0. i k Ž0.

X XP sPcdi k cdi k c d rot rot
X X X Xs s Z Zi k ci dk

=
´ X

c q´ X
d y´ c y´ d

i k i k
exp 34Ž .ž /kT

Ž . Ž .Similarly for reactive collisions 16 and 17 :

3r2c d rot rots s m m Z ZX X X X i k c d ci dkcdi kŽ0. c d i k Ž0.
X X X XP sP X Xc d i k cdi k c d rot rotž /X XX X X X X Xm ms s Z Zc di k c i d k

=
´ X

cX

q´ X
dX

y´ c y´ d
i k i k

exp ž /kT

=
D qD yD X yD Xc d c d

exp 35Ž .ž /kT

3r2mc y3r2ciŽ0. dissŽ0 . c 3 rotP sP s h 2p kT ZŽ .rec ,dk ci ,dk i ciž /X Xm mc f

=
´ c yDi c

exp y 36Ž .ž /kT

Here m sm X qm X , h is the Planck constant.c c f

For diatomic molecules usually sc s1. If thei

vibrational and rotational energies of a molecule can
Žbe considered independently like for the rigid rota-
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.tor model , the rotational partition function does not
rot rot w xdepend on the vibrational level i: Z sZ 22 .ci c

Then

´ X
c q´ X

d y´ c y´ d
X X i k i ki kŽ0. i k Ž0.

X XP sP exp 37Ž .cdi k cdi k ž /kT
3r2 rot rotm m Z ZX X X X c d c dcdi kŽ0. c d i k Ž0.

X X X XP sPc d i k cdi k rot rotž /X X X Xm m Z Zc d c d

=
´ X

cX

q´ X
dX

y´ c y´ d
i k i k

exp ž /kT

=
D qD yD X yD Xc d c d

exp 38Ž .ž /kT
3r2mc y3r2ciŽ0. dissŽ0 . 3 rotP sP h 2p kT ZŽ .rec ,dk ci ,dk cž /X Xm mc f

=
´ c yDi c

exp y 39Ž .ž /kT

4. Zero order rate coefficients

The zero order rates of vibrational energy transi-
tions have been widely studied by many authors both
theoretically and experimentally. Theoretical models
based on different methods of the calculation of

w xinelastic cross sections can be found in Refs. 23,24 ,
and in other works, some results are given in Refs.
w x25,26 . The cross sections of chemically reactive
collisions with dissociation, recombination and ex-
change reactions are not sufficiently elaborated.
Therefore the phenomenological approximate models
are often used for the calculation of the reaction
rates. A review of the different models of the disso-

w xciation rates is given in Ref. 27 . One of the first
simple models for the cross sections of reactive

w xcollisions was proposed by Prigogine 1 . This model
takes into account the threshold character of chemi-
cal reaction and represents the dependence of the
cross sections on the translational energy of colliding
particles, but does not reflect the dependence of the
cross sections on the internal energy of reagents. The
most often used models are ladder-climbing one and
the Treanor-Marrone model for dissociation–recom-

w xbination processes 28 , the generalization of the
Treanor-Marrone model for exchange reactions is

w xgiven in Ref. 29 . These models simulate the depen-
dence of the microscopic reaction rates on the vibra-
tional energy of the molecules participating in a
reaction but do not describe the cross sections of the
reactive collisions and their dependence on the rela-
tive velocity. The ladder-climbing model is based on
the assumption that molecules dissociate only from
the last level and each molecule reached this level
dissociates immediately with the probability equal to
unit. Thus the dissociation rate is determined by the
stream of molecules to the last level from lower
levels due to VV and VT vibrational energy ex-

Ž w x.change see for example Refs. 11,30 . The
Treanor-Marrone model permits dissociation not only
from the last level supposing the preferential dissoci-
ation from high levels. The probability of dissocia-
tion is expressed in terms of the arbitrary parameters
which should be found from the fitting of the experi-
mental data.

5. First order rate coefficients

For the calculation of the first order rate coeffi-
cients the linear integral equations for the functions
G and F have to be solved. These equations areci j ci j

w xobtained in Ref. 5 in the following form:
n nci dk

I FŽ .Ý ci jdk2ndk

1 m c2 pc cŽ0.s f y1yci j žn 3kT rT c qcŽ .tr rot

=

X
2 cim c 3 ´c c j

y q , 40Ž .ž / /2kT 2 kT
r

n nci dk
I GŽ .Ý ci jdk2ndk

Ž .01 RcislŽ0. Ž0.syJ q fci j c i jn n� ci

Ž .0 ci c c² :R ´ q´ q´Ž .Ý rci j i
ciy

rT c qcŽ .tr rot

=

X
2 cim c 3 ´c c j

y q . 41Ž .ž /2kT 2 kT 0r
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In this equation c and c are the translational andtr rot
w ci xX ci ci cirotational specific heats, ´ s´ ym E , E isj r j c r r

the rotational energy of c species at the ith vibra-
tional level, averaged over rotational spectrum:

ci ci ² ci:r E s ´ f du s ´ n ,ÝH rci r j ci j c j ci
j

I is the linearized operator of rapid processes:ci jdk

1
Ž0. Ž0.

