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Abstract

Radiative ¯ows of reacting gas mixtures with strong vibrational and chemical nonequilibrium are studied on the

basis of the kinetic theory. A closed system of macroscopic equations, taking into account the coupling of vibrational

relaxation, chemical reactions and radiative transitions, is derived. Ó 2000 Published by Elsevier Science B.V. All

rights reserved.

1. Introduction

Recent experimental and theoretical results on
nonequilibrium kinetics in high temperature and
high enthalpy ¯ows prove the existence of a strong
coupling between the processes of vibrational re-
laxation and chemical reactions. This is the reason
for rapid development of the state-to-state models
of reacting gas ¯ows, the peculiarity of these
models is that they are not based on any quasi-
stationary (Boltzmann or Treanor) distribution
over vibrational energy. During the last decade,
the state-to-state vibrational-chemical kinetics in
various gas ¯ows has been studied by many au-
thors. One can cite here the results concerning high
temperature ¯ows in the relaxation zone behind
shock waves [1±4], expanding ¯ows in nozzles
[5±8], ¯ows in the boundary layer developing

around a vehicle during the re-entry phase [9,10],
and ¯ows near a blunt body [11]. The transport
theory in the state-to-state approach has been de-
veloped in Refs. [4,12,13], and the results of Refs.
[14±16] show a signi®cant in¯uence of the non-
equilibrium vibrational distributions on the heat
transfer. Nonequilibrium state-to-state reaction
rates have been considered in Refs. [8,17,18], and a
noticeable e�ect of nonequilibrium vibrational ki-
netics on the dissociation rate coe�cients has been
found.

It is well known that the vibrational relaxation
and chemical reactions are usually accompanied
by radiation. A wide variety of radiative transi-
tions corresponding to di�erent high temperature
conditions is considered in Refs. [19,20]. Experi-
mental aspects of radiative processes have been
discussed by a great number of authors (see, for
instance, Ref. [21]), one should mention an im-
portant role of radiative transitions for the laser
technology, photochemistry, and shock tube
measurements. A mutual e�ect of relaxation and
radiation has to be studied experimentally as well
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as theoretically. Some analytical quasi-stationary
vibrational distributions taking into account
spontaneous radiative transitions have been ob-
tained in Refs. [22±24]. The in¯uence of laser ra-
diation on the excitation of vibrational degrees of
freedom and on the chemical reaction rates is
considered in Ref. [25].

Another important problem is the estimation of
the heat transfer caused by radiation for the cal-
culation of thermal protection systems. The mac-
roscopic equations of aerothermochemistry,
taking into account the radiative e�ects, are given,
for instance, in Refs. [26±28], using these equa-
tions, the contribution of the radiative ¯ux to the
total energy ¯ux has been evaluated (see Ref. [27]
for a review of results). However, equations given
in Ref. [27] are based on the one-temperature
model assuming the existence of thermal equilib-
rium Boltzmann distribution over vibrational
energy.

The objective of the present paper is to
generalize the state-to-state model elaborated in
Refs. [4,13] in order to take into account the ra-
diative processes. Our aim is to give a closed de-
scription of a nonequilibrium ¯ow of gas mixture
with coupled vibrational relaxation, dissociation,
recombination, exchange reactions, absorption
and emission of photons on the basis of the
rigorous kinetic theory.

We suppose that the following relation between
the characteristic times of di�erent processes in a
reacting mixture takes place:

sel < srot � svibr < sreact � srad � h: �1�

Here sel, srot, svibr, sreact, srad are, respectively, the
mean times between the elastic collisions, those
with change of rotational and vibrational energy,
chemical reactive collisions, and the ones leading
to absorption and emission of a photon; h is the
macroscopic time. Condition (1) is found to be
valid in many experiments [21], it describes the
rapid equilibration of translational and rotational
modes of molecules and slow vibrational relax-
ation, chemical reactions and radiative processes.
Moderate gas temperatures are considered when
ionization and electronic excitation of atoms and
molecules may be neglected.

2. Kinetic equations

The gas ¯ow is simulated on the basis of
the kinetic equations for distribution functions.
The motion of particles is considered in a six-
dimensional phase space, its coordinates are the
three components of the position r and three
components of the momentum p. According to the
quantum theory, a radiation ®eld may be regarded
as being equivalent to a collection of particle-like
entities called photons [20]. Photons may be
characterized by the following properties: they all
move with the speed of light c, their energy is de-
termined by their frequency m:

em � hm; �2�

where h is the Planck's constant, and they carry a
momentum

pm �
hm
c

Xm; �3�

where Xm is the unit vector de®ning the direction of
travel of the photon. One should recognize that the
analogy between photons and material particles is
not complete, and in some instances, essential
di�erences exist.

