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Abstract: The nature of plant–fungi interaction at early stages of arbuscular mycorrhiza (AM) de-
velopment is still a puzzling problem. To investigate the processes behind this interaction, we used
the Medicago lupulina MlS-1 line that forms high-efficient AM symbiosis with Rhizophagus irregularis.
AM fungus actively colonizes the root system of the host plant and contributes to the formation
of effective AM as characterized by a high mycorrhizal growth response (MGR) in the host plant.
The present study is aimed at distinguishing the alterations in the M. lupulina root metabolic profile
as an indicative marker of effective symbiosis. We examined the root metabolome at the 14th and
24th day after sowing and inoculation (DAS) with low substrate phosphorus levels. A GS-MS analysis
detected 316 metabolites. Results indicated that profiles of M. lupulina root metabolites differed from
those in leaves previously detected. The roots contained fewer sugars and organic acids. Hence,
compounds supporting the growth of mycorrhizal fungus (especially amino acids, specific lipids,
and carbohydrates) accumulated, and their presence coincided with intensive development of AM
structures. Mycorrhization determined the root metabolite profile to a greater extent than host plant
development. The obtained data highlight the importance of active plant–fungi metabolic interaction
at early stages of host plant development for the determination of symbiotic efficiency.

Keywords: Medicago lupulina; arbuscular mycorrhiza; Rhizophagus irregularis; symbiotic efficiency;
plant development; physiological stage; root; metabolic profile

1. Introduction

The efficient symbiosis between higher plants and arbuscular mycorrhiza (AM) fungi
is one of the more intriguing questions in modern biology. AM is a widespread symbiosis
formed by more than 80% of land plants and Glomeromycetes fungi [1]. AM plays an
important role in terrestrial ecosystems. Such plant–fungal association enhances plant
growth and its adaptive capabilities [1–3]. This phenomenon has both biological and
agricultural importance, as environmental stresses can reduce crop production by up to
70% [4]. Nevertheless, the lack of mycorrhizal growth response (MGR) was shown for
Pisum sativum, Plantago lanceolata, P. major, M. truncatula, Veronica chamaedrys, Poa annua, and
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Vitis vinifera inoculated with R. irregularis [5–7]. Thus, the importance of determining new
parameters that reflect the intensity of interactions between AM partners is self-evident.

The intensification of AM biology research is based on the employment of new
so-called “omic” technologies. AM fungi effect the transcriptome of M. truncatula, Nico-
tiana attenuata, Sorghum bicolor [8–10], and the proteome of M. truncatula and Sorghum
bicolor [11–14]. Special attention was paid to AM manifesting metabolic rearrange-
ments [5,15–17]. Its significant species specificity has been revealed for plants [6,18–22].
This was demonstrated for a number of model plants: Pisum sativum L. [23–25], Medicago
truncatula Gaertn. [26,27], M. lupulina L. [17,28], Vicia faba L. [23], Lotus japonicus L. [29],
Phaseolus vulgaris L. [30], Zea mays L. [31], Solanum lycopersicum L. [32], Petunia×hybrida
hort. ex Vilm. [33], etc. At the same time, the mycosymbiont, being an obligate sym-
biotroph, receives photosynthates from the host plant [34] and is known to synthesize a
number of specific metabolites [35–37]. Nevertheless, AM fungi species specificity has
not yet been truly confirmed. In more than half of studies, Rhizophagus irregularis strains
were used to elucidate the effect of AM fungi on the diversity of primary and secondary
metabolites of the host plant [16]. AM fungi induce a wide range of interactions from
mutualistic to parasitic [38]. The highest symbiotic efficiency is manifested under low
phosphorus (P) level in the substrate. The contribution of inorganic P absorption due
to AM fungi through hyphae and arbuscules can reach 90–99% of the total uptake of
the host plant [39,40]. Under conditions of P deficiency, the plant–fungal interaction
triggers a shift in the profile of primary metabolites: a decrease in leucine, isoleucine,
phenylalanine, aspartic acid, tryptophan, and tyrosine in the roots of Solanum lycoper-
sicum and an increase in glutamic acid [41], as well as an increase in the total content
of proteins and carbohydrates in the leaves of Anadenanthera colubrina [42]. Analysis of
the mycorrhization effect of R. irregularis (previously ascribed erroneously to Glomus
intradices; [43]) on M. truncatula’s metabolism under conditions of P deficiency revealed
higher levels of trehalose, asparagines [27], aspartic acid, glutamic acid [6,27], oleic
acid, palmitic acid, palmitvaccenic acid, vaccenic acid [27], homoserine, isoleucine, or-
nithine, phenylalanine, serine, and threonine [6]. On the contrary, P excess coupled
with R. irregularis inoculation prompted lower levels of asparagine, fatty acids, and their
esters, glutamine, phenylalanine, and alanine but a higher level of xylitol in Triticum
durum plants [44]. Besides AM-induced alterations in the primary metabolism of host
plants, a number of studies indicate an increase in the content of a number of secondary
metabolites: apocarotenoids, especially blumenols [16,38,45–47], mycorradicins [45],
cyclohexenone derivatives [27], and abscisic acid [48]; isoflavonoids such as daidzein,
malonylononin and ononin [27]; phenylpropanoids, tomatine [15], and other secondary
metabolites [16] and species-specific metabolites such as glabridin, withaferin-A, alpha
terthienyl [49], and steviol glycosides [50].

