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Heat transfer in a high temperature reacting gas flow is investigated taking into account the influence
of strong vibrational and chemical nonequilibrium. Rapid and slow vibrational energy exchanges in
a mixture of molecular gases with realistic molecular spectra are taken into account and the
deviation from the Boltzmann distribution over vibrational levels is studied. A kinetic theory
approach is developed for the modeling of transport properties of a reacting mixture of polyatomic
gases and a generalized multitemperature model is given. This theoretical model is applied for the
analysis of the heat transfer and diffusion behind a strong shock wave propagating in air. The heat
conductivity, diffusion coefficients, and heat flux are calculated on the basis of this model and
compared to the one-temperature approach. The influence of anharmonicity of molecular vibrations
is evaluated. ©2000 American Institute of Physics.@S1070-6631~99!00807-7#

I. INTRODUCTION

The investigation of high temperature reacting gas flows
like those around space vehicles requires adequate models
for transport properties such as thermal conductivity, diffu-
sion, and viscosity. The excitation of internal degrees of free-
dom and nonequilibrium chemical reactions should be taken
into account in the modeling of mass and heat transfer in real
gas flows. The kinetic theory approach gives theoretical
models for dissipative processes under different nonequilib-
rium conditions. Starting from Refs. 1 and 2 the kinetic
theory of molecular gases was developed by many authors; a
bibliography can be found in Refs. 3–5. Most results con-
cerning transport properties of reacting mixtures were ob-
tained under the condition of weak vibrational nonequilib-
rium. Such models are based on the assumption that the
distribution over internal energies deviates weakly from the
Boltzmann one, and it is supposed that all exchanges of in-
ternal energy have comparable rates which are much larger
than the chemical reaction rates. But at high temperature it is
important to take into account different rates of various en-
ergy exchanges because some of them become comparable
with the rates of chemical reactions. Under such conditions
the chemical–vibrational coupling can influence significantly
the gas flow parameters.6–9 Kinetic models of transport prop-
erties of reacting gas flows taking into account different rates
of various vibrational energy exchanges are given in Refs. 10
and 11 and in Ref. 12 where some applications are also pre-
sented. In the present paper heat transfer in a high tempera-
ture reacting flow behind a shock wave is studied using the
method given in Ref. 11.

We consider the following relation between the charac-
teristic times of different processes in a reacting mixture:

tel,t r,tVV1
!tVV2

,tRVT,t react;u. ~1!

Heretel , t r , andt react are, respectively, the mean times be-
tween collisions with translational, rotational energy transfer
and those with chemical reactions,u is the macroscopic re-
laxation time,tVV1

is the mean time between the collisions
with an exchange of vibrational quanta between molecules of
the same chemical species,tVV2

is that for the vibrational
energy exchanges between different species,tVRT is the time
between collisions with inelastic translational–rotational–
vibrational transfer. The condition~1! corresponds to rapid
translational and rotational relaxation and rapid vibrational
energy exchange between molecules of the same chemical
species. From many experimental data6 such a relation is
known to be valid in vibrationally excited gases at high tem-
perature and also in nozzle streams and expanding flows.
With increasing the gas temperature, the characteristic time
of VT relaxation becomes comparable totVV1

andtVV2
, es-

pecially for the reactions with a high threshold or for slow
reactions, so that the condition is modified as follows:

tel,t r,tVV1
;tVV2

;tRVT!t react;u. ~2!

In this case the one-temperature approach follows from the
kinetic equations. This model is widely used in chemical
kinetics but it does not allow one to study the vibrational–
chemical coupling in the vibrational nonequilibrium zone. In
the present paper the kinetic theory treatment of transport
properties of reacting mixture of polyatomic gases is per-
formed for condition~1!. The generalized multitemperature
model based on non-Boltzmann distributions and taking into
account realistic molecular spectra is given. This theoretical
model is applied for the investigation of heat transfer and
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diffusion in a nonequilibrium five component reacting mix-
ture behind a plane shock wave propagating in air. The re-
sults are compared with the ones obtained for the harmonic
oscillator model and also in the one-temperature approach
under condition~2!.

II. MULTITEMPERATURE APPROACH

A. Kinetic equations

We consider the kinetic equations for distribution func-
tions f ci j (r ,u,t) for every chemical speciesc, vibrational i,
and rotational energy levelsj over the velocityu, and spatial
coordinates:13

] f ci j

]t
1u

] f ci j

]r
5

1

«
Jci j

rap1Jci j
sl . ~3!

HereJci j
rap andJci j

sl are the collision integrals of rapid and slow
processes, and«5t rap/tsl is the small parameter, with
t rap, tsl the average times between the frequent and rare col-
lisions, respectively. Under condition~1! the operatorJci j

rap

may be written in the form

Jci j
rap5Jci j

el 1Jci j
r 1Jci j

VV1 . ~4!

Here Jci j
el , Jci j

r , Jci j
VV1 are the collision integrals correspond-

ing, respectively, to elastic collisions, collisions with rota-
tional energy change, and collisions with the exchange of
vibrational quanta between molecules of the same chemical
species.

The operatorJci j
sl has the form

Jci j
sl 5Jci j

VV21Jci j
TRV1Jci j

react. ~5!

Here the collision integralsJci j
VV2 andJci j

TRV describe theVV2

exchanges of vibrational energy between different species
and translational, rotational, and vibrational energy ex-
changes. The integralJci j

react may be split into parts corre-
sponding to collisions with chemical exchange reactions and
to collisions with dissociation and recombination:

Jci j
react5Jci j

react (2↔2)1Jci j
react (2↔3) . ~6!

Expressions for the latter collision operators can be found in
Refs. 13–16,4. The general formula for the inelastic collision
integralJci j

inel for a mixture has the form

Jci j
inel5 (

dkli8 j 8k8 l 8
E S f ci8 j 8 f dk8 l 8

si j
c skl

d

si 8 j 8
c sk8 l 8

d 2 f ci j f dklD
3gscd, i jkl

i 8 j 8k8 l 8d2Vdu1 , ~7!

wheresi j
c andskl

d are statistical weight factors andscd, i jkl
i 8 j 8k8 l 8 is

the inelastic collision cross section of the molecules of
chemical speciesc and d, respectively at thei th and kth
vibrational levels and j th and l th rotational ones;
i 8, j 8, k8, l 8 are the labels of the energy levels after collision;
g5u2u1 is the relative velocity, andd2V is the solid angle
referring to the relative velocity after collision. The expres-
sions forJci j

VV1 , Jci j
VV2 , Jci j

TRV, Jci j
r , Jci j

el can be written in such
manner using the cross sections for corresponding collisions.