The distribution functions fcij�r; pc; t� are in-
troduced for every chemical species c, vibrational i
and rotational energy level j, and for photons
fm�r; pm; t�. The kinetic equations for distribution
functions have a form:

ofcij

ot
� pc

mc

ofcij

or
� Jcij; �4�

ofm

ot
� cXm

ofm

or
� Jm; �5�

where mc is the mass of a material particle. The
collision operators Jcij and Jm describe all the col-
lisions leading to the change of distribution func-
tion. They can be written as a sum of several terms
corresponding to di�erent processes:

Jcij � J el
cij � J inel

cij � J react
cij � J rad

cij : �6�

The collision operators of elastic and inelastic
collisions J el

cij and J inel
cij correspond to the collisions
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of material particles, which do not result in the
change of chemical species:

Acij � Adkl $ Acij � Adkl; �7�

Acij � Adkl $ Aci0j0 � Adk0l0 : �8�

Elastic collisions (7) lead to the change of only the
particle velocities, and in collisions (8), the internal
state of molecules also varies. Reaction (8) can
describe the inelastic rotational±translational (RT)
exchange, vibrational±translational (VT) and vib-
rational±vibrational (VV) exchange of vibrational
quanta. Taking into account the detailed balance
principle, the operator J inel

cij may be written in the
form [29,30]:

J inel
cij �

X
dkli0j0k0l0

Z
fc0i0j0fd 0k0l0

sc
ijs

d
kl

sc
i0j0s

d
k0l0

 
ÿ fcijfdkl

!
� W cd; i0j0k0l0

cd; ijkl dpd dp0c dp0d : �9�

Here, sc
i0j0 is the statistical weight, pc, pd are the

momenta of colliding particles, p0c, p0d are their

momenta after the collision, W cd; i0j0k0l0
cd; ijkl is the prob-

ability per unit time of the transition of particles at
the internal states i, j and k, l and possessing the
momenta pc and pd to particles at the internal
states i0, j0 and k0, l0 with the momenta p0c, p0d .
The expression for J el

cij can be easily deduced from
Eq. (9) if one assumes i � i0, j � j0, k � k0, l � l0.

The collision operator of chemical reactive
collisions J react

cij describes exchange reactions:

Acij � Adkl $ Ac0i0j0 � Ad 0k0l0 �10�

and dissociation±recombination process in a mix-
ture of diatomic molecules and atoms:

Acij � Adkl $ Adk0l0 � Ac0 � Af 0 : �11�

Therefore,

J react
cij � J exch

cij � J diss±rec
cij : �12�

The expressions of J exch
cij and J diss±rec

cij are given in
Refs. [30±34] and have the form:

J exch
cij �

X
dc0d 0kli0j0k0l0

Z
fc0i0j0fd 0k0l0

sc
ijs

d
kl

sc0
i0j0s

d 0
k0l0

0@ ÿ fcijfdkl

1A
� W c0d 0 ; i0j0k0l0

cd; ijkl dpd dpc0 dpd 0 ;

�13�

J diss±rec
cij �

X
dklk0l0

Z
fc0ff 0fdk0l0h3

sc
ijs

d
kl

sd
k0l0

 
ÿ fcijfdkl

!
� W c0f 0 d; k0l0

cd; ijkl dpc0 dpf 0 dpd 0 dpd ;

�14�

W c0d 0 ; i0j0k0l0
cd; ijkl and W c0f 0d; k0l0

cd; ijkl are the probabilities per
unit time of the chemically active collision result-
ing in exchange reactions, and of the collision with
dissociation of the molecule of cth species at the
ith and jth vibrational and rotational levels inter-
acting with the molecule dth species at kth and lth
vibrational and rotational levels; c0, f 0 are the
atomic species product of dissociation, k0 and l0 are
the vibrational and rotational levels of the partner
after the collision.

Among the radiative collisions, the ones leading
to absorption, emission and scattering of photons
may be distinguished. In an absorption process, an
entire photon is removed from the incident beam
and the photon's energy is deposited in the mate-
rial particle. The inverse process is an induced
emission, in this case, photons of a particular fre-
quency in the incident beam stimulate an excited
particle to emit a photon in the same direction as
the beam and at the same frequency. These two
processes are described by the reaction,

Acij � hm$ Aci0j0 � 2hm: �15�

An isolated excited particle is also capable of
emitting a photon, even in the absence of stimu-
lating radiation. This process is referred to as
spontaneous emission and has no corresponding
inverse process:

Acij ! Aci0j0 � hm: �16�

Scattering of photons by a material particle occurs
as a result of the following reaction:
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Acij � hm$ Aci0j0 � hm0: �17�

In this study, the gas ¯ow at moderate tempera-
ture is simulated when the degree of ionization
and electronic excitation is negligibly small
(T < 6000±8000 K). In this case, one may take into
account only the bound±bound radiative transi-
tions between internal energy levels of molecules
and neglect the transitions between electronic
states and also bound±free and free±free radiative
transitions. Under this condition, the collision
operator of radiative processes is obtained in the
form:

J rad
cij � J em±abs

cij � J scat
cij : �18�

The collision operator J em±abs
cij describing simulta-

neously processes (15) and (16) can be constructed
in the following way:

J em±abs
cij �

X
i0j0

Z
fmfci0j0W

cm; ij
cm; i0j0

�
ÿfcij fmW

cm; i0j0
cm; ij

�
� W cm; i0j0

c; ij

��
dpm dp0c;

�19�

where W cm; i0j0
cm; ij , W cm; i0j0

c; ij are, correspondingly, the
probabilities per unit time of induced and spon-
taneous emission of a photon with frequency m by
an excited particle of c chemical species at ith
vibrational and jth rotational level, W cm; ij

cm; i0j0 is the
probability of absorption of a photon resulting in
excitation of a particle c from the initial state �i0; j0�
to the more energetic state �i; j�.