Revealed metabolic alterations commonly reflect the sum of ongoing metabolic changes
specific to a plant’s organs and tissue. These are also prompted by both host plant devel-
opment and establishment of AM symbiosis. Thus, the detection of time points for the
metabolic profile analysis is crucial. Usually, this is calculated as the number of days after
inoculation (dai). Most studies related to the plant metabolome were provided once at late
stages of AM symbiosis: analysis of plant metabolites at 180 dai in Glycyrrhiza glabra [49];
127 dai in Leymus chinensis [51]; 90 dai in Withania somnifera and Tagetes erecta [49]; 85 dai
in Elymus nutans and E. sibiricus [52]; 84, 77, and 70 dai in Lotus japonicus [53]; 70 dai in
Senecio jacobaea [47]; 62 dai in Plantago lanceolata, P. major, Veronica chamaedrys, M. truncatula,
and Poa annua [6]; 60 dai in Vitis vinifera [7]; 50 dai in Solanum lycopersicum [15]; ~50 dai in
Lactuca sativa [54]; 49 dai in Eclipta prostrate [55]; 42 dai in Medicago truncatula [56].

Only limited investigations were focused on plant metabolomes throughout devel-
opment. As an example, the analysis of Stevia rebaudiana leaves at 69, 89, and 123 dai [50];
P. sativum leaves and roots from 7 to 110 dai at six stages of the pea plant development [5,25];
M. lupulina leaves from 14 to 52 dai at seven stages of black medic growth [17]. Moreover, a
literature review indicates that authors do not commonly associate the selected dai with a
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specific transition of the host plant to a new developmental stage and/or the intensification
of AM symbiotic invasion. This makes it difficult to compare the results obtained over
different studies. Special attention is merited by the rare data obtained at early stages
of AM symbiosis development because this is the period when AM fungus is actively
colonizing the host plant’s root system [27,48]. These results can contribute to discovering
the mechanisms that appear at a biochemical level over the intense interaction of symbiotic
partners. Among such investigations are: Anchusa officinalis stems at 9 dai [57], M. truncatula
leaves at 28 dai [40], Sorghum caudatum, and S. bicolor roots at 30 dai [38].

This study aims to uncover the metabolic response of M. lupulina roots in mycorrhiza-
tion with R. irregularis. For research purposes, a highly responsive M. lupulina line, MlS-1
(up to MGR > 350% depending on growth conditions), was selected see [17,28,58]. This
line expresses the dwarf phenotype under conditions of low P level in the substrate, a
deficiency which is significantly reduced owing to mycorrhization. The AM effect on the
metabolic profile of M. lupulina roots was detected with GS-MS at early stages of plant
growth (14 and 24 dai) under conditions of P deficiency. This period was characterized
by active root mycorrhization. The results obtained clarified the intensity of metabolic
response triggered by both partners: the host plant’s early development (stages of the first
and second leaf) and AM symbiosis. The assumption is that the root metabolic profile
alterations caused by mycorrhization are prioritized over those that result from the host
plant growing.

2. Results
2.1. Medicago lupulina MlS-1 Line Plants Development under Low Phosphorus Level

The results of comparative analysis of Medicago lupulina plants are presented in
Figure 1. The study was performed at the early development stages of M. lupulina plants
and AM symbiosis with the Rhizophagus irregularis fungus under low P level in the soil.
At the 14th day after sawing and inoculation (DAS), both plants that control for without
AM (“AM−”) and the inoculated variant (“AM+”) had one real leaf. After another week,
at 24th DAS, the plants showed differences in the number of leaves: 2.27 ± 0.04 leaves of
“AM−” plants and 2.58 ± 0.07 leaves (MGR in the number of leaves = +14%) of “AM+”
plants. At 24th DAS, the aboveground parts’ growth intensification was detected in “AM+”
plants in comparison to the “AM−” control, calculated by both fresh (Figure 1A) and dry
weight (Figure 1B). However, MGR as expressed in fresh and dry root weight was absent.

Further analysis showed that, despite the absence of a clear host plant response, myc-
orrhizal infection was actively developed in the roots (Figure S1). At 14 DAS, all symbiotic
structures were observed: arbuscules, vesicles, and intraradical mycelium, and the forma-
tion of appressories on the root surface (Figure S1E,G). One week later, the formation of
all symbiotic structures was well traced, arbuscules also occupied more than half of the
mycorrhized parts of the roots, and active development of the intraradical mycelium was
observed (Figure S1F,H). Thus, there were no significant changes in the mycorrhization
parameters over the tested period, excepting a decrease in the abundance of vesicles in
the mycorrhized part of the roots (Figure S1D). The presented data indicate that intensive
mycorrhization has occurred at the early stages of host plant and symbiotic development.