The collision operatorJci j
react (2↔2) has the form

Jci j
react (2↔2)5 (

dc8d8kli 8 j 8k8 l 8
E S f c8 i 8 j 8 f d8k8 l 8

si j
c skl

d

si 8 j 8
c8 sk8 l 8

d8

3S mcmd

mc8md8
D 3

2 f ci j f dklD
3gscd, i jkl

c8d8, i 8 j 8k8 l 8d2V du1 , ~8!

where scd, i jkl
c8d8, i 8 j 8k8 l 8 is the cross section of the chemically

active collision. The expression forJci j
react (2↔3) in a mixture

of diatomic molecules and atoms can be written in the form

Jci j
react (2↔3)5 (

dklk8 l 8
E S f c8 f f 8 f dk8 l 8\

3
si j

c skl
d

sk8 l 8
d

3S mc

mc8mf 8
D 3

2 f ci j f dklD
3gscd, i jkl

c8 f 8d, k8 l 8du1 du8 du18 du28 , ~9!

wherescd, i jkl
c8 f 8d, k8 l 8 is the cross section for dissociation of the

molecule ofcth species at thei th and j th vibrational and
rotational levels in a collision with the moleculedth species
at kth andl th vibrational and rotational levels;c8, f 8 are the
atomic species product of dissociation,k8 and l 8 are the
vibrational and rotational levels of the partner after the col-
lision ~usually it can be supposed thatk85k, l 85 l ); u, u1

andu8, u18 , u28 are the velocities of particles before and after
collision, respectively.

B. Zero-order distribution functions and macroscopic
equations

Using the generalized Chapman–Enskog method given
in Ref. 11 for the solution of Eq.~3!, the zero-order distri-
bution functions may be approximated in the following form:

f ci j
(0)5

nc

Zc
si j

c expS 2
mcc

2

2kBT
2

« j
ci

kBT
2

« i
c

kBT
2qci D . ~10!

Herenc is the number density of molecules of speciesc, kB

the Boltzmann constant,T the gas temperature, andc5u
2v(r ,t), with v the macroscopic gas velocity;« j

ci is the
rotational energy of a molecule of speciesc at thei th vibra-
tional level, « i

c is the vibrational energy of a molecule of
speciesc andZc is the total partition function for speciesc.
The parametersqc can be expressed in terms of the average
number of vibrational quantaWc carried by thecth compo-
nent:

rcWc5(
i j

i E f ci j
(0) du. ~11!

The distribution function~10! is based on the system of the
collision invariants of the most frequent collisions described
by the operatorJci j

rap ~4! and reflects the conservation of mo-
mentum, total energy, and the number of vibrational quanta
for each molecular species. Similarly as for a one-component
gas,17 it is possible to introduce the temperatureT1

c of the
first vibrational level of speciesc as follows:
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qc5
«1

c

kB
S 1

T1
c

2
1

TD .

Since vibrational and rotational energy spectra are simulated,
respectively, in terms of an anharmonic oscillator and a rigid
rotator,18 we haveZc5Zc

trZc
r Zc

v , with the vibrational parti-
tion functions

Zc
v5Zc

v~T,T1
c!5(

i
si

c expS 2
« i

c2 i«1
c

kBT
2

i«1
c

kBT1
cD .

The distribution functions are normalized in terms of the
macroscopic parametersnc(r ,t), v(r ,t), T(r ,t), T1

c(r ,t):

(
i j

E f ci j du5(
i j

E f ci j
(0) du5nc , c51,2,. . . ,L,

(
ci j

mcE uf ci j du5(
ci j

mcE uf ci j
(0) du5rv,

~12!

(
ci j

E S mcc
2

2
1« i

c1« j
cD f ci j du

5(
ci j

E S mcc
2

2
1« i

c1« j
cD f ci j

(0)du5 3
2 nkBT1rEr1rEv ,

(
i j

i E f ci j du5(
i j

i E f ci j
(0) du5rcWc~T,T1

c!,

c51,2,. . . ,Lmol .

Here n5(cnc is the total number density of particles,r
5(cmcnc the gas density,rc5mcnc , L the total~molecular
and atomic! number of chemical species, andLmol the num-
ber of molecular species,Er and Ev are the rotational and
vibrational energy per unit mass, respectively:

rEr~T!5(
ci j

E « j
ci f ci j du, rEv5(

c
rcEv

c ,

~13!

rcEv
c~T,T1

c!5(
i

« i
cnci , nci5(

j
E f ci j du.

The expression for the level populationsnci follows from Eq.
~10!:

nci5
nc

Zc
vibr~T,T1

c!
si

c expS 2
« i

c2 i«1
c

kBT
2

i«1
c

kBT1
cD . ~14!

Equation~14! may be considered as the generalized Treanor
distribution17 for a multicomponent mixture.

If anharmonic effects are negligible, distribution~14! re-
duces to the multitemperature Boltzmann distribution,

nci5
nc

Zc
vibr

si
c expS 2

« i
c

kBTv
cD , Tv

c5T1
c . ~15!

In equilibrium (T1
c5T) Eq. ~14! reduces to the one-

temperature Boltzmann distribution.
The important feature of the distribution~14! is its de-

pendence on two temperaturesT and T1
c in comparison to

distributions for harmonic oscillators and the equilibrium

distributions which depend only on one temperature,Tv
c and

T, respectively. The distinction is due to the fact that the
rapid vibrational energyVV1 exchange inside every mode is
nonresonant in case of a realistic molecular spectrum, and
thus the vibrational energy of each species is not conserved
in such collisions.

In Ref. 11 it is shown that distribution~14! is adequate
for real vibrational level populations when the storage of
vibrational energy of the species is not very high:T1

c/T
<1. Such conditions, typical for shock waves, are consid-
ered in the present paper. In the case of the high storage of
vibrational energy like in expanding flows (T1

c/T@1) the
model developed in Ref. 19 can be used, and Eq.~14! then
describes the populations of only the low levels.

The nonequilibrium distribution functions~10! are speci-
fied in terms of the macroscopic parameters:nc(r ,t), v(r ,t),
T(r ,t), T1

c(r ,t). The differential equations for these param-
eters are obtained from Eq.~3! using the classical procedure
of kinetic theory and can be expressed in the following
form:11

dnc

dt
1nc¹–v1¹–~ncVc!5Rc

react, c51, . . . ,L, ~16!

rc

dWc

dt
1¹–qw

c 5Rc
w2WcmcRc

react1Wc¹–~rcVc!,

c51, . . . ,Lmol , ~17!

r
dv

dt
1¹–P50, ~18!

r
dU

dt
1¹–q1P:¹v50. ~19!

HereU is the total internal energy per unit mass:

rU5 3
2 nkBT1rEr1rEv1rEf , ~20!

with rEf5(c«
cnc , «c52Dc , Dc is defined by the energy

of dissociation.
The diffusion velocityVc of componentc is obtained

from

ncVc5(
i j

E cf ci j du. ~21!

Next, P is the pressure tensor,

P5(
ci j

E mcccf ci j du, ~22!

q the heat flux,

q5(
ci j

E S mcc
2

2
1« j

ci1« i
c1«cD cf ci j du ~23!

andqw
c the flux of vibrational quanta

qw
c 5(

i j
i E cf ci j du. ~24!

The expressions forRc
reactandRc

w on the right-hand sides
of the equations fornc andWc are
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Rc
react5(

i j
E Jci j

reactdu, ~25!

Rc
w5(

i j
E iJci j

sl du, ~26!

Equations~16! are the equations for number densities of
chemical species, Eqs.~18! and~19! the momentum and en-
ergy conservation equations, and Eq.~17! the relaxation
equations for the number of vibrational quanta for each com-
ponent. Equations~17! appears due to strong vibrational and
chemical nonequilibrium and rapidVV1 exchange. It may be
noticed that under condition~2! when all vibrational energy
exchanges occur more often than chemical reactions, the sys-
tem of macroscopic equations includes only Eqs.~16!, ~18!,
and ~19!.

