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Abstract

Simplified expressions for the state-to-state transport coefficients are proposed. The main stress is on the diffusion of
vibrational energy. The state-to-state diffusion coefficients are compared to the commonly used diffusion coefficients,
and the role of non-equilibrium vibrational distributions in the diffusion process and heat transfer is estimated. © 2001

Elsevier Science B.V. All rights reserved.

PACS: 51.10.+y; 51.20.+d; 82.20.Mj; 82.20.Rp

Keywords: State-to-state vibrational kinetics; Transport properties; Diffusion coefficients

1. Introduction

Recent advancement of state-to-state kinetic
theory can be explained by the growing interest to
different kinds of non-equilibrium flows. It is well
known that in many real gas flows the strongly
non-equilibrium conditions arise, so that widely
used quasi-stationary distributions over vibra-
tional energies are not valid. Excellent examples
are the flows behind shock waves [1-3], expanding
flows [4-7], flows in the boundary layer under re-
entry conditions [8,9]. In the papers cited above
the master equations for the vibrational level
populations have been solved and noticeable de-
viations from the Boltzmann vibrational distribu-
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tion have been found in some regions of the flow
field.

Another important aspect of the state-to-state
kinetic theory is the evaluation of transport
properties under non-equilibrium conditions. The
formal transport kinetic theory in the case of
strong vibrational and chemical non-equilibrium
has been developed in Ref. [10]. In the more recent
papers [11-14] the effect of non-equilibrium vi-
brational distributions on the heat transfer and
diffusion in different flows is estimated. In parti-
cular, it has been shown that the vibrational en-
ergy transport by diffusion makes a significant
contribution to the total heat flux behind shock
waves and in the boundary layer.

The investigation of transport properties in
papers [11-14] has been performed using an
approximate approach. First, the macroscopic
parameters (vibrational distributions, species con-
centrations, temperature, pressure) are computed
either in the Euler approach [11,13] or on the basis
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of essentially simplified models for transport co-
efficients [12]. In the paper [14] the state-to-state
distributions are derived by the DSMC method.
Then the calculated macroscopic parameters are
used as input for the transport properties evalua-
tion. The reason for invoking such an approximate
scheme is that the practical implementation of the
state-to-state transport coefficients in the compu-
tational fluid dynamics (CFD) is extremely diffi-
cult, re-calculation of these coeflicients at the each
step of numerical code leads to very high con-
sumption of computational time. The computa-
tional cost of the linear transport systems solution
is discussed in Section 3.

The aim of the present paper is to derive the
simplified linear transport systems and thus reduce
noticeably the time for the transport coefficients
calculation. The obtained systems consist of few
equations, it makes possible to solve them at the
each step of CFD code, and therefore to get more
self-consistent results. Another objective is to
check the validity of some commonly used models
for the diffusion coefficients.

2. Transport terms in the state-to-state approach

The state-to-state transport kinetic theory is
developed in Ref. [10] on the basis of the gen-
eralized Chapman-Enskog method. An experi-
mentally observed relationship between the
characteristic times of main processes [15]

Tel < Trot K Tvibr < Treact ™~ 97 (1)

(Tel, Trot> Tvibr> Treact are respectively the mean times
of translational, rotational and vibrational relax-
ation and chemical reactions, 6 is the macroscopic
time) provides a strong vibrational-chemical cou-
pling. In this case no quasi-stationary vibrational
distributions exist, and the zero order distribution
function ffg) (c, i, j denote chemical species, vi-
brational and rotational quantum numbers) is
obtained under the form of Maxwell-Boltzmann
distribution over velocities and rotational en-
ergy depending on the non-equilibrium vibrational
level populations and chemical species concentra-
tions:

ci
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m, 18 the molecular mass, k is the Boltzmann
constant, 7'is the gas temperature, n,.; are the non-
equilibrium vibrational level populations, c¢. =
u.—v is the peculiar velocity, v is the macroscopic
gas velocity, s, & are the statistic weight and
energy of the jth rotational state corresponding to
the vibrational level i of chemical species ¢, Z is
the rotational partition function.

The first order distribution functions are given
by the expression [10]:

1 1
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n is the total number density, d.; are the diffusion
driving forces for each chemical and vibrational
species:

dw:v(@)+(@—%)v1np, )

n n

Poi = McNeiy P =D My Ny, p 18 the pressure.

Functions A.;, B, D;’l’.‘j, F.; and G,; are found
from the linear integral equations derived in Ref.
[10].

A closed set of macroscopic equations for the
macroscopic parameters n., v, T is obtained in
Refs. [10,16] and consists of the conservation
equations for the momentum and total energy
coupled with the equations of detailed vibration-
chemical kinetics for the vibrational level popula-
tions n;.

The first order transport terms are determined
by the first order distribution functions. The
pressure tensor P has been obtained in the fol-
lowing form:

P=(p— pe)l —2uS — nV - vl (5)

Here I is the unit tensor, S is the tensor of defor-
mation velocities, u, 1 are the shear and bulk vis-
cosity coefficients, p, is the relaxation pressure:
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k

Pra = kT[F, G.
(6)

The bracket integrals [4, B] introduced in Refs.
[10,16] are determined by the cross-sections of the
most frequent collisions, i.e. the elastic collisions
and those leading to the rotational energy ex-
change (see Appendix A.l for definition). There-
fore these bracket integrals differ from the ones
defined in the classical thermal equilibrium one-
temperature approach. In the latter case the
bracket integrals depend also on the cross-sections
of vibrational energy exchanges.