2.2. General Characteristics of Metabolic Profiles

We analyzed the root metabolic profiles of AM+ and AM− M. lupulina plants. The
obtained metabolic profiles (Table S1) included 316 metabolites, of which 79 compounds
were identified precisely; only the class was determined for 53 more compounds, and
the rest could not be determined from the databases used. Sugars were the most widely
represented in the obtained profiles (54), including pentoses, hexoses, and their derivatives,
such as sugar alcohols and sugar acids. Some compounds were annotated as “complex sug-
ars” and included those whose molecules contain sugar residues. Among them, different
di- and trisaccharides and their derivatives were probably most abundant. Twenty-eight
amino acids (including all proteinogenic ones, except arginine), about a dozen carboxylic
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acids, intermediates of energy metabolism, 11 fatty acids and their derivatives, as well as
amines, nitrogenous bases, sterols, etc., were also detected.
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Figure 1. Fresh (A) and dry (B) weight of aerial parts and roots per one M. lupulina plant. “APFW”
and “RFW” refer to fresh weight of aerial parts and roots, respectively. “APDW” and “DFW” are the
dry weights of aerial parts and roots. “AM−” and “AM+” are the variants without and with AM
fungus inoculation. “+65%*” and “+48%*” are significant (p < 0.05) mycorrhizal growth response
(MGR, AM efficiency) within the same parameter of productivity (ANOVA and Tukey’s test; p < 0.05).
“DAS” is the day after sowing and inoculation.

Primarily, a comparison of the metabolic profiles of the roots of mycorrhized and non-
mycorrhized black medic (M. lupulina) plants at different development stages was given
a principal component analysis (PCA) (Figure 2A) and multidimensional scaling (MDS)
(Figure S2) in a low-dimensional space. The profiles are grouped according to both the age
of the host plant and mycorrhization. In the case of PCA, the differences between AM+ and
AM− are related to the first PC, accounting for 31% of the variance. Mycorrhized plants at
both tested periods were located close to each other in the PCA plot and do not differ in the
first PC1 but do differ in PC2. On the other hand, the differences between 14 and 24-day-old
AM− plants are associated with PC1. Thus, the metabolic development of the AM+ and
AM− roots differs strongly over the tested period. Hierarchical clustering (Figure 2B)
shows that samples are grouped primarily according to mycorrhization and secondly
by age. Thus, we can conclude that mycorrhization is more decisive in determining the
metabolite profile than is the age.

2.3. The Effect of Mycorrhization at 14th DAS

To identify differently accumulated metabolites (DAMs) in response to mycorrhization,
we used OPLS-DA. The obtained OPLS-DA model included one orthogonal component:
R2Y = 0.99 (p = 0.002), Q2Y = 0.94, (p = 0.002). The predictive component associated
with the status of mycorrhization accounted for 29% of the variance. In Figure 3, the
results are visualized on a graph where the nodes correspond to metabolites and the edges
correspond to the reactions in which one compound transforms into another. In two-week-
old plants, mycorrhization contributed to the accumulation of certain amino acids, leucine,
glycine, histidine, tyrosine, tryptophan, and lysine, but was followed by an increase in
ornithine, which plays an important role in nitrogen metabolism. In contrast, asparagine
and proline levels decreased during mycorrhization. Similarly, intermediates of the Krebs
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cycle (citrate, succinate, malate, and fumarate) were reduced. In contrast, the level of
aconitate increased. The obtained data indicate a possible repression of the TCA cycle at
early stages of mycorrhization. AM fungi development had little effect on the profile of
monosaccharides, and only a few of them showed significant multidirectional differences.
On the contrary, the group of “complex sugars” had a number of DAMs, demonstrating
increased levels during mycorrhization. Similarly, the roots of AM+ plants contained a
higher representation of sterols. The effect of AM fungi on the profile of free fatty acids
was weak. A decrease in linoleic and linolenic acids was detected as well as an increase in
an unidentified acylglycerol.
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In order to identify the biochemical pathways most susceptible to mycorrhization,
we provided a set enrichment analysis (SEA). We used the loadings of the predictive
component from the OPLS-DA model as a ranking statistic and sets of metabolites for
pathways obtained from the KEGG database. Some tendencies toward the repression
of the citrate cycle (TCA cycle) (p = 0.016), as well as stimulation of steroid biosynthesis
(p = 0.005), were revealed.

2.4. The Effect of Mycorrhization at 24 DAS

The OPLS-DA model as built included one orthogonal component: R2Y = 1.00
(p = 0.003), Q2Y = 0.97, (p = 0.003). At this stage (24 DAS), 45% of the variance was
associated with the effect of mycorrhization. This is 1.5 times higher than that at the pre-
vious stage. AM fungi stimulated more intensive accumulation of metabolites (Figure 4).
Amino acids, including histidine, threonine, beta-alanine, cysteine, methionine, and serine,
were among them. To the contrary, levels of oxoproline and asparagine observed a certain
downward trend.

Plants 2022, 11, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 4. Visualization of differentially accumulated metabolites (DAMs) in response to mycorrhi-

zation at 24 DAS revealed through OPLS-DA. Nodes—metabolites; edges—reactions extracted 

from KEGG database. 