The transport terms~21!–~24! and production terms
~25!, ~26! in Eqs. ~16!–~19! are found proceeding from the
distribution functions. In the zero-order approximation~10!,
q(0)50, qw

c(0)50, Vc
(0)50, P(0)5pI ,

Rc
w(0)5(

i j
E iJci j

sl(0) du, ~27!

Rc
react(0)5(

i j
E Jci j

react(0)du. ~28!

The expressions forRc
react(0)andRc

w(0) are obtained after sub-
stitution of the distributions~10! into the collision integrals
~6!:

Rc
react(0)5Rc

2↔2(0)1Rc
2↔3(0) ,

~29!

Rc
2↔2(0)5 (

dc8d8
~nc8nd8kc8d8

cd
2ncndkcd

c8d8!,

Rc
2↔3(0)5(

d
nd~nc8nf 8krec,d

c 2nckcd
diss!, ~30!

where kc8d8
cd (T,T1

c ,T1
d), kcd

diss(T,T1
c ,T1

d), krec,d
c (T,T1

c ,T1
d) are

the nonequilibrium rate coefficients for exchange reactions,
dissociation, and recombination, respectively. The con-
straints connecting the rate constants of the forward and
backward reactions follow from the detailed balance prin-
ciple

kc8d8
cd

kcd
c8d8

5
ZcZd

Zc8Zd8

,
krec,d

c

kcd
diss

5
Zc

Zc8
tr Zf 8

tr , ~31!

Zc5Zc
tr~T!Zc

r ~T!Zc
v~T,T1

c!.

The nonequilibrium rate coefficients may be written in the
form

kcd
c8d85

1

Zc
vZd

v (
iki 8k8

si
csk

d

3expS 2
« i

c1«k
d2 i«1

c2k«1
d

kBT
2

i«1
c

kBT1
c

2
k«1

d

kBT1
dD

3Pcdik
c8d8 i 8k8~T!, ~32!

kcd
diss5

1

Zc
vZd

v (
ikk8

si
csk

d

3expS 2
« i

c1«k
d2 i«1

c2k«1
d

kBT
2

i«1
c

kBT1
c

2
k«1

d

kBT1
dD

3Pcdik
diss,dk8~T!, ~33!

where the state-to-state rate coefficientsPcdik
c8d8 i 8k8(T),

Pcdik
diss,dk8(T) are obtained after averaging the inelastic cross

sections of reactive collisions over velocities and rotational
energies.16 Usually in Eq.~33! it is supposed thatk85k and

thereforePcdik
diss,dk85Pcdik

diss . The rate coefficientskcd
c8d8 , kc8d8

cd

and kcd
diss have a dimension m3 s21, and the dimension of

krec,d
c is m6 s21.

C. First-order solution and transport terms

The first-order distribution functions are derived in Ref.
11 using the generalized Chapman–Enskog method for Eq.
~3!:

f ci j
(1)5 f ci j

(0)S 2
1

n
Aci j–¹ ln T2

1

n (
d

Aci j
d(1)

–¹ ln T1
d

2
1

n (
d

Dci j
d
–dd2

1

n
Bci j :¹v2

1

n
Fci j¹–v2

1

n
Gci j D .

~34!

The functions Aci j , Aci j
d(1) , Bci j , Dci j

d , Fci j and Gci j are
found from linear integral equations and additional con-
straints following from the normalizing conditions.11

The first-order distribution functions in the multitem-
perature approximation contain gradients of the gas tempera-
tureT, of the temperatures of the first vibrational levelsT1

c of
the different chemical species, and of the corresponding
number densities. These distribution functions describe the
strong vibrational and chemical nonequilibrium and differ
from the weak nonequilibrium solution.2 In the latter case
T1

c5T, so thatf ci j
(1) contains the gradient of the gas tempera-

ture ¹T only and does not containGci j .
Now the pressure tensor, diffusion velocities, the flux of

total energy, and the fluxes of vibrational quanta for each
molecular species in the first-order approximation will be
derived. The distribution functions~34! provide the follow-
ing expressions for the pressure tensor:

P5~p2prel!I22mS2h¹–vI . ~35!

Herem, h are the shear and bulk viscosity coefficients,prel is
the relaxation pressure:

m5
kBT

10
@B,B#, h5kBT@F,F#, prel5kBT@F,G#.

~36!

The bracket integrals@A,B# are introduced in Ref. 11 in the
form

@A,B#5(
cd

ncnd

n2
~@A,B#cd8 1@A,B#cd9 !, ~37!
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where

@A,B#cd8 5
1

2ncnd
(

i jkl i 8 j 8k8 l 8
E f ci j

(0)f dkl
(0)~Bci j2Bci8 j 8!

3~Aci j2Aci8 j 8!gscd, i jkl
i 8 j 8k8 l 8d2V du du1 ,

@A,B#cd9 5
1

2ncnd
(

i jkl i 8 j 8k8 l 8
E f ci j

(0)f dkl
(0)~Bci j2Bci8 j 8!

3~Adkl2Adk8 l 8!gscd, i jkl
i 8 j 8k8 l 8d2V du du1 .

The bracket integrals contain the cross sections of the most
frequent collisions.

The additional terms in the pressure tensor such as the
relaxation pressureprel and bulk viscosityh appear in this
case due to the inelastic translational–rotationalTR energy
transfers andVV1 vibrational exchanges in the collisions be-
tween molecules of the same chemical species. They are ex-
pressed as a sum of two terms:

h5h r1hv , prel5prel
r 1prel

v ,

which are related to the inelasticTR and nonresonantVV1

energy exchanges inside every mode. The bulk viscosity
phenomenon is widely discussed in the literature.20,13,21–25

The transport kinetic theory shows that the appearance of
bulk viscosity in the diagonal elements of the pressure tensor
is connected with weakly nonequilibrium inelastic
processes.2,23,13,21,26The distribution functions~10! corre-
spond to a weak deviation from the Maxwell–Boltzmann
equilibrium distribution over translational and rotational en-
ergy and to a strong vibrational and chemical nonequilib-
rium. In this case bulk viscosity describes the equilibration
only due to rapid inelastic processes~translational–rotational
energy exchange and nonresonantVV1 exchange of vibra-
tional quanta inside each mode!.26 The equations forf ci j

(1)

contain the operator of only rapid processes. Strong vibra-
tional and chemical nonequilibrium leads to additional relax-
ation equations for the number densities of species and for
the numbers of vibrational quanta~or for the fictitious vibra-
tional temperatureT1

c) of each molecular species and also to
the appearance of relaxation pressure. The modeling of non-
equilibrium processes only in the frame of bulk viscosity
without additional relaxation equations is possible only in
the case when all inelastic processes are weakly nonequilib-
rium and have the characteristic times much shorter than the
mean time of change of macroscopic parameters.1,2 On the
contrary, if all inelastic processes can be considered as the
slow ones, the bulk viscosity does not appear, and relaxation
processes in all internal modes should be described by the
equations for the populations of internal states.

The diffusion velocity in the first-order approximation
takes the following form:

Vc52(
d

Dcddd2DTc
¹ ln T2(

d
DTc

d(1)¹ ln T1
d , ~38!

where

dc5¹S nc

n D1S nc

n
2

rc

r D¹ ln p

is the diffusive driving force for each chemical species. The
diffusion and thermal diffusion coefficientsDcd andDTc

are:

Dcd5
1

3n
@Dc,Dd#, DTc

5
1

3n
@Dc,A#. ~39!