XI f s f f f qf yfŽ . ŽÝHci jdk ci j dk l ci j dk l ci j
X Xn nci dk lj l

yf X gs jX lX

d2V du , 42Ž ..dk l cidk , jl d

s jX lX

is the cross section of the elastic collisionscidk , jl
Žand collisions resulting in the RT exchange for the

X X . w xelastic collisions j s j, l s l . In Ref. 5 it is shown
that the functions F and G define the nonequi-ci j c i j

librium terms in the diagonal elements of the pres-
sure tensor such as bulk viscosity and relaxation
pressure. These terms appear because of the inelastic
rapid RT energy exchange.

Ž . Ž .Now, the solutions of Eqs. 40 , 41 are ex-
panded in the series of the Sonine and Waldmann-

w xTrubenbacher 31 orthogonal polynomials over re-¨
duced translational and rotational energy:

m c2 ´ ci
c c jŽ r . Ž p.F s f S P , 43Ž .Ýci j c i ,r p 1r2 jž / ž /2kT kTrp

m c2 ´ ci
c c jŽ r . Ž p.G s g S P . 44Ž .Ýci j ci ,r p 1r2 jž / ž /2kT kTrp

w xFollowing 5 , in order to obtain the algebraic
equations for the coefficients f and g , we sub-ci j ci j

Ž . Ž . Ž . Ž .stitute expansions 43 , 44 into Eqs. 40 , 41 and
multiply them by the corresponding polynomial.
Then, we integrate these equations over the velocity
and make a summation over the rotational levels.
Thus the algebraic equations for the expansion coef-
ficients f are obtained in the form:ci,r p

b X X
cidk f X XÝ Ý r r p p dk ,r p

X Xr pdk

n 1ci
s yc d d qc d d ,˜Ž .rot r1 p0 rot ,ci r 0 p1n c qc˜ ˜tr rot

cs1, . . . , L, is0,1, . . . , L , r , ps0,1,... . 45Ž .c

ŽHere c and c are the dimensionless divided by˜ ˜tr rot
.the gas constant R translational and rotational spe-

cific heats, the dimensionless rotational specific heat
of c species at the ith vibrational level c isrot,ci

defined as:

m E Eci
c r

c s .rot ,ci k E T

In the case when the rotational and vibrational en-
Žergy of a molecule are considered independently in

.particular, for the rigid rotator model , c sc .rot,ci rot,c
Ž .The coefficients of system 45 are expressed in

terms of bracket integrals and level populations:

n n X Xci b l Xcidk r p r p
X X w xb s m m d d Q ,Q( Ý cib lr r p p c d cd i k 2ž nbl

n n XX Xci dk Xr p r pw xq Q ,Q , 46Ž .cidk2 /n

and

m c2 ´ ci
c c jr p Ž r . Ž p.Q sS P .ci j 1r2 jž / ž /2kT kT

The partial bracket integrals are introduced as fol-
w xlows 5,32 :

1X Ž0. Ž0.
Xw xA , B s f f B yBŽ .Ý Hcidk ci j dk l ci j c i j

X X2n nci dk jlj l

= A yA X gs jX lX

d2V du du ,Ž .ci j c i j c i dk , jl c d

1XX Ž0. Ž0.
Xw xA , B s f f B yBŽ .Ý Hcidk ci j dk l ci j c i j

X X2n nci dk jlj l

= A yA X gs jX lX

d2V du du .Ž .dk l dk l cidk , jl c d

Ž .For rsps0, system 45 is not linearly inde-
pendent. In that case it should be supplemented by
the constraints derived from normalization condi-

w xtions for the distribution functions 5 :

f s0, cs1, . . . , L, is0,1, . . . , L 47Ž .ci ,00 c

nci
c f qc f s0. 48Ž .Ž .˜Ý tr ci ,10 rot ,ci ci ,01nci
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Ž . Ž . Ž .Eqs. 45 , 47 – 48 for the coefficients f ofci,r p
Ž .expansion 43 have a unique solution in any approx-

imation.
The equations for the coefficients g of expan-ci,r p

Ž .sions 44 are obtained using the similar procedure.
The system of algebraic equations takes the form:

b X X
cidk g X XÝ Ý r r p p dk ,r p

X Xr pdk

Ž0. ² ci: c cR ´ q´ q´Ž .Ý rci j inci cis
n rT c qcŽ .tr rot

=
RŽ0.