The diffusion velocity of the molecules of each
chemical and vibrational species has been found in
Ref. [10] under the form:

- Z D ady — D1V InT, (7)
dk

where D.,; and Dy, are the diffusion and thermal

diffusion coefficients for every chemical and vi-

brational species:
1

Dcidk =5 I:DCiv de]7 DTC[ =

N DAl (8)

1
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The expression for the total heat flux in the first
order approximation takes the following form:

q= _;L,VT _pZDTcidci

+Z(H+

where (&), is the mean rotational energy of ¢
species at the vibrational level i, &, & are the
vibrational energy of the ith level and energy of

formation of chemical species c,

k
3

e +é )nc,-VC,-, 9)

=2+’ ==[AA] (10)
is the coefficient of thermal conductivity. The co-
efficients /, and A, express thermal conductivity
connected with elastic and inelastic translational—-
rotational TR energy transfers. It is important to
emphasize that vibrational energy does not con-
tribute to the thermal conductivity in this ap-
proach.

The expressions for the heat flux and diffusion
velocity contain not only the gradient of the gas
temperature but also the gradients of all level pop-
ulations of different molecular species and number
densities of atoms with corresponding diffusion
and thermal diffusion coefficients. In the general
case these coefficients are different for various
vibrational and chemical species.

Following the procedure proposed in Ref.
[10], the functions A.;;, DY and B,;; are expanded
into finite series of Sonine and Waldmann-
Triibenbacher orthogonal polynomials over reduced
translational and rotational energy correspond-

ingly:

m C, 2 ) Scji
cvc ; r c P o
s~ =5 o557 )7 (57)
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2
dk _ MeCe dk o(r) [ MeCe
Dcij - 2kT chi,rsf%/Z( 2%T )7 (12)
m,
BClj = %T (cccc > Zbc”S5/2< T )
(13)

The transport coefficients can be easily expressed
in terms of the first non-vanishing coefficients of
expansions (11)—(13):

5 i’la k i
Z au 10 ~ 2 n Crot c1a¢1017 (14)
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Here cio; 18 the dimensionless (divided by the
factor k/m,) rotational specific heat of ¢ species at
the ith vibrational level:
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me aEfl ci ci
Crot,ci = 7 ﬁ? czEr = zj: /Sj .f;‘l'j du,.

Using the polynomial expansions the integral
equations for functions A, Dw, B,; can be re-
duced to the systems of linear algebraic equations.
Thus the system of equations for the expansion

coefficients a.;,, has the following form [10]:

. 15T n,,
IPINE IR
dk 'y

+ 3kT%Crot,ci5r05pla (18)

c=1,...,L, i=0,1,....L.,, r,p=0,1,...

Here L is the number of chemical species, L. is the
total number of vibrational energy levels in mo-
lecular species c.

The coefficients of system (18) are expressed in
terms of level populations and partial bracket in-
tegrals:

A = e <5cd5,-k > o o]

ol cibl
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Eq. (18) occurs not to be linearly independent in
the case r = p =0, and therefore must be solved
using a constraint obtained in Ref. [10]:

; %acﬁoo =0. (20)

Similarly the equations for the coefficients d<',
can be written:

Z Zyczdkdblr’ — 3T <5cb5il - %)5,.0, (21)

dk r

be=1,...,L, i,1=0,1,...,L.(Ly),
r=0,1,...,

where y“ represent the particular case of the

bracket integrals A, at p = p/ = 0: 5% = A,

A linearly independent system is obtained taking
into account constraints for the coefficients d<.:

S Paghi=0, d=1,....L, k=0,1,....L,
ci p ’
(22)

The equations for the coefficients b,;, are found
in the form:

5 S = 2

c=1,...,L, i=0,1,...,L.,, r=0,1,...,

where

= 2 (&da,.k > oo,
leell) e

e o) (mec; 1,
=% 5/2< 2kT> (c”CC 3 "I>
This is the general method for the calculation of
state dependent transport coefficients based on the
rigorous kinetic theory approach [10]. Until this
point no additional assumptions have been intro-
duced to simplify this procedure.

3. Simplified expressions for transport coefficients

Let us remind the main problems which arise
during the practical calculation of the state-to-
state transport coefficients. First, several kinds of
bracket integrals for each chemical and vibrational
species must be computed. It requires the data on
the cross-sections of elastic collisions and TR
processes depending on the vibrational states of
colliding particles. Another difficulty encountered
in reaching this goal is the great amount of linear
algebraic equations which have to be solved for
every value of temperature and each distribution
over vibrational energies and chemical species. Let
Nt be the total number of chemical and vibra-
tional species (N = Z ™ Lo+ Lo, Lo 1s the
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number of molecular species, L. is the total num-
ber of vibrational energy levels in molecular spe-
cies ¢, L, is the number of atomic species),
N, = Zf;ﬁ' L. denotes the total number of vibra-
tional states in a mixture. In order to deduce the
thermal conductivity coefficient /' one must solve a
system consisting of 3N, + 2L, algebraic equa-
tions, the system for the shear viscosity coefficient
calculation contains N, equations. The worst case
is the computation of diffusion coefficients: there
are me coefficients D.4 in the mixture, for each
coefficient the system of Ny, algebraic coefficients
has to be solved. Strictly speaking, the number of
independent diffusion coefficients is No(Nioy +
1)/2 because Dy = Dy.;- However, despite this
fact the total number of diffusion coefficients re-
mains tremendous. A simple example: in a mixture
(N, /N) taking into account 46 vibrational levels of
nitrogen, one obtains 1128 independent diffusion
coefficients, each of them is found solving the
system of 47 algebraic equations. In the same
mixture, for the computation of thermal conduc-
tivity and shear viscosity coefficients the systems of
140 and 47 equations should be considered re-
spectively.