Additional thermal diffusion coefficientsDTc

d(1) at the gradi-

ents of T1
c are found to be zero under the assumption of

uncorrelated translational and internal motions:

DTc

d(1)5
1

3n
@Dc,Ad(1)#50. ~40!

The heat flux and the flux of vibrational quanta contain
the gradients ofT, vibrational temperatures of the first level
of every componentT1

c and the gradients ofnc involved in
dc :11

q52l trv8 ¹T2(
c

lv
c¹T1

c2p(
c

DTc
dc

1(
c

~ 5
2 kBT1^« j

c& r1^« i
c&v1«c!ncVc , ~41!

and

«1
cqw

c 52lvt
c ¹T2lvv

c ¹T1
d . ~42!

Here ^« j
c& r and ^« i

c&v are the averaged rotational and vibra-
tional energies. The thermal conductivity coefficients are de-
fined as follows:

l85
kB

3
@A,A#, lvt

c 5
kBT1

c

3T
@Ac(1),A#,

~43!

l tv
c 5

kBT

3T1
c

@A,Ac(1)#, lvv
c 5

kB

3
@Ac(1),Ac(1)#,

l trv8 5l81(
c

lvt
c , lv

c5l tv
c 1lvv

c . ~44!

The coefficientl8 determines the transport of the transla-
tional and rotational energy and a small part of vibrational
energy which transfers to the translational one in the rapid
process due to the nonresonant character ofVV1 exchange in
all vibrational modes:l85l tr1l r1la . The coefficients
lvv

c correspond to the transport of the total number of vibra-
tional quantaWc of each molecular species. The remaining
coefficientslvt

c , l tv
c are determined by the transport of vi-

brational quanta as well as by the loss or gain of vibrational
energy in nonresonantVV1 exchange in speciesc. For har-
monic oscillatorslvt

c 5l tv
c 5la50, and vibrational bulk vis-

cosity and vibrational relaxation pressure vanish too, because
rapid VV1 exchange is resonant and does not contribute to
these transport coefficients.

D. Thermal conductivity, diffusion, and thermal
diffusion coefficients

In order to calculate the thermal conductivity and diffu-
sion coefficients, the linear integral equations for the func-
tionsAci j , Aci j

d(1) , andDci j
d following from Eq.~3! have to be
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solved. Approximate solutions are found using finite expan-
sions in Sonine and Waldmann-Tru¨benbacher orthogonal
polynomials:

Aci j5
mcc

2kBT (
rpq

ac,rpqS3/2
(r )S mcc

2

2kBTD
3Pj

(p)S « j
c

kBTD Pi
(q)S « i

c2 i«1
c

kBT D , ~45!

Aci j
d(1)5

mcc

2kBT (
r

ac,r
d(1)Pi

(r )S i«1
c

kBT1
cD , ~46!

Dci j
d 5

mcc

2kBT (
r

dc,r
d S3/2

(r )S mcc
2

2kBTD . ~47!

The ensuing systems of linear algebraic equations for the
expansion coefficientsac,rpq , ac,r

d(1) , dc,r
d are given in Ref.

11.
Substituting the expansions~45!–~47! into Eqs.~39! and

~43! and using the normalizing conditions for the polynomi-
als, one can express the diffusion, thermal diffusion, and
thermal conductivity coefficients in terms of the expansion
coefficients. The lowest-order approximations are

Dcd5
1

2n
dd,0

c , ~48!

DTc
52

1

2n
ac,000, ~49!

l trv8 5(
c

nc

n S 5kB

4
ac,1001

kB
2Cr ,c

mc
ac,0101

kB
2Cv,c

T

mc
ac,001D ,

~50!

lv
c5

nc

n

kB
2Cv,c

T1

mc
ac,1

c(1) , lvt
c 5

nc

n

kB
2Cw,c

T

mc
ac,001,

~51!

lvv
c 5

nc

n

kB
2Cw,c

T1

mc
ac,1

c(1) .

Here modified specific heats at constant volume are intro-
duced as follows:

Cr ,c5
]

]T
Er

c , Cv,c
T 5

]

]T
Ev

c~T,T1
c!,

Cv,c
T1 5

]

]T1
c

Ev
c~T,T1

c!,

~52!

Cw,c
T 5

]

]T
~«1

cWc~T,T1
c!!, Cw,c

T1 5
]

]T1
c
~«1

cWc~T,T1
c!!,

Ca,c
T 5Cv,c

T 2Cw,c
T , Ca,c

T1 5Cv,c
T1 2Cw,c

T1 .

In this way all transport coefficients are expressed in
terms of macroscopic parameters, elastic and inelastic colli-

sion integrals of the most frequent collisions, and nonequi-
librium specific heats~52! determined by the nonequilibrium
distribution ~14!. The macroscopic parameters should be
found from the macroscopic equations~16!–~19!. Similarly
as in Ref. 19, the calculation shows that the contribution of
the inelastic collision integrals to the thermal conductivity
and diffusion coefficients is rather small and does not exceed
2%. The main information about the nonequilibrium vibra-
tional distributions is contained in the specific heats.

It should be pointed out that simplified formulas for the
evaluation of transport properties in reacting gas mixtures
based on the various assumptions were obtained by several
authors. One can find a review of the models in Refs. 27–29.
In Ref. 27 the approximate expressions for transport coeffi-
cients are given in the cases of thermal equilibrium, frozen
and nonequilibrium mixtures of dissociating and ionized
gases. In the nonequilibrium case the vibrational modes are
supposed to be completely excited and the single vibrational
temperature is introduced for a mixture. The assumption
about the same vibrational temperature for all species is
questionable and is not always adequate for realistic non-
equilibrium conditions.

The one-temperature weakly nonequilibrium regime in
mixtures of ionized and neutral gases is considered in Ref.
28. Simplified useful formulas for transport properties are
obtained on the basis of the Hirschfelder approximation30

and using chemical equilibrium distributions.
In paper29 numerous results concerning the transport co-

efficients of dissociating gases of Earth and Martian atmo-
spheres are reported. The transport properties have been cal-
culated in the frame of the one-temperature Chapman–
Enskog approximation for the chemical equilibrium mixture
composition. Empirical approximate expressions for the
transport coefficients are also analyzed.

All these papers do not take into account the different
rates of VV and TRV energy exchange and the non-
Boltzmann vibrational distributions. It is supposed that the
distributions over vibrational energy and chemical species
deviate only slightly from thermal equilibrium. In the present
study we calculate the transport coefficients using expres-
sions obtained in the case of strong vibrational and chemical
nonequilibrium in mixtures of neutral particles.

III. THE ONE-TEMPERATURE APPROACH

The results obtained above in the generalized multitem-
perature approach can be compared with the ones obtained
on the basis of the one-temperature model which is appro-
priate under condition~2!. In this case the zero-order solu-
tion f ci j

(0) has the form of thermal equilibrium Maxwell–
Boltzmann distribution with the gas temperatureT and is
determined by the macroscopic parametersnc(r ,t), v(r ,t),
T(r ,t). These macroscopic parameters are found from the
equations of nonequilibrium one-temperature chemical kinet-
ics.