It must be noted that, at 24th DAS, the repressive effect of mycorrhization on the 

metabolites of the Krebs cycle weakened. The citrate level was still reduced, while the 

downregulation of succinate and malate became less pronounced. The level of oxalate, 

metabolically associated with TCA cycle, became higher at this stage, as well as the aco-

nitate level. AM+ plants had a greater accumulation of C3 compounds associated with 

glycolysis: glycerate and glycerol. At 24 DAS, mycorrhization strongly influenced the pro-

file of monosaccharides. It positively regulated the level for most pentoses and hexoses, 

including glucose and fructose. The effect on “complex sugars” remained but became 

multidirectional. The stimulation of sterols also continued. At 24 DAS, in contrast to pre-

vious the time point, mycorrhiza had strong a negative effect on the accumulation of most 

free fatty acids. These observations were confirmed by SEA, which showed (Figure 5) re-

pression of the pathways associated with the exchange of fatty acids and the activation of 

the carbohydrate metabolism. 

Figure 4. Visualization of differentially accumulated metabolites (DAMs) in response to mycorrhiza-
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KEGG database.

It must be noted that, at 24th DAS, the repressive effect of mycorrhization on the
metabolites of the Krebs cycle weakened. The citrate level was still reduced, while the
downregulation of succinate and malate became less pronounced. The level of oxalate,
metabolically associated with TCA cycle, became higher at this stage, as well as the aconitate
level. AM+ plants had a greater accumulation of C3 compounds associated with glycolysis:
glycerate and glycerol. At 24 DAS, mycorrhization strongly influenced the profile of
monosaccharides. It positively regulated the level for most pentoses and hexoses, including
glucose and fructose. The effect on “complex sugars” remained but became multidirectional.
The stimulation of sterols also continued. At 24 DAS, in contrast to previous the time
point, mycorrhiza had strong a negative effect on the accumulation of most free fatty
acids. These observations were confirmed by SEA, which showed (Figure 5) repression
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of the pathways associated with the exchange of fatty acids and the activation of the
carbohydrate metabolism.
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Figure 5. Metabolite sets enrichment analysis based on loadings from OPLS-DA classification of
mycorrhized (AM+) and non-mycorrhized (AM−) roots at 24 DAS. Nodes are the paths extracted
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The comparison of the AM fungi effect on root metabolite profiles at two time points
was realized with a SUS plot (shared and unique structures), where metabolites were
scattered in the space of factor loadings from the two OPLS models described above
(Figure 6). One can see that most metabolites showed the same signs of loading, and a
correlation between them was observed (rs = 0.48, p < 10−16). This indicates a similarity of
influence. The common features of the effect at 14 and 24 DAS include an increase in the
level of “complex sugars”, amino acids, and nitrogen-containing compounds. However, the
correlation coefficient is low, and a large number of metabolites reveal noticeable differences
in the value of loadings. However, the specificity of mycorrhization effects at 24 DAS was
expressed in a higher accumulation of monosaccharides, some carboxylates, and a decrease
in the level of several amino acids.
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Figure 6. Comparison of mycorrhization effects at 14 and 24 DAS. SUS plot in the space of the
loadings from two OPLS-DA models for discrimination of mycorrhized (AM+) and non-mycorrhized
(AM−) roots at 14 DAS (abscissa) and 24 DAS (ordinate); positive values correspond to higher content
at AM+.

2.5. The Effect of Mycorrhization on Metabolite Allocation between Leaves and Roots

The root of the plant is one of the main sink organs for metabolites. An intensive
redistribution of carbon in and between plant organs is supposed and may be affected by
AM development. To determine the role of mycorrhization at early stages, we compared,
at first, the metabolic profiles of roots and leaves and elucidated how mycorrhization
interferes in these differences. PCA analysis (Figure 7A) showed that the metabolite profiles
of roots and leaves are very diverse. The differences, as defined, significantly exceed
the influence of both the stage of development and the mycorrhization. The OPLS-DA
performed to compare roots and leaves showed that the differences between organs are
quite similar in AM+ and AM− plants (for loadings rs = 0.77, p = 10−15). These differences
are primarily associated with a large accumulation of amino acids and nitrogen-containing
compounds in the roots (Figure 7B). Nonetheless, some metabolites exhibited differences
in the patterns of dissimilarity between accumulation in roots and leaves as contingent
on AM. This concerns amino acids and some carboxylates. This accumulation in roots in
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comparison with leaves might be controlled by mycorrhiza. On the other hand, AM fungi
development depresses the pool of fatty acids and glycerol in roots as compared to leaves.
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Figure 7. Organ specificity and mycorrhiza effects. Score plot from PCA for metabolites identified
in leaves and roots profiles (A). SUS plot in the space of loadings from two OPLS-DA models
for discrimination of roots and leaves in AM+ and AM− plants (B). SUS plot in the space of the
loadings from two OPLS-DA models for discrimination of AM+ and AM− roots (abscissa) and shoots
(ordinate) of plants at 14 DAS (C). Symbols for carboxylates and alcohols, amino acids, N-compounds,
pentoses, hexoses, «complex sugars», secondary metabolites, fatty acids, sterols and terpenes, not
identified compounds are the same as in Figure 6.