It is obvious that such a computational scheme
cannot be implemented to any CFD code, re-cal-
culation of all transport coefficients at the each
step of numerical code will make it too much time
consumable. In order to maintain the advantages
of the state-to-state transport theory and simplify
the procedure of transport coefficients calculation
some additional assumptions are required. In the
present work the following assumptions are in-
troduced:

(1) The rotational motion of a molecule is de-
scribed by the rigid rotator model. It allows to
consider the rotational energy independently from
the vibrational state (&' = &) and therefore to put
Crotei = Crote- This fact simplifies noticeably the
thermal conductivity computation.

(2) Usual assumptions of Monchick et al. [17]
for the calculation of bracket integrals are intro-
duced: first, all complex collisions are neglected,
and second, the internal and translational motions
are considered as the uncorrelated ones. These
assumptions allow one to express all bracket in-
tegrals as linear combinations of the elastic colli-

sion integrals and the integrals depending on the
change of rotational energy Ac* at the inelastic
collisions.

(3) All collision integrals depending on Aec are
supposed to be much smaller than the elastic col-
lision integrals. This assumption was discussed in
details and proved in Refs. [10,18]: the contribu-
tion of the collision integrals depending on Aefid
to the thermal conductivity coefficients is found to
be less than 1-2%.

(4) The cross-sections of elastic collisions are
assumed to be independent of the vibrational
states of colliding particles. This assumption is
usually accepted in the transport kinetic theory
despite the fact that molecules in vibrationally
excited states may have a larger effective radius
than ground state molecules (see, for instance, Ref.
[19]). The validity of this assumption is discussed
in Ref. [14]. It is shown that taking into account
the dependence of elastic cross-sections on the
vibrational quantum number provides only a very
small correction to the transport coefficients.

Applying these assumptions one can simplify
significantly the procedure of transport coefficients
calculation. First, assumptions (2)—(4) permit to
express all the bracket integrals in terms of the
vibrational level populations, atomic number
densities and reduced elastic collision integrals
ngf)* (see Refs. [20-23] for definition and Ref. [24]
for the most reliable data on these integrals). The
final expressions for the bracket integrals are ob-
tained in Ref. [10] and are given in Appendix A.2
in the simplified form ((A.2)-(A.12)).

The next result concerns the simplification of
systems (18) and (20)—(23). Let us consider first the
most simple system (23) for the coefficients b;,.
Due to assumption (4) the bracket integrals H<%
depend on the vibrational level i only through the
vibrational level populations n. (see Appendix
A.2). Then, after some algebra, from system (23) it
follows that coefficients b.;, do not depend on the
vibrational level: Vi = 0,...,L. b, = b.,. Keeping
only the first non-vanishing terms of expansion
(13) one can reduce the calculation of the shear
viscosity coefficient to the simple formula:

kT n
= — ~be.o. 2
u ) ' beo ( 5)
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Coeflicients b,y are found from the simplified
system:

2 n,
Hggbdy():——c, C:1,...,L. (26)
; kT n

As it is seen, system (26) contains only L
equations instead of Ny in system (23). This so-
lution coincides formally with the one obtained in
the quasi-stationary local thermal equilibrium one-
temperature approach described in Refs. [16,23],
the bracket integrals Hs¢ for the one-temperature
solution are given in many classical works on the
transport theory in terms of standard Q" inte-
grals and fictitious viscosity and heat conductivity
coefficients [21-23]. However, the principal differ-
ence exists: as the transport coefficients are deter-
mined by the cross-sections of rapid processes, the
Qiﬁ,‘r)* integrals in the state-to-state model depend
on the cross-sections of elastic collisions and TR
exchanges; in the one-temperature approach they
depend also on the cross-sections of vibrational
energy exchanges.

Finally one can conclude that shear viscosity
does not depend on the vibrational distributions.
It is reasonable because this coefficient describes
the transfer of momentum which depends signifi-
cantly on the velocities but not on the internal
state of particles.

The bulk viscosity coefficient as well as relax-
ation pressure are determined by the integrals de-
pending on A& and, consequently, cannot be
calculated using assumption (3) proposed above.
In some cases these coefficients can be expressed in
terms of the rotational relaxation times. For a pure
diatomic gas bulk viscosity in the state-to-state
approach is obtained in Ref. [25].

Now, let us consider the coefficients making
part of the diffusion velocities and total energy
flux. Proceeding in a similar way and invoking also
assumption (1), the expression for the thermal
conductivity coefficient has been simplified:

) 5 n, k n.
/L, = zc: Zk;aa,w + Z: 5 ;Crot,caaolv (27)

coefficients a. 19 and a.(; are found from the sys-
tem:

cd cd cd _
E : (Aooooad-OO + Ajioda,i0 + A0001ad~01) =0,
d

15kT n,

cd cd cd _
E (Aloooadﬁo + Affpda,i0 + Ammad,Ol) T

d
" c ca ne
Z (Af)‘émad.oo + AO‘{load,lo + Aoéuad,m) = 3kT;Crol.cv
d
c=1,...,L. (28)

System (28) must be solved together with the
constraint obtained from Eq. (20) after summation
over i