The first-order distribution functions are obtained in the
form:
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f ci j
(1)5 f ci j

(0)S 2
1

n
Aci j–¹ ln T2

1

n (
d

Dci j
d
–dd2

1

n
Bci j :¹v

2
1

n
Fci j¹•v2

1

n
Gci j D . ~53!

These distribution functions describe strong chemical non-
equilibrium under the condition of weak vibrational–
rotational nonequilibrium. They contain only the gradient of
the gas temperatureT and do not depend on the vibrational
temperature gradients as in the multitemperature approach.

In this case the equations for the coefficients of the gra-
dients contain the operators of rotational and all vibrational
inelastic transfers. The pressure tensor is defined by Eq.~35!,
the appropriate kinetic coefficients can be found from Eq.
~36! with bracket integrals containing not only the cross sec-
tions of theVV1 exchange but all inelastic energy transfers.
Consequently the relaxation pressure and vibrational bulk
viscosity coefficient also depend on the cross sections of all
energy exchanges.

The diffusion velocity and the total heat flux contain the
gradients ofnc and gas temperature and have the form:

Vc52(
d

Dcddd2DTc
¹ ln T, ~54!

q52l8¹T2p(
c

DTc
dc

1(
c

~ 5
2 kBT1^« i j

c &1«c!ncVc . ~55!

Here the diffusion, thermal diffusion, and thermal conductiv-
ity coefficients are expressed by Eq.~39! and the first expres-
sion in~43! but the functionsAci j are found from the integral
equations different from the ones in the multitemperature
case. In order to solve integral equations for the functions
Aci j one can expand them into double series of the Sonine
and Waldmann–Tru¨benbacher polynomials over the dimen-
sionless translational and internal energies. The equations for
the coefficientsac,rp of these expansions are given in Ref.
11. The thermal conductivity coefficient becomes:

l85(
c

nc

n S 5

4
kBac,101

kB
2Cint,c

mc
ac,01D 5l t81l int8 , ~56!

where

Cint,c5
]Eint

c

]T
, rcEint

c 5(
i j

E ~« j
ci1« i

c! f ci j duc .

In the case when the rotational and vibrational spectra can be
separated, the thermal conductivity coefficientl int8 may be
written as the sum of two terms connected with the transfer
of rotational and vibrational energy:l int8 5l r81lv8 .

The diffusion and thermal diffusion coefficients are de-
fined, respectively, by Eqs.~48! and ~49!. The coefficients
dc,r

d can be found from the same system as in the multitem-
perature approach.

One should mention here that the one-temperature ap-
proximation for reacting mixtures was studied in Ref. 4,

where the tempered reaction regime is considered when the
chemical characteristic times are greater by an order of mag-
nitude than the mean free time. Expressions of transport
properties in this regime are derived and the mathematical
aspects of the linear equations for coefficients and computa-
tional algorithms are discussed.

IV. APPLICATION TO THE FLOW BEHIND A PLANE
SHOCK WAVE

In this section the nonequilibrium kinetics and transport
properties in a five-component reacting air mixture behind a
plane shock wave is studied using the multitemperature ap-
proach developed in Sec. II. The reaction system is the fol-
lowing:

N2~ i !1M

b

f

N1N1M,

O2~ i !1M

b

f

O1O1M,

N2~ i !1O

b

f

NO~ i 8!1,N,

O2~ i !1N

b

f

NO~ i 8!1O,

NO~ i !1M

b

f

N1O1M,

where M is any molecule. Since the vibrational relaxation
time of NO is rather short compared to those of N2 and O2,6

the NO molecules are close to thermal equilibrium with the
gas temperature.

A. Governing equations

The system of macroscopic equations~16!–~19! will
now be solved in the zero-order approximation. The one-
dimensional stationary version of the system is considered.
This gives an approximation of the macroscopic parameters
of the mixture which are used in order to compute the trans-
port coefficients. The numerical resolution of the complete
system~16!–~19! with dissipative terms~35!, ~38!, ~41! and
~42! requires the calculation of transport coefficients at each
step of the gas dynamic code and will be considered in a
future work.

In the zero-order approximation, the one-dimensional
stationary version of the system~16!–~19! for a multicom-
ponent mixture can be rewritten as

d

dx
~rYcv !5mcRc

react , c51, . . . ,L, ~57!

d

dx
~rYcWcv !5Rc

w , c51, . . . ,L̃mol , ~58!

d

dx
~rv21p!50, ~59!
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d

dx
~~rU1p!v !50. ~60!

whereYc5rc /r is the mass fraction of the speciesc, and
L̃mol is the number of those species that require the introduc-
tion of a distinct first-level vibrational temperatureT1

c .
The numerical code used to compute the solution of sys-

tem ~57!–~60! is the extension to real molecular spectrum of
the code31 based on the Boltzmann distribution and valid for
the harmonic oscillator model. The vector of unknowns is

X5S v

T

Yc , c51, . . . ,L

YcWc , c51, . . . ,L̃mol

D .

In order to expressdU/dx in terms ofdX/dx, we use Eqs.
~20! and ~13! and notice that

dEv
c

dx
5S Cv,c

T

Cv,c
T1
D .S J(T,T

1
c)

21
~T,Wc!

d

dx S T

Wc

D D ,

whereJ(T,T
1
c)(T,Wc) denotes the Jacobian matrix of (T,Wc)

with respect to (T,T1
c). The modified specific heatsCv,c

T and
Cv,c

T1 , as well asCw,c
T and Cw,c

T1 are defined by Eq.~52!. A

simple computation shows thatCw
T1 is nonnegative, which

ensures the invertibility ofJ(T,T
1
c)(T,Wc). Hence,

dEv
c

dx
55

S Cv,c
T 2Cv,c

T1
Cw,c

T

Cw,c
T1 D dT

dx
1

Cv,c
T1

Cw,c
T1

dWc

dx

vibrational nonequilibrium

~Cv,c
T 1Cv,c

T1 !
dT

dx

vibrational equilibrium.

The production terms~27!–~28! are expressed as functions
of (T,T1

c) and not as functions of (T,Wc). In the present
computation,T1

c is computed starting from the calculated
value of Wc for T fixed by a Newton procedure, using the
nonnegativeness ofCw,c

T1 .

B. Production terms

In this section we consider the zero-order production
terms~27! and~28! in Eqs.~57!–~60! @hereafter we will omit
the index~0! at the production terms#. Using~27! and~5! the
vibrational production termRc

w splits into three parts:

Rc
w5Rc

w,VV21Rc
w,TRV1Rc

w,react,

whereRc
w,VV2 andRc

w,TRV express the change of vibrational
quanta of molecules ofc species due to slowVV2 andTRV
vibrational energy exchange,Rc

w,reactdescribes the change of
vibrational quanta of moleculesc species due to chemical
reactions.

In our calculations we suppose that the probability of the
simultaneous translation–rotation–vibration transition is low

compared to the probability ofVT vibrational energy ex-
change, and therefore the production termRc

w,TRV reduces to
Rc

w,VT . One can introduce the relaxation time ofVT process
in molecular speciesc in the following way:

tvibr,c5
( i j i *Jci j

VT du

rc~Wc~T,T!2Wc~T,T1
c!!

5
Rc

w,VT

rc~Wc~T,T!2Wc~T,T1
c!!