ci3
d d qc d d q d dŽ .r1 p0 rot ,ci r 0 p1 r 0 p02 n

y SŽ r . P Ž p.J slŽ0. du ,ÝH 1r2 j c i j c
j

cs1, . . . , L, is0, . . . , L , r , ps0,1, . . . , 49Ž .c

and the constraints, providing the unique solution,
are given by

g s0, cs1, . . . , L, is0,1, . . . , L 50Ž .ci ,00 c

nci
c g qc g s0 51Ž .Ž .˜Ý tr ci ,10 rot ,ci ci ,01nci

Ž . Ž .Substituting expansions 43 , 44 into expres-
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .sions 22 , 23 , 26 , 27 , 29 , 30 , 32 , 33 we

obtain the formulas for the first-order rate coeffi-
cients P Ž1. and P Ž2.. These coefficients are ex-Žg . Žg .
pressed in terms of f , g and the integralsci,r p ci,r p

containing the cross sections of the collisions in the
inelastic slow processes. Actually, the expressions

iX kXŽ1. w xfor P have the form 13,17cdi k

f Ž0. f Ž0.
X X ci j dk li k Ž1.P s gÝ Ý Hcdi k ci ,r p

X X n nci k lrp jlj l

=Qr p gs iX jX kX lX

d2V du du q gÝci j cd , i jk l c d dk ,r p
rp

=
f Ž0. f Ž0.

X X X Xci j dk l r p i j k lQ gsÝ H dk l cd , i jk l
X X n nci k ljlj l

=d2V du du . 52Ž .c d

These expressions can be simplified. Let us intro-
duce the averaging operator for any function F

Žconnected to the process a a stands for any pro-
cesses considered: elastic collisions, RT exchange,
vibrational energy transitions and chemical reac-

.tions

1r2 ci dkkT s sj lŽa . 3² :F s FgÝcidk H 0rot rotž / X X2p m Z Zcd ci dkjlj l

=exp yg 2 ye ci ye dk s Ža . d2V d g .Ž .0 j l 0

53Ž .

Ž .1r2Here g s m r2kT g is the dimensionless0 cd

value of the relative velocity. e ci s´ cirkT is thej j

dimensionless rotational energy. The cross section
Ža . Ž .s in Eq. 53 should be replaced by the cross

section of the corresponding process. Thus, for the
Ž . Ža . jX lX

most frequent collisions a s ‘rap’ , s ss ,cidk , jl
Ž .for the vibrational energy transitions a s ‘vibr’ ,

Ža . iX jX kX lX Ž .s ss . In so doing the integrals in 52 cancd, i jk l

be reduced to the average values of the relative
velocity and rotational energy of the type:

p Ž vibr .vibrŽ r , p. 2 r ci˜ ² :V s g e .Ž . cidkcidk j

˜ vibrŽ0,0.It can be noticed that V is proportional tocidk

P iX kXŽ0..cdi k

The expressions for the remaining rate coeffi-
cients are written similarly and expressed in terms of
the inelastic collision integrals with the correspond-
ing cross sections for exchange reactions and disso-
ciation–recombination. However one should take into
account that the averaging operators for recombina-

Ž .tion and dissociation differ from 53 and are derived
Ž . Ž .from expressions 28 and 31 , respectively.

Finally, we can conclude that the calculation of
P Ž1. and P Ž2. reduces to the solution of the linearŽg . Žg .
algebraic equations and to the computing of the
collision integrals containing the cross sections of

Žcorresponding slow inelastic process vibrational and
.chemical transitions . In the next section some sim-

plifications of the linear systems and integral brack-
ets are proposed.
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6. Simplified formulas for the rate coefficients

The systems of algebraic equations for the expan-
Ž . Ž .sion coefficients f and g 45 and 49 canci,r p ci,r p

be simplified if one keeps only the first non-vanish-
Žing terms of the expansions rs1, ps0 and rs0,

. Ž . Ž .ps1 . In this case systems 45 and 49 take the
form:

n c̃ci rotcidk cidkb f qb f sy ,Ž .Ý 1100 dk ,10 1001 dk ,01 n c qc˜ ˜tr rotdk

n cci rot ,cicidk cidkb f qb f s .Ž .Ý 0110 dk ,10 0011 dk ,01 n c qc˜ ˜tr rotdk

54Ž .