Z %acm =0. (29)

c

Again, compared to systems (18) and (20) the
number of equations is significantly reduced: there
are only 3L, + 2L, equations instead of 3N, +
2Ly

This result is also close to the one given by the
one-temperature model [16,23] except two points:
the first one, concerning the inelastic cross-sections
is discussed above, and the second point is that in
the state-to-state approach only rotational degrees
of freedom make contribution to the internal
thermal conductivity whereas in the one-tempera-
ture approach both rotational and vibrational
energy contribute to this coefficient. Therefore in
the latter case the internal specific heat cj. ap-
pears in Egs. (27) and (28) instead of rotational
specific heat cor.. The reason for this is that
thermal conductivity as well as viscosity are de-
termined by the rapid processes. Finally in the
state-to-state approach the thermal conductivity
coefficient does not depend on the vibrational
distribution. The transport of vibrational energy is
described by introducing diffusion coefficients for
every vibrational state.

Due to the fact that a.; g9 = a9, Vi, the thermal
diffusion coefficients are also independent from the
vibrational state (Dr.,; = Dr., Vi), and the term
> . Dred.; entering to the total heat flux is equal to
> . Dred., where d. =", d,;.

The situation is more complicated for the dif-
fusion coefficients. Actually, system (21) cannot be
simplified in the same way as the previous ones
because of the structure of its right-hand sides.
However, it is easy to show that the main part of
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coefficients @)} , do not depend on the vibrational
quantum number except the coefficients d}; .
Therefore, df , = d’,, Vd # b, Vk, I, and d}j , =
dy,, V1, Vk # 1. Keeping the first non-vanishing
terms in expansion (12), i.e., the terms corre-
sponding to » = 0, system (21) can be written in
the reduced form:

forc=0b,i=1:
blbldll;llo +Z/blbkdb +stozybldk
KA d#b
- 3kT(1 - @), (30)
0
forc=b, i=0,...,/1—1,1+1,...L,
Z ( btbldll;llo_i_z,yblbkdbo _"_stozygglk)
i#l kAl d#b
:_31(7@7 (31)
0
forc=1,...,b—1,b+1,...L, i=0,...,L.:

Z ( Ctb/dli:llo T Z VClbkdb T Z dg() Z )f‘ldk)

i KAl d£b

0.
= —3krFe, 32
P (32)

The constraint (22) is replaced by the following

equation:
Poi dbl sz db Z Pa dgo -0,
db
b=1,...,L, 1=0,1,...,L. (33)

System (30)—(33) contains only L + 1 equations
instead of Ny, in the case of systems (21) and (22).
Finally the system of diffusion coefficients is re-
duced to the following: there are N, coefficients
D.;.; which are different for any vibrational level i
of species ¢, Ly, coefficients D.. = D, Vi, Vk # i,
and L? coefficients D,y = Dy, Vd # ¢, Vi, k. The
total number of independent diffusion coefficients
iS Ny + Lot + L(L+1)/2.

Coming back to the (N,/N) mixture mentioned
at the beginning of this section, after simplifica-

tions proposed above, one obtains only 49 inde-
pendent diffusion coefficients, each of them is
found from the system of three equations. For the
computation of thermal conductivity and shear
viscosity coefficients the systems of five and two
equations are to be solved respectively.

Finally, computation of the transport coeffi-
cients is reduced to the solution of linear algebraic
systems (26), (28), (29) and (30)—(33). Coefficients
of these systems represent the partial bracket
integrals determined by the cross-sections of elas-
tic collisions and translation-rotation energy ex-
change. The expressions for the bracket integrals
Hil, g . 76 are summarized in Appendix A.3
((A.13)-(A.22)). These formulas are close to the
classical ones [21-23]. Nevertheless, one should
keep in mind that in the state-to-state approach
Q7" integrals as well as the bracket integrals de-
pend on the cross-sections of elastic and TR col-
lisions (while in the well known one-temperature
case they depend also on the cross-sections of
vibrational energy transitions). However, for the
practical calculations of Qf,i,'r>* integrals, the in-
elastic cross-sections are usually substituted by the
elastic ones. The influence of the inelastic cross-
sections on these integrals occurs to be weak (see,
for instance, Ref. [26]).

Various methods of solution of transport linear
systems have been elaborated since the work of
Chapman and Cowling [20]. The most evident way
is the direct solution of algebraic systems by the
Cramer’s rule which allows one to express the
transport coefficients explicitly as ratios of de-
terminants [20-22,27]. Nevertheless, solving the
linear systems by this method is extremely com-
putationally expensive. Another direct method
using the Gaussian elimination is considered, for
instance, in Ref. [28]. This method is noticeably
less time consumable but still not satisfactory as a
majority of direct methods. Recently the mathe-
matical properties of transport linear systems have
been studied comprehensively in Ref. [23] and new
efficient iterative algorithms have been proposed.
This technique provides very fast and accurate
evaluation of transport properties.

It should be emphasized that the resemblance of
systems (26), (28) and (29) to the classical one-
temperature ones remains only formal, it is seen
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from the definition of partial bracket integrals (see
Appendix A.1) and from the fact that vibrational
degrees of freedom do not contribute to the
transport coefficients. Strictly speaking, the inde-
pendence of some transport coefficients of the
vibrational distributions is not an evident fact, and
application of the state-to-state transport theory
must in essence be based on the complete systems
(18) and (20)—(23). Thus, the analysis of transport
properties performed in Refs. [11-14] is carried out
in this way, and it was a rather lengthy procedure,
even using an approximate method mentioned in
Section 1.