The probabilities W cm; i0j0
cm; ij , W cm; i0j0

c; ij and W cm; ij
cm; i0j0 are

not independent and should be related by the
principle of detailed balance. Under conditions of
thermodynamic equilibrium, the di�erential reac-
tion rates for each microscopic process and for the
corresponding inverse process are equal, and
therefore the following relation is satis®ed:

f eq
m

f eq
ci0j0

f eq
cij

W cm; ij
cm; i0j0

W cm; i0j0
cm; ij

� f eq
m �

W cm; i0j0
c; ij

W cm; i0j0
cm; ij

: �20�

The distribution functions of material particles
under conditions of thermal and chemical equi-
librium f eq

cij are obtained in Ref. [30] and in the case
considered their ratio is equal to

f eq
ci0j0

f eq
cij
� sc

i0j0

sc
ij

exp
Deiji0j0

kT

� �
; �21�

where k is the Boltzmann constant, T is the gas
temperature, Dec

iji0j0 � ec
ij ÿ ec

i0j0 , ec
ij is the internal

energy of a molecule c chemical species at ith
vibrational and jth rotational level. For bound±
bound radiative transitions, the frequency of a
photon corresponds to the frequency of the tran-
sition between two discrete energy levels, and
therefore m � miji0j0 � Deiji0j0=h. Thus, rearranging
the terms in Eq. (20), one obtains

f eq
m �

W cm; i0j0
c; ij =W cm; i0j0

cm; ij

sc
i0j0
sc

ij

W cm; ij
cm; i0j0

W cm; i0j0
cm; ij

exp hm
kT

ÿ �ÿ 1

 ! : �22�

The equilibrium distribution function of photons
f eq
m is connected with the Planck's function de-

scribing the speci®c intensity of equilibrium black
body radiation [20], and may be found under the
form:

f eq
m �

2=h3

exp hm
kT

ÿ �ÿ 1
: �23�

Comparing Eqs. (22) and (23), one can conclude
that the probabilities of absorption, induced and
spontaneous emission are related to each other by
the relations:

sc
i0j0W

cm; ij
cm; i0j0 � sc

ijW
cm; i0j0

cm; ij ; �24�

W cm; i0j0
c; ij

W cm; i0j0
cm; ij

� 2

h3
: �25�

These relations are similar to the ones connecting
the spectral Einstein coe�cients for absorption,
induced and spontaneous emission.

Finally, the collision operator J em±abs
cij may be

written in the next form:

J em±abs
cij �

X
i0j0

Z
fmfci0j0

sc
ij

sc
i0j0

 
ÿ fcij fm

�
� 2

h3

�!
� W cm; i0j0

cm; ij dpm dp0c:

�26�
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Similarly, the collision operator of photons
scattering has been found:

J scat
cij �

X
i0j0

Z
fm0fci0j0

sc
ij

sc
i0j0

 
ÿ fcijfm

!
W cm0 ; i0j0

cm; ij dpm dpm0 dp0c;

�27�

where W cm0; i0j0
cm; ij is the probability of scattering of a

photon with frequency m by a particle of c species
at ith vibrational and jth rotational level.

The probabilities W c0d 0 ; i0j0k0l0
cd; ijkl of di�erent pro-

cesses are de®ned by the expression [30]:

W c0d 0 ; i0j0k0l0
cd; ijkl � pc

mc

���� ÿ pd

md

����Ic0d 0 ; i0j0k0l0
cd; ijkl pc; pd ; pc0 ; pd 0� �;

�28�

where Ic0d 0; i0j0k0l0
cd; ijkl pc; pd ; pc0 ; pd 0� � is the formal cross-

section of the corresponding process. For further
development, it is useful to introduce the di�er-
ential cross-sections of various processes rc0d 0 ; i0j0k0l0

cd; ijkl .
It is also conventional to determine the distribu-
tion functions of material particles in the phase
space �r; u�, where u is the microscopic velocity of
a particle. It is obvious that

fcij r; uc; t� � � mÿ3
c fcij r; pc; t� �: �29�

Hereafter, the same nomenclature for the distri-
bution functions in di�erent phase spaces is re-
tained. Following the procedure described in
Refs. [30,33], the collision operators may be re-
written in such a form:

J inel
cij �

X
dkli0j0k0l0

Z
fci0j0fdk0l0

sc
ijs

d
kl

sc
i0j0s

d
k0l0

 
ÿ fcijfdkl

!
� gcdr

i0j0k0l0
cd; ijkl d2Xc0d 0 dud ; �30�

J exch
cij �

X
dc0d 0kli0j0k0l0

Z
fc0i0j0fd 0k0l0

sc
ijs

d
kl

sc0
i0j0s

d 0
k0l0

mcmd

mc0md 0

� �3

0@
ÿfcijfdkl

1Agcdr
c0d 0 ; i0j0k0l0
cd; ijkl d2Xc0d 0 dud ;

�31�

J dissÿrec
cij �

X
dklk0l0

Z
fc0ff 0fdk0l0�h

3
sc

ijs
d
kl

sd
k0l0

mc

mc0mf 0

 !3
0@

ÿfcijfdkl

1Agcdr
c0f 0d; k0l0
cd; ijkl duc0 duf 0 dud 0 dud ;

�32�

J emÿabs
cij �

X
i0j0

Z
fmfci0j0

sc
ij

sc
i0j0

 
ÿ fcij fm

�
� 2

h3

�!
� crcm; i0j0

cm; ij dpm du0c;

�33�

J scat
cij �

X
i0j0

Z
fm0fci0j0

sc
ij

sc
i0j0

 
ÿ fcijfm

!
� crcm0 ; i0j0

cm; ij dpm dpm0 du0c: �34�
Here, rc0d 0 ; i0j0k0l0

cd; ijkl , rc0f 0d ; k0l0
cd; ijkl , rc0m0; i0j0

cm; ij are, respectively,
the di�erential cross-sections of binary and triple
collisions of material particles, and of the inter-
action of photons with material particles, gcd is the
relative velocity of colliding particles, dXc0d 0 is
the solid angle in which the relative velocity after
the collision can appear. Strictly speaking, the
relative velocity of the motion of a particle and a
photon is gcm � cÿ uc. However, one can neglect
the magnitude of uc compared to the speed of light,
and thus, c appears in Eqs. (33) and (34) instead of
gcm. Note that in Eqs. (30)±(34), the distribution
functions of material particles is de®ned in terms
of the velocity, fcij � fcij r; uc; t� �, whereas the
distribution functions of photons are expressed in
terms of the momentum, fm � fm r; pm; t� �.

3. Zero-order solution and macroscopic equations

The dimensionless kinetic equations are given
by

ofcij

ot
� uc

ofcij

or
� 1

e
J rap

cij � J sl
cij; �35�

ofm

ot
� cXm

ofm

or
� 1

e
J rap

m � J sl
m : �36�
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Here, J rap
cij , J rap

m and J sl
cij, J sl

m are the collision oper-
ators of rapid and slow processes, e � srap=ssl is the
small parameter, srap, ssl are the average times
between the frequent and rare collisions, respec-
tively. For the solution of these kinetic equations,
the Chapman±Enskog method generalized for
rapid and slow processes [30,35] may be used. The
solution is found as an expansion of the distribu-
tion functions in a power series of the parameter e:

fcij �
X

n

enf �n�cij : �37�

The zero-order approach gives the following rela-
tion:

J rap
cij f �0�; f �0�
ÿ � � J rap

m f �0�; f �0�
ÿ � � 0: �38�

It is known that the zero-order distribution
function is determined by the summational invar-
iants of the most frequent collisions (eigenfunc-
tions of the linearized collision operator of rapid
processes J rap

cij ) [30]. The collision invariants are
found under speci®c ¯ow conditions.

Under condition (1), the operators of rapid and
slow processes may be written in the form:

J rap
cij � J el

cij � J rot
cij ; �39�

J rap
m � 0; �40�

J sl
cij � J vibr

cij � J react
cij � J rad

cij ; �41�

J sl
m � J rad

m : �42�
One can observe that in the conditions of slow

radiative processes equation (38) for the zero-or-
der distribution function of photons, f �0�m is satis-
®ed identically. It means that the formalism of
asymptotic methods of small parameter cannot be
applied for determination of the photon distribu-
tion functions. Therefore, fm are to be found di-
rectly from microscopic equations (36).

The collision invariants of any collision of ma-
terial particles are w�1�cij � 1, w�l�1�

cij � mcucl

(l � 1±3 are the spatial indices), w�5�cij �
mcu2

c=2� ec
ij. For photons w�l�1�

m � pml (l � 1±3),
w�5�m � hm. Besides that there exist additional in-
variants of the most frequent collisions. In condi-
tions of slow vibrational relaxation and chemical

reactions, any variable aci independent of the
velocity and the rotational energy level j and de-
pending arbitrary on c and i is conserved:
w�k�5�

cij � aci, (k � 1; . . . ;N ; where N �Pci 1).
The macroscopic parameters corresponding to

the collision invariants are given byX
j

Z
fcij duc �

X
j

Z
f �0�cij duc � nci;

c � 1; . . . ; L; i � 0; . . . ; Lc;

�43�

X
cij

mc

Z
ucfcij duc �

X
cij

mc

Z
ucf

�0�
cij duc � qv;