b cidk g qb cidk gŽ .Ý 1100 dk ,10 1001 dk ,01
dk

3 n 3 m c2
ci c c slŽ0.s Fy y J du ,ÝH ci j cž /2 n 2 2kTj

b cidk g qb cidk gŽ .Ý 0110 dk ,10 0011 dk ,01
dk

X
cin ´ci j slŽ0.sc Fq J du . 55Ž .ÝHrot ,ci ci j cn kTj r

Ž0. ² ci: c cR ´ q´ q´Ž .Ý rci j i
ci

Fs
rT c qcŽ .tr rot

The integral brackets in the left hand sides of
these systems may be calculated using the assump-

w xtions discussed in Refs. 5,33–35 . First, all complex
collisions are assumed to be rare and are neglected,
i.e. we neglect the collisions in which the internal
states of both colliding molecules change, or in
which both internal modes of one of the molecules

w xchange in one collision. Furthermore like in Ref. 34
we consider the internal and translational motions as

w xthe uncorrelated ones. Then, following 5 we sup-
pose that in the most frequent collisions the collision
diameter and deflection angle do not depend on the
vibrational level of a molecule. Therefore the cross
sections of the elastic collisions and the collisions

leading to the RT exchange are independent from
the vibrational state. Finally, the simplified expres-
sions for the bracket integrals are obtained:

x x m mci bn c bcicib skT 5 qÝ1100
) 2A m m qmŽ .cb cbb/c c b

n/i

4T x x m2
ci bn b

q 2p m m qmŽ .cb c b

=

2c c 4T x crot ,ci rot ,bn ci rot ,ci
q q ,ž /z z p m zcibn bnci c cici

56Ž .
x x m mci dk c dcidkb sy5kT1100

) 2A m m qmŽ .cd cd c d

4T x x m mci dk c d
q 2p m m qmŽ .cd c d

=
c crot ,ci rot ,dk

q , c/d or i/k ,Ž .ž /z zcidk dk ci

57Ž .

4T x x mci bn bcicib sy Ý1001
p m m qmŽ .cb c bb/c

n/i

=
c 4T x 2 crot ,ci ci rot ,ci

y , 58Ž .
z p m zcibn c cici

4T x x m cci dk d rot ,dkcidkb sy ,1001
p m m qm zŽ .cidk c d dk ci

c/d or i/k , 59Ž . Ž .

4T x x c 4T x 2 cci bn rot ,ci ci rot ,cicicib s q ,Ý0011
p m z p m zcb cibn c cicib/c

n/i

60Ž .

b cidk s0, c/d or i/k , 61Ž . Ž .0011

b cidk sb dk ci 62Ž .0110 1001

Here the following notations are introduced: x sci

n rn is the dimensionless number density ofci

molecules of c chemical species at the ith vibra-
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tional level, z are the rotational collision num-cidk

bers, m and m are the fictitious viscosity coeffi-c cd

cients:

1r25 2p m kTŽ .c
m s ,c 2 Ž2 ,2.)16 ps Vc c

1r25 2p m kTŽ .cd
m s , 63Ž .cd 2 Ž2 ,2.)16 ps Vcd cd

s is the collision diameter.cd

The collision integrals V Ž l,r . are introduced ascd

follows:

1r2
`kT

Ž l ,r . 2 2 rq3 Ž l .V s exp yg g QQ d g ,Ž .Hcd 0 0 cd 0ž /2p m 0cd

64Ž .

QQ Ž l .s2p 1ycos lx b , g b db.Ž .Ž .Hcd cd

Ž .Here x b, g is the deflection angle, b is thecd

impact parameter. The reduced collision integrals
V Ž l,r .) have such a form:cd

V Ž l ,r .
cdŽ l ,r .)V s 65Ž .cd Ž .l ,rVŽ .cd h .s .

where the collision integrals V Ž l ,r . are calcu-Ž .cd h.s.
lated for the hard spheres model. The function A)

cd

is given by:

V Ž2,2.)
cd

)A s . 66Ž .cd Ž1 ,1.)Vcd

We would like to note here that in the general case
all the quantities A) , V Ž l,r ., m should depend oncd cd cd

the vibrational state of the particles. In the present
paper we use the assumption about the independence
of the collision diameter and deflection angle on the

Ž .vibrational level: s s s , x b, g sc i d k c d c i d k
Ž .x b, g .cidk

The rotational collision numbers z related tocidk

the rotational relaxation times t rot are introducedcidk
w xby analogy to Refs. 34,35 :