A possibility of getting simplified transport
linear systems in the state-to-state approach is
discussed in Ref. [10], but their validity has never
been proved before. The derivation of transport
linear systems (26), (28)—(33) is the first step to the
implementation of state-to-state transport theory
to the computational fluid dynamics.

4. Diffusion coefficients

In this section the diffusion coefficients are
considered in some more details. The diffusion
coefficients for each vibrational state have been
introduced recently in Ref. [10], they are required
for the estimation of vibrational energy transport
in the absence of quasi-stationary vibrational dis-
tributions.

For a mixture of diatomic gas 4, and atoms A4
the analytical expressions for the diffusion coeffi-
cients can be derived from Egs. (30)—(33). Finally
all diffusion coefficients are expressed in terms of
mass fractions of species ¢, = p,/p and binary and
self-diffusion coefficients:

3 (27tmcdkT)1/2
lonme ng2 QUL

3 (umkD)'?

- 8nm, ma2Q*

9cd

)

c

meq 18 the reduced mass, 6., is the collision dia-
meter. Thus for the (N,/N) mixture the diffusion
coefficients are given by:

2
myN
Dnyingi = :@NNZ( )

p/n
oN 2 1 _
7N, 9NN, (CNzi N 1)
X Ny cN ’
-~ +
29N, 9NN,
i=0,...,45, (34)

2
m
DN, = Dnyingk = DN, (p/l\;)

: 2
,@FSZ ~ I, (en+1)

X

. Yk i, (35)

(36)

MNIN 1
Dnw =9\, ———= | ——1). 37
NN NN, (p/n)z (CN ) (37)

One can notice that expressions for Dyy, and
Dy are similar to the well-known formulas given
by Ferziger and Kaper [22] for a binary mixture
(again, the difference is in the cross-sections de-
termining the QS;”* integrals). The state specific
diffusion coefficients Dy,n,; depend on the mass
fractions of chemical species and population of the
corresponding level. Due to assumption (4) of the
previous section, these coefficients are the only
ones determined by the non-equilibrium state-
to-state distributions. In the limit of a pure di-
atomic gas (cx = 0) coefficients Dy,in,; and Dy,
take the form obtained in Ref. [25]:

1

CNzi

Dn,ingi = @Nz< - 1), DN, = =D, -

The state-to-state vibrational distributions as
well as transport coefficients and heat flux have
been investigated in the previous papers [11-13]
for three different flows of a (N,, N) mixture: (1)
flow behind a strong shock wave (initial conditions
are: My = 15, Tp = 293 K, py = 100 Pa), (2) flow in
a hypersonic boundary layer (temperature and
pressure at the edge of the boundary layer are
7. = 5000 K, p. = 1000 Pa, the wall temperature is
Ty = 300 K), and (3) expanding flow in the F4
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nozzle used in ONERA (reservoir conditions are:
Ty = 6000 K, py = 10° Pa).

The analysis carried out in these papers is based
on a simplified scheme: first, the vibrational dis-
tributions, species concentrations, temperature, pres-
sure, velocity are computed either in the Euler
approach of non-viscous and non-conductive gas
flow [11,13] or on the basis of very simple models
for transport coefficients [12]. The numerical
methods are described in details in Refs. [6-9,11].
Then the calculated macroscopic parameters are
used as input for the transport coefficients and
heat transfer evaluation. This approach permits to
estimate qualitatively the influence of state-to-state
vibrational kinetics on the transport properties.
Certainly, in order to understand the mutual effect
of non-equilibrium kinetics and state dependent
transport properties, it is necessary to use the
equations of viscous and heat conductive gas flow
and compute the state-to-state coefficients at the
each time and space cell. Up to now, the compu-
tational cost of such a scheme was extremely high,
and the practical incorporation of the state-to-
state linear transport systems to the numerical
codes has not been accomplished. The implemen-
tation of simplified systems proposed in the pre-
sent paper makes this goal attainable. A simple
illustration: in the present study the transport co-
efficients and heat fluxes in (N,, N) mixture flows
are calculated using the same macroscopic pa-
rameters as in Refs. [11-13] but applying reduced
systems (26), (28)—(33) in contrast to the previous
papers where complete systems (18) and (20)—(23)
have been solved. The computational time for each
step is now 100-150 times less, the accuracy of
calculations remains the same. The gain of time is
expected to be much higher for multi-component
mixtures. This can encourage one to consider
simultaneously the state-to-state kinetics and
transport theory and by this means get more
comprehensive results.

The following discussion serves as a warning
against an over-simplification of the diffusion co-
efficients. The main factor which affects the state
specific diffusion coefficients D.,; is the non-equi-
librium vibrational kinetics, D,;; appear to be ap-
proximately inverse proportional to n. (see Refs.
[11-13]). The similar dependence of usual self-

diffusion coefficients on the concentration of cor-
responding chemical species has been predicted
by Ferziger and Kaper [22]. It is known that
vibrational level populations can vary within sev-
eral orders of magnitude, therefore, the inverse
proportional dependence leads to very strong
variations of diffusion coefficients as far as one
computes them as functions of i. For the practical
calculations sometimes it is more convenient to
deal with slowly varying coefficients. Conse-
quently, it is useful to introduce the coefficients

D.;.; in the following way:

Rei

bcici = _Dciciy 38
: (38)

and insert D, to the macroscopic equations in-
stead of D.;. Various definitions of diffusion ve-
locity are discussed in Ref. [22], and it is shown
that definitions like (7) are more self-consistent.
However, coefficients D,;.; vary much slower with
the vibrational quantum number compared to
D...;, this makes easier to use them for rapid esti-
mations. Moreover, weak variation of D, allows
one to suppose that these coefficients do not de-
pend on the vibrational state and can be replaced
by a unique coefficient D, which, for a mixture
(N, N), is connected with a simple binary diffu-
sion coefficient:

~ N, .
D = DNziNgi = %@NNZ, Vl. (39)

Such an assumption is often used in the state-
to-state calculations in order to incorporate the
vibrational energy transport by diffusion to the
master equations and to treat it in the most simple
way [8,9,29,30]. By this means the constant Lewis
and Schmidt numbers can be introduced, it facili-
tates significantly the numerical algorithms [8,9].
However, assumption (39) requires further verifi-
cation. The limits of its validity as well as the im-
pact of vibrational distributions on the diffusion
coefficients are discussed hereafter.

In Figs. 1-7 the vibrational distributions and
state specific diffusion coefficients (38) are given
for different conditions. For a comparison the
values of coefficient D (39) independent on the
vibrational state are also plotted.
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Fig. 1. Vibrational distributions »,;/n behind a shock wave at different distances x from the shock front. (1) x = 0.015 cm; (2) x = 0.05
cm; 3)x=0.1cm; (4)x=1cm; (5) x=2cm.
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Fig. 2. Diffusion coefficients Dy, ,;, m*/s, behind a shock wave at different distances x from the shock front. Solid lines — state-to-state

approach, dashed lines — coefficient D. 1,1’ — x =0.015 cm; 2,2 —x=0.05cm; 3,3 —x=0.1cm; 44 —x=1cm; 5,5 —x =2 cm.

The process of vibrational relaxation behind a the series of non-equilibrium state-to-state distri-
shock wave is illustrated by Fig. 1. The initial butions. They are formed by translation—vibration
Boltzmann distribution over vibrational energies TV excitation of low levels and consecutive vi-

evolves towards the final equilibrium state through brational energy re-distribution by VV exchange
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Fig. 3. Vibrational distributions »;/n in a boundary layer at different distances n from the wall. (1) n=0; 2)n=1,3)n=2; 4 n=3;
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Fig. 4. Diffusion coefficients DNZ,-NZ,-,NmZIS, in a boundary layer at different distances # from the wall. Solid lines — state-to-state
approach, dashed lines — coefficient D. 1,1’ — 5 =0;2,2" —n = 1.

between vibrational states. The high levels are Refs. [2,11] that in the vicinity of the shock
slightly depleted because of dissociation process. front the quasi-stationary Boltzmann distributions
Similar shapes of the distributions behind a shock remain higher than the corresponding state-
wave are found also in Refs. [2,3]. It is shown in to-state ones. With distance from the shock front
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Fig. 5. Diffusion coefficients DNz,-NZ,-Lmzls, in a boundary layer at different distances 1 from the wall. Solid lines — state-to-state
approach, dashed lines — coefficient D. 3,3 —n=2; 44 —n=3.
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Fig. 6. Vibrational distributions n;/n in a nozzle at different distances x from reservoir (Xgpra =0.5 m). (1) x = 0; (2) x = 0.5 m; (3)
x=051m; 4 x=055m; (5) x=0.6 m; (6) x =2 m.

all quasi-stationary and state-to-state distributions that the coefficient D is significantly higher than
converge. The diffusion coefficients Dy,n,; behind state-to-state coefficients for low vibrational states
the shock are presented in Fig. 2 as functions of (i < 5-7), especially in the beginning of the relax-

the vibrational quantum number i. One can notice ation zone where the quasi-stationary distributions
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Fig. 7. Diffusion coeﬁﬁcietlts Dnyingis M?/s, in a nozzle at different distances X (xproar = 0.5 m). Solid lines — state-to-state approach,
dashed lines — coefficient D. 1,1’ —x=0;22 —x=05m; 3,3 —x=055m; 44 —x=06m; 55 —x=0.8m; 6,6/ —x=2m.

do not exist. Approaching to the thermal equili-
brium state this discrepancy decreases noticeably.
Concerning the high levels, the difference between
Dn,iny and D does not exceed 10% even in the
range of strong vibrational non-equilibrium. It can
be connected with the fact that the shape of dis-
tributions remains close to the Boltzmann one
and, therefore, high states are not populated suf-
ficiently to give a noticeable contribution to the
diffusion coefficients.

Quite different behaviour of diffusion coeffi-
cients has been found in a boundary layer, where
the vibrational distributions are essentially non-
Boltzmann. The mechanism of formation of these
distributions is the following: dissociation in the
gas flow near the high-temperature edge of the
boundary layer produces nitrogen atoms which
diffuse towards the cool surface. Recombination
near the surface pumps the populations of the high
vibrational states. As the result of this process and
VV and VT exchange the strong non-equilibrium
distribution with a plateau part at the intermediate
and upper levels appears just near the wall (see
Fig. 3). This effect has been studied in Refs.
[8,9,29] and the role of recombination and VV

exchange is found to be particularly important in
this flow. The non-Boltzmann character of vibra-
tional distributions influences dramatically the
diffusion coefficients: close to the surface, at i > 5
the ratio D, n,i/D reaches several thousands (Fig.
4). The over-population of high states leads to very
large values of corresponding diffusion coefficients.

Again, coming to equilibrium at the external
edge of boundary layer, this ratio decreases, and
finally the discrepancy between Dn,,; and D for
high levels tends to 5-10% (Fig. 5).