To determine the specificity of mycorrhiza effects on the leaves and roots of black
medic, we compared the factor loadings of predictive components of OPLS-DA models
for the classification of the mycorrhized and control plants (Figure 7C). It was shown
that, at 14 DAS, there is a significant positive correlation between factor loading from
models for roots and leaves (rs = 0.49, p = 10−5). However, at 24 DAS, this phenomenon
disappeared. Thus, the common scheme of mycorrhiza-induced alterations in roots and
leaves is observed only at the initial stage of host plant and AM development.

Thus, the mycorrhization effect on the metabolomics profiles of leaves and roots can
be determined by the biochemical and physiological features of organs, as well as the
particular nature the of mycorrhization effect’s development. To reveal these particularities,
we compared the loadings of the corresponding OPLS-DA models. However, no correlation
was obtained between them. Nevertheless, nitrogen-containing compounds and amino
acids were characterized by a higher content in roots compared to the leaves (Figure S3)
and as such were increased during mycorrhization.

3. Discussion

Phosphorus (P) deprivation is one of the most widespread environmental stressors
that plants are faced with over the course of their growth. To elucidate the mechanisms
as to how plants adapt to P starvation is of a great importance. It was clearly shown that
such mechanisms could be detected at transcriptomic and proteomics levels and could
easily be phenotypically distinguished by an increase in root architecture and root/shoot
ratio elevation [59,60]. In our study, we used a special M. lupulina line, MlS-1, which
demonstrated a dwarf phenotype under a condition of low P level in the substrate. It was
of an interest as to how this black medic would behave at early stages of development,
namely at first and second leaf. This period is characterized by the appearance of
new leaves. This stage, of course, facilitates photosynthesis, but it has not yet been
determined how it affects root development under conditions of limited nutrients. Our
results indicated that P deprivation, even at early stages of development, facilitated the
accumulation of root fresh weight and almost double the increase of root/shoot ratio
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(Figure 1). These data are in agreement with the literature. Such a reaction, but at later
stages, was distinguished for some other plants such as Arabidopsis, maize, Lupinus
albus, Stylosanthes, and others [61–64].

Further GS-MS analysis revealed that the root metabolic profile of young M. lupulina
plants is a changeable parameter. The profile had just over 300 compounds. The largest
group is represented by sugars. The diversity of this group of root metabolites was slightly
smaller than in the leaves, whose profile we distinguished earlier [17]. A similar correlation
was previously shown for pea plants [25].

The number of investigations devoted to the metabolic profiles of plant roots at early
development stages, including that at P deprivation, is very limited. One of the well-
documented reactions is the intensification of organic acid synthesis. Accumulation of
organic acids is supported with the increase of expression of genes encoding enzymes
of TCA [65]. The elevation of the synthesis and further secretion of organic acids from
roots lead to an activation of insoluble soil phosphate. According to our data, black medic
roots increase the concentration of malic acid at the second week, which was a switch
to accumulation of lactic acid with plant aging. We detected a slight increase of glyceric
acid. This is known as an important precursor for several phosphorylated compounds
such as 2-phosphoglyceric acid, 3-phosphoglyceric acid, and 1,3-bisphosphoglyceric acid.
P limitation might result in the accumulation of this acid, as well as AMP. At 14 DAS, roots
synthesize threonine, glycine, and proline. All three are known as metabolites that have a
significant role in defense against such abiotic stressors as osmoprotectants. Another distin-
guished reaction under P limitation is the accumulation of sugars. It had earlier been shown
that P deficiency can lead to a serious violation of carbohydrate metabolism [42,66]. In
black medic roots, we detected the elevation of both fructose and glucose in the roots of the
youngest plants. At 24 DAS, a decrement in monosaccharides in roots of non-mycorrhizal
black medic plants might be the result of intensive exudation of primary metabolites,
including sugars, into the rhizosphere. It possibly includes different mechanisms, such
as passive losses and active exudation. Moreover, besides its nutritive role, glucose has
important signaling functions [67]. Previously, it has been shown that sugars in young
plants perform a regulatory function, intensifying root elongation [68]. Taken together, per-
formed analysis clearly indicates metabolic adaptation of M. lapulina roots to P starvation.
This adjustment includes different groups of metabolites: carbonic and amino acids, as
well as sugars. This reprogramming of plant metabolism coincides with a limitation in
the pool of phosphorylated compounds. The most important is that all these effects were
detected at the second week of black medic development and varied at a later period with
prolongation of P deprivation.

Another well-known mechanism for plants to tolerate P deficiency is to develop ar-
buscular mycorrhiza: effective symbioses between land plants and fungi. The model object
of this study is the highly responsive M. lupulina MlS-1 line in which P starvation triggers
dwarfism. The AM symbiotic interaction prevents this phenotype from appearing [28,69].
The metabolic background of such reprogramming is not truly understood. It is well
documented that AM fungi might consume up to 20% of host plant photosynthates but
simultaneously enhance plant growth [1]. Thus, AM implies an intensive exchange of
metabolites between symbionts. Of particular interest is discovering such a swap at the
earliest stages of host plant development, when metabolites and especially carbohydrates
are so necessary for the development of the plant itself. Thereby, we provided a GS-MS anal-
ysis of the changes in M. lupulina root metabolome after inoculation with the Rhizophagus
irregularis at 14 and 24 DAS.