~61!

and thus connect the production termRc
w,VT due toVT relax-

ation with some empirical data on the vibrational relaxation
time. We use for the computation oftvibr,c the empirical
expression of Millikan and White32 corrected by Park.33 The
production termRc

VV2 is simulated using the method de-
scribed in Ref. 6.

The chemical production termRc
react may be written in

the form:

Rc
react5N(

r
~nc,r9 2nc,r8 !S kf ,r)

s
j

s

ns,r8
2kb,r)

s
j

s

ns,r9 D ,

~62!

whereN is the Avogadro number. The summation is taken
over all the reactionsr (r 51, . . . ,R), and the products are
taken over all the speciess. Furthermorenc,r8 andnc,r9 denote
the stoichiometric coefficients of the reactionr, respectively,
associated to the reagents and to the products of the forward
reaction, andjc5nc /N denotes the molar concentration of
speciesc.

The forward and backward rate constantskf ,r and kb,r

are connected to the nonequilibrium rate coefficientskc8d8
cd ,

kcd
diss, krec,d

c given in Eqs.~32!, ~33! by the following rela-
tions:

kf ,r5
N

nc,r9 2nc,r8
kcd

c8d8 , kb,r5
N

nc,r9 2nc,r8
kc8d8

cd ,

for exchange reactions, ~63!

kf ,r5
N

nc,r9 2nc,r8
kcd

diss, kb,r5
N 2

nc,r9 2nc,r8
krec,d

c ,

for dissociation, recombination. ~64!

The dimensions of the rate constantskf ,r and kb,r are
mol21 m3 s21 for exchange reactions and dissociation, and
mol22 m6 s21 for recombination.

The vibrational production term corresponding to
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chemistry–vibration exchanges,Rc
w,react, reads:

Rc
w,react5N (

r , nc,r9 .nc,r8
~nc,r9 2nc,r8 !

3S kf ,r)
s

j
s

ns,r8
Gapp,f ,r ,c2kb,r)

s
j

s

ns,r9
Gva,b,r ,cD

1N (
r , nc,r9 ,nc,r8

~nc,r9 2nc,r8 !

3S kf ,r)
s

j
s

ns,r8
Gva,f ,r ,c2kb,r)

s
j

s

ns,r9
Gapp,b,r ,cD ,

~65!

whereGapp,c andGva,c are the numbers of vibrational quanta
gained or lost when the moleculec is created or destroyed.
The subscriptsf ,r and b,r indicate, respectively, that the
energy exchanges happen during the forward and backward
reactionr.

We will write the rate constants as

kf ,r5Zf ,rkf ,r
eq , ~66!

whereZf ,r is the nonequilibrium factor,kf ,r
eq is the rate con-

stant of a forward reaction calculated under assumption of
thermal equilibrium. For the computation of the nonequilib-
rium factor Zf ,r the state-specific rate constants are defined
by

kf ,r5
1

nc
(

i
ncikf ,r ,ci .

Then, following Treanor and Marrone34 we introduce a di-
mensionless coefficientPf ,r ,ci which may be considered as a
probability of the fact that a moleculec involved in forward
reactionr was at thei th vibrational level:

Pf ,r ,ci5
ncikf ,r ,ci

nckf ,r
.

The state-specific rate constantskf ,r ,ci do not depend on the
distribution over vibrational levelsi of molecular speciesc.
This yields

Pf ,r ,ci
eq kf ,r

eq

nci
eq

5
Pf ,r ,cikf ,r

nci
,

where the superscript ‘‘eq’’ refers to thermal equilibrium
with T1

c5T. From the last expression it follows that for each
vibrational leveli we can write:

nciPf ,r ,ci
eq

nci
eqPf ,r ,ci

5
kf ,r

kf ,r
eq

5Zf ,r ~67!

For the calculationPf ,r ,ci we use the Treanor–Marrone
model34 for dissociation and its extension to exchange reac-
tions given in Ref. 31. It is supposed that reactions occur
with equal probability in any collision that has sufficient
translational energy and that they occur preferentially from
the high vibrational levels. In Ref. 31 the probabilityPf ,r ,ci

for exchange reaction is given in the form:

Pf ,r ,ci5CrnciM ~Ar2« i
c!Fr ,ci . ~68!

Here Ar is the activation energy of the reactionr, M (Ar

2« i
c) is the fractional number of collisions with line-of-

center relative energy exceeding (Ar2« i
c), and Fr ,ci is the

probability that the moleculec is at theith vibrational level,
when colliding in a sufficiently energetic collision, will react
in the reactionr. The coefficientCr is found from the nor-
malizing condition:

(
i

Pf ,r ,ci51,

The probabilityFr ,ci in ~68! reads:

Fr ,ci5H C1 exp~2~Ar2« i
c!/kBUr ! for « i

c<Ar

C1 for « i
c.Ar ,

~69!

where Ur is an additional parameter with a dimension of
temperature andC1 is a constant independent ofi. In the
present computation,Ur is taken equal toAr /3kB .

For a Maxwell distribution over velocities, the function
M has the form

M ~Ar2« i
c!5H C2 exp~2~Ar2« i

c!/kBT!

for « i
c<Ar

C2 for « i
c.Ar ,

~70!

whereC2 is the constant independent ofi.
Taking into account Eqs.~70!, ~68! and the nonequilib-

rium Treanor distribution~14! we compute the nonequilib-
rium factors. For exchange reactions,

Zf ,r~T,T1
c!5

Sc~T,T1
c!Zc

vibr~T,T!

Sc~T,T!Zc
vibr~T,T1

c!
, ~71!

where

Sc~T,T1
c!5 (

i , « i
c<Ar

si
c expS 2 i«1

cS 1

kBT1
c

2
1

kBTD
1

« i
c

kBUr
2Ar S 1

kBT
1

1

kBUr
D D 1 (

i , « i
c
.Ar

si
c

3expS 2 i«1
cS 1

kBT1
c

2
1

kBTD 2
« i

c

kBTD . ~72!

The summation is taken over all the vibrational levels.
The backward reaction rate constant is written similarly

to ~66!, the nonequilibrium factorZb,r for exchange reaction
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is given by expression~71! whereAr50 andT1
c is the tem-

perature of the first level of a molecule being destroyed in
the backward reaction.

For dissociationZf ,r is given by expressions~71! and
~72! where Ar is adjusted to the dissociation energy of a
molecule. Note that in this case the second sum in Eq.~72!
vanishes. The nonequilibrium factor for recombination is
Zb,r51.

The number of vibrational quanta lost when the mol-
ecule c is destroyed in reactionr is ( i iP f ,r ,ci , where the
summation is taken over all the vibrational levels. This
yields the following expressions for exchange reactions,

Gva,f ,r ,c~T,T1
c!5

Vc~T,T1
c!

Sc~T,T1
c!

, ~73!

where

Vc~T,T1
c!5 (

i , « i
c<Ar

isi
c expS 2 i«1

cS 1

kBT1
c

2
1

kBTD
1

« i
c

kBUr
2Ar S 1

kBT
1

1

kBUr
D D 1 (

i , « i
c
.Ar

isi
c

3expS 2 i«1
cS 1

kBT1
c

2
1

kBTD 2
« i

c

kBTD . ~74!