Another example of non-equilibrium flow is a
nozzle expansion. Characteristic vibrational dis-
tributions and diffusion coefficients in the F4
nozzle [7,13] are shown in Figs. 6 and 7. In the
initial part of the nozzle the distributions are close
to the Boltzmann ones and then a plateau develops
at the intermediate and upper levels as a result of
VT deactivation, VV exchange and recombination.
The region of major change of the level popula-
tions is in the beginning of the expanding part just
after the throat (x < 0.6 m). Then the populations
(except very high levels) change weakly and ap-
proach the constant frozen values. This character
of the distributions has been found in Ref. [7], in
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Fig. 8. Heat flux ¢, kW/m?, behind a shock wave as a function of x calculated using coefficients BNzisz and D (curves 1 and 2). Curve

3 — flux Fourier.

this paper a comparison of the calculated distri-
butions with the experimental ones [31] is given
and a qualitative agreement is observed. In the
vicinity of the throat, where the distributions have
an approximately Boltzmann shape, the state de-
pendent diffusion coefficients are not far from D.
The difference increases with x from 5% at x =
0.5 m up to 50% at x =2 m. It should be noted
that for the calculation of diffusion coefficients
only the lowest 20 levels have been retained. At
higher levels the distributions in this kind of nozzle
take more complicated form [7,13], it can change
also the diffusion coefficients.

The general tendency can be formulated in the
following way: average coefficient D overestimates
state-to-state diffusion coefficients at low vibra-
tional levels, and underestimates them for the high
states. The discrepancy between these coefficients
decreases significantly approaching to the thermal
equilibrium conditions.

Let us consider now a qualitative behaviour of
the total heat flux calculated for the flows dis-
cussed above using the state dependent and con-

stant diffusion coefficients BNZ,-NZf and D. Figs. 8-
10 present respectively the heat fluxes behind a
shock wave, in a boundary layer, and in a nozzle.
Curves denoted as “1” in these figures correspond
to the results obtained with coefficients Dy,
“2” are calculated with the state independent co-
efficient D.

The role of diffusion in a shock heated gas flow
is found to be very important [11], even the quali-
tative behaviour of the total energy flux and
Fourier flux caused by heat conductivity (qp =
—2'VT) differs in the relaxation region. Curve “3”
in Fig. 8 denotes the Fourier flux. Under these
conditions the employment of averaged coeffi-
cients D gives only a very rough approximation for
the heat flux. Such a discrepancy can be explained
in the following way. The only positive diffusion
velocity in this case is that of the ground vibra-
tional state ¥, (the population of the ground state
is the only one which decreases during the relax-
ation process, remaining, however, much higher
than the populations of other levels). Conse-
quently, noticeable overestimation of the diffusion
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Fig. 9. Heat flux ¢, W/m?, in a boundary layer as a function of # calculated using coefficients szisz and D (curves 1 and 2).
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Fig. 10. Heat flux ¢, W/m?, in a nozzle as a function of x calculated using coefficients sziNzi and D (curves 1 and 2).

coeflicient 5N20N20 (see Fig. 2) leads to overesti-
mation of the ¥, contribution to the heat flux. In
the case of state dependent diffusion coefficients,
the contribution of different levels to diffusion of
vibrational energy is of the same order of magni-
tude, and negative diffusion velocities decrease

significantly the total energy flux compared to the
previous case.

Looking at Figs. 4 and 5 one can expect a
strong disagreement between the heat fluxes cal-
culated in a boundary layer using two models for
diffusion coefficients. Nevertheless, the difference
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between two fluxes does not exceed 30% (see Fig.
9). The reason is that in the boundary layer with
non-catalytic surface the contribution of the dif-
fusion processes to the total energy flux is much
less than in the shock heated flow, the heat transfer
in this case is determined mainly by thermal con-
ductivity. The heterogeneous reactions on the sur-
face increase dramatically the role of diffusion [32],
and in the case of catalytic wall the effect of diffu-
sion coefficients on the heat flux should be greater.

Fig. 9 plots the heat fluxes computed in a noz-
zle. It is not surprisingly that the influence of state
dependent diffusion coefficients on the heat flux is
weak (the discrepancy is within 15% in a very
narrow interval just near the throat and does not
exceed 5% in other regions). This is explained by
the fact that in this flow only the low vibrational
levels contribute considerably to the heat transfer
at x > 0.6 m (the highly located states are popu-
lated very poorly). For low levels the discrepancy
between D,y and D is small, therefore, coefli-
cient D gives a satisfactory description of vibra-
tional energy diffusion in a nozzle.

One should keep in mind that the present re-
sults can be treated only as the qualitative ones
because of approximations adopted for the heat
flux calculation. A comparison with experimental
data is necessary for the estimation of accuracy of
the proposed method. Unfortunately, the lack of
data on the heat transfer in the flows discussed
above makes this task unattainable. Nevertheless,
it can be pointed out that only state-to-state de-
scription gives an adequate shape of vibrational
distributions in strongly non-equilibrium condi-
tions. For instance, in papers [30,33,34] the ex-
perimentally measured vibrational distributions in
optically pumped CO and other diatomic gases
are compared with the state-to-state and quasi-
stationary distributions. An excellent correlation
between the state-to-state and measured distribu-
tions is observed, whereas all quasi-stationary
models give a very poor agreement. This fact is a
good reason to believe that the results of state-to-
state simulation of the heat transfer in extremely
non-equilibrium conditions will be much more
accurate compared to the results obtained by
means of quasi-stationary one-temperature or multi-
temperature models.