We determined that, already at the earliest investigated period in the roots of
young plants, active formation of all symbiotic structures is observed: the formation of
appressories on the surface of the roots, as well as arbuscules, vesicles, and intraradical
mycelium (Figure S1). At the next stage (24 DAS), the development of these structures
was only intensified. In conditions of low P content in the substrate, the functioning
of AM led to an acceleration of the development of the aboveground parts of the plant:
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an increase in the fresh and dry mass of shoots, as well as the number of leaves. This
latter is well combined with the previously revealed increase in the level of cytokinins
in the shoots of mycorrhized plants, which indicates the stimulating effect of AM on
shoot development, mainly through the development of leaves, an organ that provides
an increase in photosynthate levels [69].

The appearance of new leaves and an increase in photosynthesis will prompt the
enrichment of the metabolic profile of black medic roots. Moreover, it should also be
taken into account that the metabolome of mycorrhized roots reflects the metabolic rear-
rangements of both symbiotic partners. This distinguishes the roots of mycorrhized plants
from the leaves, where the age and the development stage have a greater effect on the
metabolome than mycorrhization [17].

It should be noted that the accumulation of sugars differs significantly in the control
and mycorrhized plants. A mycorrhiza-dependent shift in the spectrum of sugars most
likely depends also on the intensification of its transport from the leaf and because of its
further metabolization by both symbionts in the roots. The intensive alteration at two tested
dates (14th and 24th DAS) is illustrated in Figures 3 and 4. This supposition coincides
with AM-induced accumulation of “complex sugars”, which are metabolites with sugar
residues but distinct from monosaccharides. Such an accumulation of different forms of
sugars is a quite common case in many host plants over mycorrhization ([16] and citations
therein). The importance of glucose was shown for arbuscule and intraradical fungal
development [70] and was supported by the intensification of fungal hexose transporter
activity. In addition, among others, we detected trehalose, which is known as a typical
fungal metabolite. Accumulation of this disaccharide in AM roots indicated vigorous
carbohydrate metabolism of the mycosymbiont [71]. The result supported the idea that
sugars from plant shoots are a source of sugar synthesis in AM fungus.

One very interesting fact caught our attention: a decrease in the level of interme-
diates of the Krebs cycle (citrate, succinate, malate, and fumarate) at the early stages of
mycorrhization. A similar decrease in the content of organic acids was demonstrated
earlier for dicotyledonous plants but in leaves [6,53]. Organic acids of the TCA cycle such
as aconitic acid and fumaric acid reduction in mycorrhizal roots of M. truncatula were
suggested to be implied with mycorrhiza-induced stimulation of the mitochondrial and
plastidial metabolisms [27]. Along with this, the reason for such changes may be related
to the inhibition of the early stages of the Krebs cycle, as well as increased transamination
reactions, leading to rapid depletion of the ketoacid pool.

Unlike organic acids, the level of a number of amino acids increased during myc-
orrhization. These include leucine, glycine, histidine, tyrosine, tryptophan, and lysine
(Figure 3). Accumulation of a number of amino acids was noted earlier [27,72]. The role of
amino acids in the development of the host plant root system is indisputable, especially
at such an early stage. At the same time, one more interesting aspect can be considered:
the active synthesis of proteins by the mycosymbiont. These secreted effector proteins are
supposed to regulate processes in the host plant and are hypothesized to be factors that
control symbiotic efficiency and/or host range [73–75].

Another important group of primary metabolisms is lipophilic compounds. AM fungi
is apparently unable to synthesize a sufficient amount of 16:0 FAs (fatty acids) but has
enzymes for further elongation of 16:0 FA to a higher chain length and for FA desatu-
ration [35,76]. Moreover, the application of a visualization approach demonstrated that
lipid-producing plastids increase in number and, together with the endoplasmic reticulum,
change their position and gather in the neighborhood of arbuscules [36]. M. truncatula
mutants in AM-specific paralogs of two lipid biosynthesis genes were used to demonstrate
the importance of plant lipid biosynthesis for arbuscule development [77]. Unfortunately,
our analysis did not reveal an increase in the level of 16:0 and 16:1 FAs in the roots of
14 DAS mycorrhizal plants, which are marker lipids of arbuscular mycosymbionts. How-
ever, there was a significant increase in the content of seven different sterols. However, our
study did not detect an accumulation of ergosterol, which is suggested as a key factor in



Plants 2022, 11, 2338 12 of 19

arbuscular mycorrhizal fungi growth [37]. Our data coincide with some of the literature
which indicates that representatives of the phylum Glomeromycota that form AM contain
sterols other than ergosterol [78].

Further development of M. lupulina plants led to a significant change in the spectrum
of metabolites that reflected the increased role of mycorrhization. The accumulation of
amino acids in M. lupulina roots increases at 24 DAS, which indicates an upregulation
in nitrogen metabolism. Note that accumulation of monosaccharides and the general
alteration in the spectrum of carbohydrates was caused by the mycorrhization.