�44�

X
cij

Z
mcC2

c

2

�
� eci

j � ec
i � ec

�
fcij duc

�
X

cij

Z
mcC2

c

2

�
� eci

j � ec
i � ec

�
f �0�cij duc

� 3

2
nkT � qErot � qEvibr � qEf : �45�

Here, nci is the level population of ith level of
chemical species c, L, the number of chemical
species, Lc, the number of vibrational levels in c
chemical species, v, the macroscopic gas velocity,
q �Pc mcnc, the gas density, Cc � uc ÿ v, the pe-
culiar velocity, n �Pc nc, the total number den-
sity of particles, eci

j , the rotational energy of a
molecule c chemical species at ith vibrational level,
ec

i , the vibrational energy, ec, the energy of for-
mation of particles of c species, and Erot, Evibr and
Ef are, respectively, the rotational energy, vibra-
tional energy and energy of formation per unit
mass.

One can introduce a mean momentum of pho-
tons per unit volume, p, and a mean radiative
energy per unit volume, Erad:

p �
Z

pmfm dpm; Erad �
Z

hmfm dpm: �46�

Note that for these quantities, there are no nor-
malizing conditions similar to Eqs. (43)±(45) for
macroscopic parameters of material particles.
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On the basis of the system of collision invari-
ants and using the normalizing conditions
(43)±(45), the zero-order distribution function
of particles f �0�cij is obtained in the form of the
Maxwell±Boltzmann distribution over velocity and
rotational energy depending on the nonequilibri-
um level populations of chemical species [35,13]:

f �0�cij �
mc

2pkT

� �3=2 ncisci
j

Zci
rot

exp

�
ÿ mcC2

c

2kT
ÿ eci

j

kT

�
;

�47�
sci

j is the rotational statistic weight, and Zci
rot, the

rotational partition function. The distribution
function (47) is expressed in terms of macroscopic
parameters nci�r; t�, v�r; t�, T �r; t�.

Following Ref. [20], it is conventional to de®ne
a speci®c intensity Im of the radiation ®eld in such a
way

Im dmdXm � chmfm dpm; �48�
dXm denotes an element of solid angle de®ned by
the unit vector Xm. Thus, taking into account re-
lation (3),

Im � h4m3

c2
fm: �49�

The mean momentum of photons p and radiation
energy Erad in terms of intensity have the form:

p � 1

c2

Z 1

0

Z
4p

ImXm dmdXm;

Erad � 1

c

Z 1

0

Z
4p

Im dmdXm:

�50�

Consequently, Eq. (36) for fm may be rewritten in
terms of Im:

1

c
oIm
ot
�Xm

oIm

or
� h4m3

c3
J rad

m ; m � m1; m2; . . . ; mR:

�51�
In the general case, there is an in®nite set of fre-
quencies m at which a photon can appear. In
practical calculations, the number of equations R
corresponds to the number of characteristic fre-
quencies in a ¯ow. The equations for the speci®c
intensity in form (51) are equivalent to the equa-
tions of radiative transfer [20].

Now, let us derive the macroscopic equations.
For the vibrational level populations nci�r; t� sim-
ilarly to Ref. [13], one can obtain

dnci

dt
� ncir � v�r � �nciVci� � Rci;

c � 1; . . . ; L; i � 0; . . . ; Lc:

�52�

Here, Vci is the di�usion velocity of c species at the
ith vibrational level:

nciVci �
X

j

Z
Ccfcij duc;

the right-hand side of the equations are de®ned as

Rci �
X

j

Z
J sl

cij duc � Rvibr
ci � Rreact

ci � Rrad
ci : �53�

Eq. (52) represent the equations of detailed
vibrational-chemical kinetics taking into account
radiative transitions.

The conservation of momentum in the general
case may be expressed in the form:

q
dv

dt
� op

ot
�r � P�r � Prad � 0: �54�

One can notice that only a partial derivative of p
appears in Eq. (54), because there is no reason to
write Eq. (36) in terms of peculiar velocity. In this
equation, P, Prad are the tensors of pressure for
material particles and photons:

P �
X

cij

Z
mcCcCcfcij duc;

Prad �
Z

pmcXmfm dpm �
1

c

Z 1

0

Z
4p

ImXmXm dmdXm:

It should be noted that the transfer of momentum
in a photon±particle collision is very small, be-
cause usually the momentum carried by photons
is much less compared to the momentum of ma-
terial particles. Therefore, the contribution of p
and Prad to the conservation equation of momen-
tum may be neglected, and Eq. (54) takes the usual
form:

q
dv

dt
�r � P � 0: �55�
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On the contrary, the exchange of energy in the
photon±particle collision is not negligible because
the energy of a photon is of the same order of
magnitude that the kinetic energy of a material
particle. Therefore, the conservation of total en-
ergy is written as follows:

q
dU
dt
� oErad

ot
�r � q�r � qrad � P : rv � 0:

�56�
Here, U is the total energy of material particles per
unit mass:

qU � 3
2
nkT � qErot � qEvibr � qEf ;

q is the heat ¯ux for material particles:

q �
X

cij

Z
mcC2

c

2

�
� eci

j � ec
i � ec

�
Ccfcij duc;

and qrad is the radiative heat ¯ux:

qrad �
Z

hmcXmfm dpm �
Z 1

0

Z
4p

ImXm dmdXm:

The expressions for all transport terms of ma-
terial particles have been derived in Refs. [4,13].
In particularly, it has been shown that in this
approach the heat ¯ux is determined by the gra-
dients of the gas temperature, number densities of
atomic species and nonequilibrium populations of
all vibrational levels of molecular species. The
transport coe�cients involved in the expressions
for Vci, P and q are also obtained in Ref. [13].
Concerning the radiative ¯ux, it can be found
using the solution of equations of radiative
transfer (51).

Eqs. (52), (55), (56) and (51) represent a closed
system of equations describing the ¯ow of a re-
acting and radiating gas mixture under strong
nonequilibrium conditions. It is interesting to
mention that in the zero-order approximation of
the Chapman±Enskog method, the di�usion ve-
locity and heat ¯ux by material particles vanish as
a result of the Maxwellian distribution over ve-
locities (Vci � 0, q � 0). However, the term con-
taining radiative ¯ux qrad should be kept in
Eq. (56) in the Euler approximation, because it

depends on the speci®c intensity Im (distribution
function of photons fm) that is not determined by
the order of approximation of the Chapman±
Enskog method.

4. Application to a ¯ow of diatomic gas with

VV, vibrational±translational vibrational energy

exchange,dissociation and radiative transitions

In the Euler approximation for steady-state
one-dimensional ¯ow, Eq. (52) of detailed vibra-
tion±dissociation kinetics in diatomic gas taking
into account radiative transitions between discrete
vibrational levels are given by

d�vni�
dx

� RVT
i � RVV

i � Rdiss
i � Rrad

i ;

i � 0; . . . ; L;
�57�

d�vna�
dx

� Rdiss
a ; �58�

where v is the ¯ow velocity in the x direction, ni,
the population of ith vibrational level, na the
number density of atoms, RVT

i , RVV
i , Rdiss

i , Rrad
i , the

production terms due to VT, VV vibrational en-
ergy exchange, dissociation±recombination and
radiative transitions, respectively. These produc-
tion terms may be written using the expressions for
the collision integrals derived in Section 2 substi-
tuting the zero-order distribution function (47).
Thus, the production terms due to collisions of
material particles are obtained in Refs. [1,17,18] in
the next form:

RVT
i � nmol

X
k 6�i

kmol
ki nk

ÿ ÿ kmol
ik ni

�
� na

X
k 6�i

kat
ki nk

ÿ ÿ kat
ik ni

�
;

�59�

RVV
i �

X
k;k0 ;i0

k0 6�k;i0 6�i

kk0k
i0i ni0nk0

�
ÿ kkk0

ii0 nink

�
; �60�

Rdiss
i � nmol kmol

rec;in
2
a

�
ÿ kmol

i;dissni

�
� na kat

rec;in
2
a

�
ÿ kat

i;dissni

�
;

�61�
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Ra � ÿ2
X

i

Rdissÿrec
i : �62�

Here, kmol
ik , kat

ik and kkk0
ii0 are the rate coe�cients

for the TV (i! k) vibrational±translational ener-
gy transitions in a collision with a partner M (M
is a molecule or an atom) and VV (i; k ! i0; k0)
vibrational energy exchange between two mole-
cules; kmol

rec;i, kat
rec;i are the state-to-state rate coe�-

cients of recombination to the ith level, kmol
i;diss, kat

i;diss

are the rate coe�cients of dissociation from the ith
level. All the above introduced rate coe�cients
represent the cross-sections of corresponding
processes averaged over velocities and rota-
tional energies. The relations connecting the rate
coe�cients with the cross-sections are given in
Ref. [17].

There exist di�erent models for the calculation
of the rate coe�cients of vibrational energy ex-
change. One of the most popular analytical ap-
proach, based on the semi-classical ®rst-order
perturbation theory, a collinear collision model
and an exponential repulsive potential, is the SSH
theory [36]. Its generalization for anharmonic os-
cillators is given in Refs. [25,37]. However, for
high-collision velocities and for high quantum
numbers, the SSH theory does not have any theo-
retical basis. Exact quantum trajectory calculations
of the rate coe�cients for vibrational transitions
have been performed by Billing [38,39]. Unfortu-
nately, the direct use of these results in numerical
calculations is hardly possible. As to experimental
data for VV and VT energy transfer, up to now, at
high vibrational quantum numbers, they have been
obtained only for a few heteronuclear species, and
only for low temperatures. An analytical nonper-
turbative semiclassical forced harmonic oscillator
model has been elaborated in Ref. [3], it gives
correct values for the probability of VV and VT
transitions (including multi-quantum ones) at high
temperature conditions. Besides that one should
mention the model proposed in Ref. [40], this
model is based on the information theory.