4 pt rot
cidk

z s , 67Ž .cidk
p mcidk

p is the pressure. The relaxation time t meanscidk

the rotational relaxation time for the c species at the
ith vibrational level at the collisions with the
molecules of d species at the k th vibrational level.
These relaxation times are connected with the reso-
nance defect in the inelastic RT exchange and are
given by the expressions similar to those introduced

w xin Refs. 34,35 :

1 2n 2 Žrap.² :s De ,Ž . cicicicirot ct rot ,cicici

1 4n Žrap.² :s De De 68Ž .cidkci cidkrot ct rot ,cicidk

Ž .Here the averaging 53 is performed in respect to
the cross sections of rapid processes: elastic colli-
sions and RT exchange, the resonance defects at the
collisions are introduced as

De se X
ci qe X

dk ye ci ye dk , De se X
ci ye ci

cidk j l j l c i j j

69Ž .

The computation or experimental measurement of
the relaxation times t rot depending on the partner incidk

the collision remains a very complicated task. Usu-
ally, all the relaxation times and therefore the colli-
sion numbers z are approximated by the timescidk

rot Ž .t collision numbers z independent on theci ci

chemical and vibrational species d, k of the partner.
Furthermore, if one assumes the rotational relaxation
time to be independent of the vibrational state, then
t rot may be approximated by the relaxation time t rot

ci c

of chemical species, its value can be measured exper-
Ž w x.imentally see, for instance, Refs. 36 or calculated

w xusing the Parker model 37 . The elastic collision
integrals, that appear in expressions for the bracket

Ž . Ž .integrals 56 – 62 have been computed and tabu-
Ž w x.lated by many authors see Refs. 38,39 . The analy-

sis of the transport coefficients calculated on the
basis of different sources for the elastic collision

w xintegrals is presented in Ref. 40 , and we can recom-
w x w xmend the results of Refs. 41 and 39 for a practical

w xuse. These data were used in Ref. 42 .
Ž . Ž .Finally, the simplified systems 54 , 55 with

Ž . Ž .coefficients 56 – 62 have been derived for the
calculation of the expansion coefficients f , fci,10 ci,01

and g , g . Keeping only these terms in ex-ci,10 ci,01
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Ž .pression 52 , one can obtain the simplified expres-
sion for the rate coefficient of vibrational energy
exchange P iX kXŽ1. in the form:cdi k

m g qm g 3X X X Xd ci ,10 c dk ,10 Ž .i k Ž1. i k 0P s Pcdik cdi kžm qm 2c d

mcd Ž .2 vibr² :y g cidk /2kT

g m Eci qg m Edk
dk ,01 c r ci ,01 d r

y
kT

=
X X Ž . Ž .i k 0 ci vibr² :P qg e cidkcdi k ci ,01 j

Ž .dk vibr² :qg e . 70Ž .dk cidk ,01 l

The remaining rate coefficients P Ž1. and P Ž2. mayŽg . Žg .
be written similarly using the corresponding averag-
ing operator.

It should be noted that systems of algebraic equa-
Ž . Ž .tions 54 , 55 coincide with the systems for the

calculation of the bulk viscosity coefficients and
w xrelaxation pressure 5 , and therefore the algorithm

proposed in the present paper may be used for the
calculation of these transport coefficients.

7. Conclusions

In this paper the multi-level kinetic theory ap-
proach is used for the modelling of the nonequilib-
rium rates of vibrational energy transitions, dissocia-
tion, recombination and exchange reactions in a re-
acting gas mixture flow. The zero and first order
approximations of the generalized Chapman-Enskog
method are considered, and the algorithms for the
calculation of the state-to-state transition rates are
presented. The zero order rate constants correspond
to the Maxwell-Boltzmann distribution over veloci-
ties and rotational energies. The first order approxi-
mation takes into account weak deviations from the
Maxwell-Boltzmann distribution over translational
and rotational energies and strong nonequilibrium
over vibrational energies. The first order rates of the
vibrational energy transitions and chemical reactions
for different vibrational levels depend not only on
the gas temperature but also on all vibrational level
populations and atomic number densities and include
the term proportional to =Pz. The formulas obtained

express the first order rate coefficients in terms of
the solutions of the linear algebraic equations, colli-
sion integrals containing the cross sections for slow

Žprocesses vibrational energy transitions and chemi-
.cal reactions , elastic collision integrals and the in-

Želastic ones for the rapid process translational-rota-
.tional energy exchange . The last integrals are con-

nected with the rotational relaxation times that can
be measured experimentally. The formulas derived in
the paper can be inserted to the Navier-Stokes com-
putational codes for the rigorous calculation of the
strong nonequilibrium gas flow parameters.
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