It is no wonder that formation of AM stimulated the accumulation of phosphates in
roots both at 14 and 24 DAS. Such an effect was described earlier for leaves of M. lupulina [17]
and other species, for example, Sorghum caudatum, S. bicolor [38], Kennedia coccinea, K. stir-
lingii, K. carinata, K. prostrata [79], and others.

The analysis of the data obtained at different stages of seedling development using the
SUS plot (Figure 6) showed the same signs of loadings for most of the metabolites, which
confirms the role of mycorrhization in determining root metabolism.

At the final step, we compared the changes, initiated by mycorrhization, in roots and
leaves of the M. lupulina MlS-1 line at the early stages of its development (a detailed analysis
of the metabolic profiles of the leaves was carried out earlier by [17]). Organ specificity
was the strongest factor compared to the development stage and even mycorrhization
(Figure 7A). We also note a greater variance in the metabolic profiles of leaves in compar-
ison to roots. The reasons of such a difference could be both internal and external. The
transformation of energy during photosynthesis determines a wide variety of synthetic
processes, which defines a wider range of metabolites and more complicated regulatory
responses. In addition, less diversity in the root may be the result of a more constant envi-
ronment in the soil compared to the air environment of the leaf. Similar conclusions were
drawn during an analysis of the metabolomics profiles of P. sativum roots and leaves [5,25].
It is shown that the most striking distinguishing feature was the accumulation of amino
acids and a number of nitrogen-containing compounds in M. lupulina roots (Figure 7B).
This was less pronounced in the leaves but intensified with mycorrhization development.
While the effect of mycorrhization on the profiles of black medic MIS-1 leaves and roots
was quite similar (Figure 7C), AM effects are not always integral and so may represent a
high degree of responsiveness on the part of the host plant.

4. Materials and Methods
4.1. Plant and Fungus Biomaterials

Medicago lupulina line MlS-1, characterized by high mycorrhizal growth response
(MGR, AM efficiency), was used to study root metabolome alterations under conditions
of low available P in the soil [17]. Rhizophagus irregularis effective strain RCAM00320
(Laboratory #4 of Ecology of Symbiotic and Associative Rhizobacteria at All-Russian
Research Institute for Agricultural Microbiology, ARRIAM; the strain was previously
known as Glomus intraradices Shenck&Smith strain CIAM8) was selected as forming highly
effective AM symbioses with most agricultural crops [80–82] and identified by members
of the author’s team [83]. R. irregularis is an obligate symbiont of plants, so the culture
of AM fungus was grown in Plectranthus australis in Laboratory #4 at ARRIAM. Fungal
inoculant preparation was described earlier [17]. For inoculation of one M. lupulina seedling,
a fragment of P. australis root with ~100 AM fungal vesicles was used.

4.2. Experimental Design and Plant Growth Conditions

Agrochemical soil characteristics: sod-podzolic loam-poor soil with very low P content
(P2O5, 23 mg/kg); K2O, 78 mg/kg; organic matter content, 3.64%; pHKCl, 6.4; pHH2O,
7.3. Soil/sand (2:1) mixture for cultivation was autoclaved at 134 ◦C, 2 atm. for 1 h with
repeated autoclaving after 2 days. Detailed procedures for the experimental design were
described earlier [17]. M. lupulina seeds were scarified for 5 min in concentrated H2SO4.
Then, the seeds were stratified in Petri dishes for 1 day at +5 ◦C and then germinated for
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2 days at +27 ◦C in the dark. Seedlings with the same size were grown in a soil–sand
substrate. Half of the plants were inoculated with AM inoculant and planted concurrently;
the other half was not treated by AM inoculant, as a control. The plants were grown with
4 seedlings in one pot filled with 210 g of soil–sand substrate. Plant watering was carried
out every other day up to 0.6 of saturated water content. The protocol for growing using
UV-sterilized light phytobox was described earlier [17,69]. The micro-vegetative method
provided optimal conditions for AM development and prevented spontaneous infection
with rhizobia and other symbiotic microorganisms. Biochemical and microscopic analyses
of plants were performed in two stages: (1) on day 14 after sowing and inoculation (DAS),
at the stage of development of 1st true leaf in plants with AM and plants without AM;
(2) on 24 DAS at the stage of stooling initiation, 3rd leaf development in plants with AM
and 3rd leaf initiation in plants without AM. The fresh and dry weight of the roots and
aboveground parts of the plants were determined. For subsequent biochemical analysis,
the roots of 8 plants were collected for 1 biological repeat (and 3 biological repeats per
1 variant of treatment). These were weighed and quickly frozen in liquid nitrogen and then
stored at −80 ◦C.

4.3. Evaluation of Mycorrhization Parameters

To analyze AM, roots were dried at room temperature and then macerated and stained
with trypan blue [84]. Mycorrhization indices were calculated [85]: M and m were the
intensity of root cortex colonization and intensity of colonization in mycorrhized parts of
roots, respectively; a was the abundance of arbuscules in mycorrhized parts of roots; b was
the abundance of vesicles in the mycorrhized parts of roots. Microscopic analysis of AM
development was carried out using the computer program for calculating mycorrhization
indices of plant roots, developed by A.P. Yurkov et al. [86].