By aid of the detailed balance principle it can be shown that
Gapp,b,r ,c is function of only the gas temperatureT. In ther-

mal equilibriumRc
w,react50 and from Eq.~65! it follows that

Gapp,b,r ,c(T)5Gva,f ,r ,c(T,T). The backward terms are de-
duced from the forward terms by substitutingAr50. For
dissociation,Gapp,f ,r ,c5Gva,b,r ,c50; finally Gva,f ,r ,c is ob-
tained by adjustingAr to the dissociation energy of a mol-
ecule in expression~73!.

It is to be noted that when the anharmonism of vibrations
is neglected, the expressions forZf , Zb , Gapp and Gva pre-
sented here reduce to the ones obtained in Ref. 31 for har-
monic oscillators.

The thermal equilibrium rate constantskf ,r
eq are supposed

to follow an Arrhenius law,

kf ,r
eq 5CrT

nr exp~2Ar /kBT!,

with the coefficients taken from Ref. 35. In particular, the
rate constants of dissociation are the ones given in Ref. 36.
The rate constants of exchange reactions are taken from
Refs. 37 and 38.

The backward rate constant at vibrational equilibrium
are computed from the forward ones using the chemical
equilibrium constantKr ,c :

kb,r
eq 5kf ,r

eq /Kr ,

and

Kr5S p*
RTD nr

exp~g r* /RT!,

FIG. 1. Translational and vibrational temperaturesT, T1
(c) , K, as functions

of distancex. Curve 1—T, one-temperature approach; 2, 28—T, multitem-
perature approach, anharmonic and harmonic oscillator; 3—T1

O2, 38 —Tv
O2 ,

4—T1
N2 , 48—Tv

N2.

FIG. 2. Molar fractions of molecules as functions of distancex. Curves 1,
18, 19—nN2

/n, 2, 28, 29—nO2
/n, 3, 38, 39—nNO /n. 1, 2, 3—one-

temperature approach; 18, 28, 38—multitemperature approach, anharmonic
oscillator; 19, 29, 39—multitemperature approach, harmonic oscillator.
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wherep* is the standard pressure,n r5(s(ns,r9 2ns,r8 ), R is
the universal gas constant, andg r* the affinity of the reac-
tion at standard pressure.

C. Results and discussion

The system~57!–~60! of one-dimensional ordinary dif-
ferential equations is solved using theLSODE package,39 and
thus all macroscopic parameters are computed in the relax-
ation zone behind a strong shock wave propagating in air
mixture. Using these macroscopic parameters the heat con-
ductivity, diffusion, and thermal diffusion coefficients and
the total heat flux are calculated for the same conditions. The
results are obtained on the basis of three models:

~1! Multitemperature model, anharmonic oscillator,
~2! multitemperature model, harmonic oscillator,
~3! one-temperature model.

The results are presented in Figs. 1–6. In Fig. 1 the gas
temperature and the vibrational temperatures of N2 and O2

computed in the three approaches are given as a function of
the distancex from the shock front. The conditions in the
free stream are the following, respectively, for the Mach
number, temperature, pressure, and molar fractions:M0

515, T05271 K, p05100 Pa,nN2
50.79,nO2

50.21. One
can notice that the one-temperature model underestimates the
gas temperature in the beginning of the relaxation zone. It is
due to the fact that this model does not take into account the
process of excitation of the vibrational modes. In this ap-

proach it is assumed that just behind the shock front, the
distribution over the vibrational levels of molecular species
is of the one-temperature Boltzmann type. The difference
between the one-temperature and multitemperature models
decreases with the distance from the shock. The influence of
anharmonism on the temperature is small, the maximum de-
viation does not exceed 5% onTv

O2 . The behavior ofT1
N2 ,

Tv
N2 and T1

O2 , Tv
O2 reflects the relation between relaxation

times of N2 and O2. In the region close to the front where
vibrational excitation plays a more important role compared
to chemical reactions,T1

O2 andTv
O2 are much higher thanT1

N2

and Tv
N2 due to rapid vibrational excitation of O2 (tvibr,O2

!tvibr,N2
,32!. Then the effects of chemical reactions and vi-

brational relaxation become comparable. A similar behavior
of Tv

O2 andTv
N2 in air mixtures is shown in Refs. 7 and 31.

With rising x the gas temperature and vibrational tempera-
tures converge to the equilibrium value:T1

O2,eq
5Tv

O2,eq

5T1
N2,eq

5Tv
O2,eq

5Teq. The results obtained in the one-
temperature approach correspond to the ones given in Ref. 6.

Figs. 2 and 3 give the molar fractions of molecular and
atomic species, respectively. The one-temperature model
does not describe the delay of dissociation, this effect may be
seen only in the frame of the multitemperature approach. It is
seen that dissociation of O2 is more rapid, whereas that of N2

is delayed. One can also see the maximum of NO concentra-
tion in the beginning of the relaxation zone. The influence of
anharmonism on the concentration of N2 is negligible~about

FIG. 3. Molar fractions of atoms as functions of distancex. Curves 1, 18,
19—nN /n, 2, 28, 29— nO /n. 1, 2—one-temperature approach; 18,
28—multitemperature approach, anharmonic oscillator; 19,
29—multitemperature approach, harmonic oscillator.

FIG. 4. Vibrational thermal conductivity coefficientslv
c in W/m K, as func-

tions of distancex. Curves 1, 18—lv
N2 , 2, 29—lv

O2 . 1, 2— multitemperature
approach, anharmonic oscillator; 18, 28— multitemperature approach, har-
monic oscillator.
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2%!, whereas it becomes much more significant for the re-
maining species~up to 25% for O2 and O and up to 36% for
NO and 34% for N!. In the case of harmonic oscillators the
results given in Figs. 1–3 coincide with the ones obtained in
Ref. 31.

The vibrational heat conductivity coefficients in thermal
nonequilibrium are plotted in Fig. 4 for the harmonic and
anharmonic oscillator models. It is seen thatlv

O2 , lv
N2 grow

rapidly in the beginning of the relaxation zone due to vibra-
tional excitation~with Tv

c andT1
c rising!. Thenlv

O2 , lv
N2 de-

crease withx due to the decrease in the molecular molar
fractions through dissociation. These coefficients are smaller
for harmonic oscillators than for anharmonic ones, the dif-
ference being about 10%–12% forlv

N2 and 18% forlv
O2 . In

translational and rotational heat conductivities anharmonicity
is negligible, these coefficients decrease withx toward the
equilibrium values.

The multicomponent diffusion coefficients of N2 for
one-temperature and multitemperature models are presented
in Fig. 5. One can see the noticeable discrepancy between the
two models~up to 40%!. The diffusion coefficients calcu-
lated in the multitemperature regime exceed the ones com-
puted in the one-temperature approximation due to the
higher value of the gas temperature obtained in the former
case. Near equilibrium the diffusion coefficients calculated
for the different models approach each other. It has been
shown in Ref. 12 that the diffusion and thermal diffusion
coefficients depend on the gas temperature and molar frac-
tions of species, and do not depend on the vibrational tem-

peratures, the deviation of the vibrational distribution from
the Boltzmann one does not influence these coefficients.
Strong vibrational nonequilibrium influences the diffusion
and thermal diffusion coefficients only through the macro-
scopic parametersT and nc . The anharmonic effects on
these coefficients are rather small~not more than 5%!.