Taking into account only single-quantum
transitions, the expression for RVT

i and RVV
i can be

rather simpli®ed [18,25,37]:

RVT
i � ni�1 nmolkmol

i�1;i

�
� natkat

i�1;i

�
� niÿ1 nmolkmol

iÿ1;i

�
� natkat

iÿ1;i

�
ÿ ni nmol kmol

i;i�1

��
� kmol

i;iÿ1

�
� nat kat

i;i�1

�
� kat

i;iÿ1

��
;

�63�

RVV
i � ni�1

XL

k�0

kk;k�1
i�1;i nk � niÿ1

XL

k�0

kk�1;k
iÿ1;i nk�1

ÿ ni

XL

k�0

kk�1;k
i;i�1 nk�1

�
� kk;k�1

i;iÿ1 nk

�
: �64�

Dissociation±recombination reaction rates can
also be simulated using di�erent models. We will
discuss two of them: the ladder climbing model
[1,9,10,18] and the Treanor±Marrone one
[2,18,41]. The ladder climbing model is based on
the assumption that molecules dissociate only
from the last level, and each molecule reaching this
level dissociates immediately with the probability
equal to unit. Thus, the dissociation rate is deter-
mined by the stream of molecules to the last level
from the lower-lying levels caused by VV and VT
vibrational energy transitions.

In case, when dissociation may happen from
any vibrational level, the expression for k�M�i;diss can
be derived using the results of Ref. [41]. Following
this paper, the state-to-state rate coe�cients may
be connected with the thermal equilibrium rate
coe�cient k�M�diss;eq by the expression [2,18]:

k�M�i;diss � Zi�T ;U�k�M�diss;eq; �65�

with the nonequilibrium factor Zi�T ;U� de®ned as

Zi�T ;U� � Zvibr�T �
Zvibr�ÿU� exp

ei

k
1

T

��
� 1

U

��
: �66�

Here, ei is the vibrational energy of ith level, si is
the vibrational statistical weight (si � 1 for
diatomic molecules), the vibrational partition
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function at ``temperature X '', Zvibr�X �, has the
form:

Zvibr�X � �
X

i

si exp
�
ÿ ei

kX

�
: �67�

The parameter of the model U has a dimension
of temperature and describes how rapidly the
dissociation probability decreases for low levels.
The case U � 1 corresponds to the equal proba-
bility of dissociation from any vibrational level.
The thermal equilibrium rate coe�cient k�M�diss;eq can
be computed using the generalized Arrhenius law.
The parameters of the Arrhenius formula for
various dissociation reactions are given in many
sources [21,28,42].

Recombination rate coe�cient k�M�rec;i is con-
nected with k�M�i;diss by the detailed balance principle
[17,43]:

k�M�rec;i � k�M�i;disssih3 mmol

mam0a

� �3=2

2pkT� �ÿ3=2Zi
rot

� exp

�
ÿ ei ÿ D

kT

�
;

�68�

mmol is the mass of molecules, ma, m0a are the
masses of atoms, which compose a molecule, D is
the dissociation energy of a molecule.

The production rate due to radiative transitions
Rrad

i neglecting scattering may be written on the
basis of the collision integral (19). Let us introduce
the spectral Einstein coe�cients associated to the
speci®c intensity Im:

1

c
Imbm;iji0j0 dXm dm � fmW

m;i0j0
m;ij dpm; �69�

h3

4p
am;iji0j0 dXm dm � W m;i0j0

ij dpm: �70�

Coe�cients bi0j0ij, biji0j0 , aiji0j0 are the Einstein coef-
®cients for absorption, induced and spontaneous
emission, respectively. As well as the probabilities
W m;i0j0

m;ij , W m;i0j0
ij , they are related by the detailed bal-

ance principle:

si0j0bm;i0j0ij � sijbm;iji0j0 ;
am;iji0j0

bm;iji0j0
� 8phm3

c2
: �71�

The production term Rrad
i after substituting the

zero order distribution function (47) takes the
form:

Rrad
i �

X
i0<i

X
j;j0<j

ni0j0

Z 1

0

Z
4p

Imbm;i0j0ij dmdXm

�

ÿnij

Z 1

0

Z
4p

Imbm;iji0j0 dmdXm

�
� 1

4p

Z 1

0

Z
4p

am;iji0j0 dmdXm

��
:

�72�

Here, nij is the population of the internal energy
level with vibrational and rotational quantum
numbers i and j.