4.4. Evaluation of Mycorrhizal Growth Response: AM Symbiotic Efficiency

The mycorrhizal growth response (MGR, AM efficiency) was calculated as the fresh
(or dry) weight of the aerial parts (or roots), using Odum’s formula:

E = ([AM+] − [AM−]) × 100%/[AM−], (1)

where E is the AM symbiotic efficiency (MGR); [AM+] is the value of mycorrhized plant
weight; [AM−] is the value of the weight of plants without AM.

4.5. GC-MS Analysis

The sampled mass of 100 mg of roots was collected at 14 and 24 DAS and imme-
diately frozen with liquid nitrogen. Plant materials were ground with a mill (MM 400,
Retsch, Germany). Then, metabolites were extracted using 2 ml of extraction mix
(methanol/chloroform/water (5:2:1)) and shaken at 900 rpm at 4 ◦C in a thermoshaker
(BioSan TS-100C). Extracts were purified from tissue debris by centrifugation at 12,000 g
for 10 min at 4 ◦C. The supernatant was collected and evaporated in a vacuum evapora-
tor (CentriVap, Labconco, USA). Dried samples were then dissolved and derivatized in
pyridine and BSTFA:TMCS 99:1 (Sigma-Aldrich, Burlington, USA) at 90 ◦C for 20 min.
Tricosane was added (normal hydrocarbon) as an internal standard.

Samples were analyzed with an Agilent 5860 chromatograph equipped with a DB-5
MS capillary column and coupled with an Agilent 5975 quadrupole mass selective (Agilent
Technologies, Santa Clara, CA, USA). The flow rate of helium was 1 mL/min. The inlet was
operated in splitless mode and temperature was 250 ◦C. Column temperature regime: initial
−70 ◦C, final −320 ◦C, rate −5 ◦C per min. Electron impact ionization was performed at
70 V with an ion source temperature of 230 ◦C. Analysis of the GC-MS data was processed
using the PARADISe software (Department of Food Science Faculty of Science, Univer-
sity of Copenhagen, Denmark, [87]) coupled with NIST MS Search (National Institute of
Standards and Technology (NIST), USA). In addition, for deconvolution and metabolite
identification, the AMDIS (Automated Mass Spectral Deconvolution and Identification Sys-
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tem, NIST, USA) was used. Analytes were identified by mass-spectra and Kovats retention
indices by using libraries: NIST2010, Golm Metabolome Database (GMD; [88]). More-
over, an “in house” library was used, which was compiled by the laboratory of analytical
phytochemistry with funding BIN RAS # AAAA-A18-118032390136-5.

4.6. Statistical Analysis

Statistical analysis of metabolomics data was processed using R 4.2.1 "Funny-Looking
Kid" [89]. Data were normalized against the sample median. Outliers were detected
and excluded on the basis of Dixon’s test in the outliers package [90]. The data were log-
transformed and standardized. If a compound was not detected in a sample but was present
in the other replicates (minimum 2/3 of replicates), it was considered as a technical error
and imputed by KNN (k-nearest neighbors) with impute R package [91]. PCA (principal
component analysis, PCA) was performed with pcaMethods [92]. Orthogonal Partial Least
Squares (OPLS-DA) was used for classification with ropls. Factor loadings of predictive
component and Variable Importance in Projection (VIP) were used to assess the statistical
relationship between features and factors of interest [93]. For metabolite set enrichment
analysis, the fgsea algorithm was used [94].

Metabolite sets for metabolic pathways were downloaded from the KEGG database [95]
through KEGGREST package [96] with M. truncatula as a reference organism. Lists of
metabolites for pathways were corrected manually: poorly represented or extra-large
sets were excluded, for some metabolites obligatory needful pathways were added, and
compounds identified up to class (hexose, disaccharide, among others) were joined to
relevant pathways.

To represent metabolites in their biochemical context, a simplified biochemical network
was built. For this purpose, metabolites involved in metabolic pathways of reference organ-
isms were revealed from KEGG by KEGGREST. Then, the reactions to these compounds
were downloaded, and main reaction pairs were extracted as RCLASS. Based on the main
reaction pairs, a network was built, which included the 3 shortest paths which were not
longer than 5 nodes (paths were extracted with igraph package [97]) between all pairs of
identified metabolites in profiles. Graphs were built from the Cytoscape software [98].

5. Conclusions

To sum up the data, we note that, at early stages of AM establishment, the metabolite
profiles of M. lupulina roots significantly differ in their spectrum from those in the leaves.
The roots contain fewer sugars and organic acids. Hence, compounds supporting the
growth of mycorrhizal fungus (especially amino acids, the number of lipids, and specific
carbohydrates) accumulated and coincided with intensive development in AM structures.
This result clearly confirms the intensive development of AM fungus in the roots of young
host plants. Such an observation is crucial for determining the further development of
M. lupulina plants under phosphate deprivation and, in turn, reveals one of the mechanisms
of plant adaptation based on symbiosis.
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