5. Conclusions

The transport kinetic theory in the state-to-state
approach is considered. The simplified algorithm
for the viscosity, thermal conductivity and diffu-
sion coefficients calculation is proposed. This al-
gorithm reduces essentially the time of transport
coefficients computation and thus encourages one
to insert the obtained linear transport systems to
the numerical codes for the solution of master
equations.

The results concerning state specific diffusion
coefficients which describe the transport of vibra-
tional energy are presented, and the influence of
non-equilibrium vibrational distributions on these
coefficients is estimated. A comparison with the
results obtained on the basis of the simple intuitive
model is also given. This model gives a satisfactory
agreement with the state-to-state approach only
for weak deviations of vibrational distributions
from the Boltzmann ones. Under strongly non-
equilibrium conditions, state-to-state diffusion
coefficients differ significantly from the average
values. Using the constant diffusion coefficients
instead of the state dependent ones may lead to an
essential error in the values of diffusion velocities
and total energy flux.
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Appendix A

A.1. Definition of bracket integrals

4,8 = 3 " (L, By + A Bl ), (AD)

cidk

the partial bracket integrals are introduced as
follows:

, 1
A, Bl =5—— / 1514 (Beiy = Buiy)

2ncindk Jir

X (Aeij — Acijr)gO{;Zk"ﬂ d*> Qdu, duy,
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1
4,B H' 5, (0) o) Bci' - Bci i
(4, Bl ik Dot j%”/ / Jeij Jara (B 7)

X (Adkl — Adk/')gaz'/if;k,jl szduc dlld.

ol

o{,ii,kﬁ ;1 1s the cross-section of collision of two mo-
lecules ¢ and d chemical species at i, k vibrational
and j, [ rotational states leading to the change of
translational and rotational energy, d’Q is the
solid angle where the relative velocity after the
collision can appear, g is the relative velocity be-
fore the collision, j/, /' are the rotational levels

after collision.

A.2. Bracket integrals depending on vibrational
state [10]

The expressions obtained in Ref. [10] can be re-
arranged to the following form:

- . 75k2wa‘ Xp Xei
A = 7 = ( = )
6 |2

cbeb A;c/h“’

(A.2)
. A T5k2T xix
pcidt _cidk _ _ ardk  c£dori#k,
0000 — 700 16 A%))q 7 7
(A.3)
. 75k T, xp  my(6C, —5)
Afggy = — 32 A )
5 Awter  Me A my
xc,»(6C* — 5)
_ T\ Tee  7) A4
247 D )’ (A4
. T5K2T X.x me
Aczdk — citdk < 6C* — 5
1000 32 A:d;“c‘d m, + my ( cd )7
c#dori#k, (A.5)
Afo0
52 Txe [ X 55
- o < (44;, — = +3B; A.6
16 <4A;C/1w < « 4" ) (A6)
Xp
+ 5
Z;,: Ay et
Bm? +2m2 — 3m}B;, + 4m.mypAs,
x )
(m. + mb)2

(A7)

T5K*T Xeixu m.my

Acidk ——
1100 16 Aiylea (me +my)’
55 . * )
x Z_3Bcd_4Acd , cFdorifk,
(A.8)
15K T *b
e KT S % (A.9)
0011 16 ' zb: Az ech
A =0, cFdoritk (A10)
B 2xb m.mp < 5 mb>
Heiel — Xei — 2\ 7+ T
X 5
X 1 A.ll
2:“00 <3A;F >> , ( )
ci QWeiXae MMy >
Hoodk == 2\ 347, )
Hea  (me +my)” \ 3
cAdori#k, (A.12)

where x.; = n.;/n is the molar fraction of ¢ species
at the vibrational state i,

75k (2mmegkT)"?
128ma 752,Q%%

;Lcd = ;

5 (2nme kT)'"?

“6 ”536192?1‘2)*

are the fictitious thermal conductivity and visco-

*

sity coefficients. Functions 4}, B,, C:, are defined
in Refs. [21-23]:

O sl gt
cd T A(1L1)x? cd (1,1)x ’
cd ch
e
Ca = QU+
cd

Q7" integrals can be computed using the data
from [24].
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A.3. Classical bracket integrals [22]

75k2T XX
Ao = Vo0 = : A3
0000 — Yoo = 16 — Ay ( )
e B 75k2T XeXdg
Al = 50 = — 16 A7y’ c#d, (A.14)
75k*T XeXp my,
Ao = — 6C, — S
1000 32 bte A:b;‘cb me. + my ( cb >7
(A.15)
T52T  x.x4 m
e = ‘ < (6,5 d
1000 32 A:d)“c‘d m. + my ( cd )a C 7& )
(A.16)
e 75k2 X.Xp
Al = ( 2A*h;“ N
y Bm? +Zmy — 3myB:, + dmemy A,
(mc + mb)z
(A.17)
qed T52T x.x4 m.my
1100 16 A2l (mc+md)2
55
X (7—33* — 44, ) c#d, (A.18)
75K°T x2 X Xp
Agorr = rot,c £ c
0011 16 Crot, A + Aﬁ/nb
(A.19)
Aggll = 0, c 7é d7 (AQ,O)
cc X? 2xcxb memy 5 my
g ()
Hee btc Hep (mc —+ m,,)
(A.21)
XXy memy < 5 )
Hy = — 1), c#d,
o Heaq (mc-i-md)z 3A:d #
(A.22)

=) .nq/n=n./n.
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