In Fig. 6 the total heat flux calculated for the three mod-
els is given. It is seen that the one-temperature approach
leads to an overestimation of the heat flux in the beginning of
the relaxation zone because this model does not describe the
initial process of vibrational excitation and gives a very steep
drop of the gas temperature. The difference between the val-
ues of the heat flux decreases with distance from the shock
front and atx.0.5– 0.7 cm the gas flow may be described by
the simpler one-temperature model. In the multitemperature
regime with the anharmonic oscillator model the heat flux
appears to be less than in the other cases because this model
gives a more exact description of vibrational excitation espe-
cially in the beginning of the relaxation zone where the an-
harmonic effect reaches 25%.

With increasing the Mach number in the free stream the
length of the initial nonequilibrium zone, where the role of
the multitemperature model is particularly important, de-
creases due to rapid vibrational excitation at high tempera-
ture.

V. CONCLUSIONS

The multitemperature kinetic model of heat transfer in
reacting gas mixtures is developed and applied for the con-

FIG. 6. Total heat flux,q in W/m2, as a function of distancex. Curve
1—one-temperature approach; 2—multitemperature approach, anharmonic
oscillator; 3—multitemperature approach, harmonic oscillator.

FIG. 5. Multicomponent diffusion coefficients,Dcd in m2/s, as functions of
distancex. Curves 1, 18—DN2– O2

, 2, 28—DN2– NO, 3, 38—DN2– O, 4, 48—
DN2–N . 1–4–one-temperature approach; 18—48—multitemperature ap-
proach, anharmonic oscillator.

231Phys. Fluids, Vol. 12, No. 1, January 2000 Multitemperature kinetic model for heat . . .



ditions in the relaxation zone behind a strong shock wave.
The macroscopic gas parameters~gas temperature, vibra-
tional temperatures of the first levels of the molecular spe-
cies, molar fractions of species!, heat conductivity, diffusion
coefficients, and heat flux are examined on the basis of this
model. The computations have been performed for the five-
component reacting air mixture with dissociation, recombi-
nation, and exchange reactions taken into account. A com-
parison is made with the results obtained in the one-
temperature approach. A significant difference is found in
the beginning of the relaxation zone just after the shock
front. The one-temperature model gives an underestimation
of the gas temperature because it does not take into account
the initial process of vibrational excitation. It leads to a large
deviation in the computed heat flux. Hence, in the beginning
of the relaxation zone the multitemperature model should be
used. With increasing the distance from the shock front the
results deduced in the frame of the two approaches become
close to each other and the one-temperature model may be
applied.

The anharmonic effects on the macroscopic parameters,
transport coefficients, and heat flux are estimated in the re-
laxation zone behind a shock wave. The maximum influence
of anharmonism on the heat flux is found to be about 25%
within a very short initial zone. The anharmonic effect on the
diffusion, thermal diffusion, and translational–rotational heat
conductivity coefficients is negligible. Such a small influence
of anharmonism behind a shock wave may be explained by
the dominant role ofTV vibrational excitation. In the case of
VT deactivation~for example, in an expanding flow! one can
expect more significant anharmonic effects.
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Nonequilibrium Phenomena in Polyatomic Gases~Clarendon, Oxford,
1990!, Vol. 1.

6Ye. V. Stupochenko, S. A. Losev, and A. I. Osipov,Relaxation in Shock
Waves~Springer, Berlin, 1967!.

7S. A. Losev, V. N. Makarov, M. Yu. Pogosbekyan, O. P. Shatalov, V. S.
Nikolsky, ‘‘Thermochemical nonequilibrium kinetic models in strong
shock waves on air,’’ AIAA Pap.94-1990~1994!.

8G. V. Candler and R. W. MacCormac, ‘‘The computation of hypersonic
ionized flows in chemical and thermal nonequilibrium,’’ AIAA Pap.88–
0511 ~1988!.

9A. Daiß, E. Sho¨ll, H. H. Frühauf, and O. Knab, ‘‘Validation of the Uranus
Navier–Stokes code for high temperature nonequilibrium flows,’’ AIAA
Pap.93-5070~1993!.

10E. A. Nagnibeda and M. A. Rydalevskaya, ‘‘The Equations Describing a
Mixture of Nonequilibrium Viscous Dissociating Gases,’’ inAerodi-
namika Razrezhennykh Gazov, Vol. X~Leningrad University Press, Len-
ingrad, 1980! ~in Russian!.

11A. Chikhaoui, J. P. Dudon, E. V. Kustova, and E. A. Nagnibeda, ‘‘Trans-
port properties in reacting mixture of polyatomic gases,’’ Physica A247,
526 ~1997!.

12A. Chikhaoui, J. P. Dudon, E. V. Kustova, and E. A. Nagnibeda, ‘‘Kinetic
Modelling of Transport Properties in Reacting Gas Mixtures at High Tem-
peratures,’’ inRarefied Gas Dynamics, Vol. 20~Peking University Press,
Beijing, 1997!, pp. 61–66.

13S. V. Vallander, E. A. Nagnibeda, and M. A. Rydalevskaya,Some Ques-
tions of the Kinetic Theory of the Chemical Reacting Gas Mixture~Len-
ingrad University Press, Leningrad, 1977! ~in Russian!. Translation: US
Air Force FASTC–ID~RS! TO–0608–93.

14G. Ludwig and M. Heil,Boundary Layer Theory with Dissociation and
Ionization, in Advances in Applied Mechanics, Vol. VI~Academic, New
York, 1960!.

15B. V. Alexeev, A. Chikhaoui, and I. T. Grushin, ‘‘Application of the
generalized Chapman–Enskog method to the transport-coefficients calcu-
lation in a reacting gas mixture,’’ Phys. Rev. E49, 2809~1994!.

16E. A. Nagnibeda and M. A. Rydalevskaya, ‘‘The Derivation of the Equa-
tions for Macroparameters from the Kinetic Equations in the Mixture of
Dissociating Gases,’’ inAerodinamika Razrezhennykh Gazov, Vol. IX
~Leningrad University Press, Leningrad, 1977! ~in Russian!.

17C. E. Treanor, I. W. Rich, and R. G. Rehm, ‘‘Vibrational relaxation of
anharmonic oscillators with exchange dominated collisions,’’ J. Chem.
Phys.48, 1798~1968!.

18G. Herzberg,Infrared and Raman Spectra of Polyatomic Molecules~Van
Nostrand, New York, 1951!.

19E. V. Kustova and E. A. Nagnibeda, ‘‘Strong nonequilibrium effects on
specific heats and thermal conductivity of diatomic gas,’’ Chem. Phys.
208, 313 ~1996!.

20J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Pro-
cesses in Gases~North-Holland, Amsterdam, 1972!.

21S. Pascal and R. Brun, ‘‘Transport properties of nonequilibrium gas mix-
tures,’’ Phys. Rev. E47, 3251~1993!.

22G. Emanuel, ‘‘Bulk viscosity of a dilute polyatomic gas,’’ Phys. Fluids A
2, 2252~1990!.

23A. Ern and V. Giovangigli, ‘‘Volume viscosity of dilute polyatomic gas
mixtures,’’ Eur. J. Mech. B/Fluids14, 653 ~1995!.

24W. E. Meador, G. A. Miner, and L. W. Townsend, ‘‘Bulk viscosity as a
relaxation parameter: Fact or fiction?,’’ Phys. Fluids8, 258 ~1996!.
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