For bound±bound transitions the integral
Einstein coe�cients are usually de®ned in the
form:

Biji0j0 �
Z 1

0

bm;iji0j0 dm; �73�

Aiji0j0 �
Z 1

0

am;iji0j0 dm: �74�

These coe�cients describe probabilities of all ra-
diative transitions, which contribute to the tran-
sition (ij! i0j0). With the assumption that Im and
hm are slowly varying functions of frequency over
the line width, the integral Einstein coe�cients are
related by the expressions similar to Eq. (71) with m
corresponding to the center of line. Under this
assumption, one can put Im � Im;iji0j0 � const, where
Im;iji0j0 is the mean speci®c intensity of the rota-
tional±vibrational line. Then the expression for
Rrad

i may be simpli®ed:

Rrad
i �

X
i0<i

X
j;j0<j

ni0j0Im;iji0j0Bi0j0ij

�
ÿnij Im;iji0j0Biji0j0

�
� Aiji0j0

��
:

�75�

Here, we have taken into account the isotropic
character of spontaneous emission.

As there exists a quasi-stationary Boltzmann
distribution over rotational energy, one can de®ne
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the averaged values of Im;iji0j0Biji0j0 , Im;iji0j0Bi0j0ij and
Aiji0j0 over rotational spectrum:

Im;ii0Bii0 �
X
j;j0<j

si
jIm;iji0j0Biji0j0

Zi
rot

exp

�
ÿ ei

j

kT

�
;

Im;ii0Bi0i �
X
j;j0<j

si0
j0Im;iji0j0Bi0j0ij

Zi0
rot

exp

0@ÿ ei0
j0

kT

1A;
Aii0 �

X
j;j0<j

si
jAiji0j0

Zi
rot

exp

�
ÿ ei

j

kT

�
:

Im;ii0 may be interpreted as a mean speci®c intensity
of vibrational line, Bi0i, Bii0 , Aii0 as the Einstein co-
e�cients for the radiative transitions correspond-
ing to the vibrational transition (i! i0). In this
case, the production rate Rrad

i is given by the ex-
pression similar to the one obtained in Ref. [25]:

Rrad
i �

X
i0<i

ni0 Im;ii0Bi0i

�
ÿ ni Im;ii0Bii0

�
� Aii0

��
: �76�

The Einstein coe�cients can be calculated using
the method described, for instance, in Refs.
[19,20].

Equations of detailed vibration±dissociation
kinetics (57), with production terms (61)±(64), and
(75) should be coupled with the conservation
equations of momentum and total energy and
equations of radiative transfer. In the Euler ap-
proximation for stationary one-dimensional ¯ow
conservation, Eqs. (55) and (56) are reduced to
equations,

qv
dv
dx
� dp

dx
� 0; �77�

qv
dU
dx
� dqrad

dx
� p

dv
dx
� 0; �78�

where p � nkT is the pressure.
The equations of radiative transfer neglecting

the scattering take the form:

dIm

dx
� Rrad

m ; m � m1; m2; . . . ; mR; �79�

Im describes the speci®c intensity of radiation
propagating in the positive direction of the axis x.
The right-hand sides of these equations are given by

Rrad
m � hm

X
iji0j0

nij Imbm;iji0j0

��
� 1

4p
am;iji0j0

�

ÿni0j0Imbm;i0j0ij

�
;

�80�

or, after performing the averaging over rotational
spectrum,

Rrad
m � hm

X
ii0

ni Imbm;ii0

��
� 1

4p
am;ii0

�
ÿ ni0 Imbm;i0i

�
:

�81�

It should be mentioned here that these expressions
are obtained without usual assumption about local
thermal equilibrium.

The infrared radiation intensity of N2 ®rst pos-
itive band has been calculated in a ¯ow of disso-
ciating nitrogen N2 behind a strong shock wave
(Fig. 1). The free stream conditions are as follows:
M0 � 15, T0 � 293 K, p0 � 100 Pa, initially gas
supposed to be in equilibrium. Three di�erent
approaches have been used for the calculations:
the model presented above, the multi-temperature
model based on the quasi-stationary nonequilib-
rium Boltzmann distribution, and the one-
temperature model based on the local thermal
equilibrium assumption. One can see that both
quasi-stationary approaches give an overestima-
tion of the intensity. This fact can be explained by
the di�erent behaviour of the N2 concentrations

Fig. 1. Infrared radiation intensity of N2 ®rst positive band, S

kW=cm3; sr, as a function of x. Curve 1 represents present ap-

proach, curves 2, 3, the multi-temperature and one-temperature

approaches, correspondingly.
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computed using di�erent models (see Refs. [4,13])
for a discussion of the macroscopic parameters
behaviour).

5. Conclusions

A closed system of macroscopic equations de-
scribing the ¯ow of a reacting and radiating gas
mixture under strong nonequilibrium conditions is
derived on the basis of the kinetic theory. This
system consists of the equations of detailed
vibration±dissociation kinetics coupled with the
radiative transfer equations and conservation
equations of the momentum and total energy.
Solution of these equations is important for the
investigation of radiation from the nonequilibrium
regions of a gas ¯ow with slow vibrational relax-
ation and chemical reactions. The model can be
applied for the calculation of radiation intensity in
di�erent conditions, this is useful for the validation
of various models for rate coe�cients of chemical
reactions and vibrational energy transitions. An-
other important application is the computation of
the total energy and radiative ¯uxes in the regions
of strong nonequilbrium near re-entering bodies.
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