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Letters

Recent experimental data on the energy costs of avian 
flight call for a revision of optimal migration theory. —Optimal 
migration theory is the established paradigm in the study of avian 
migration (Alerstam and Lindström 1990, Weber and Houston  
1997, Hedenström 2008), and most recent studies of migration 
strategies and tactics are performed within this framework (e.g., 
Eichhorn et al. 2009, Henningsson et al. 2009). The central as-
sumption of this theory is that the flight-range equation is a di-
minishing return function of added fuel mass:
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where Y is the flight range, f is the relative fuel load, and the con-
stant c includes factors related to the bird’s aerodynamic quality, 
fuel composition, muscle work efficiency, and aerodynamic condi-
tions (Alerstam and Lindström 1990, Hedenström 2008). Weber 
and Houston (1997) generalized Equation 1 and showed that differ-
ent flight-cost estimates available to them could be summarized as

	 Y( f ) = c[1 - (1 + f )-ζ], 0 < ζ < 1	 (2)

The most important consequence of this assumption is that in-
creases in fuel deposition represent a case of diminishing returns 
because the more fuel a migrant deposits, the smaller the incre-
ment in potential flight distance becomes because of the cost of 
transport of the extra load.

Another relationship of profound importance for optimal 
migration theory is the one between flight speed and the power of 
flight. This relationship is widely accepted as being described by 
the following formula: 

	 P (v) = a + b × v-1 + g v3 	 (3)

where P is flight power, v is flight speed, and α, β, and γ are physical 
parameters of the air and the bird (Pennycuick 1989; Hedenström 
2002, 2008). This function is U-shaped (Fig. 1), which means that 
there is a single minimum power speed value, above and below 
which energy expenditure increases.

Both of these crucial relationships are based on mechani-
cal flight theory (Pennycuick 1975, 1989; Lindhe Norberg 2004; 
Hedenström 2008). However, neither of them is fully supported by 
recent experimental data.

Four recent studies measured energy costs of several hours of 
flight in wind tunnels in relation to intraspecific variation in body 
mass (Kvist et al. 2001; Engel et al. 2006; Schmidt-Wellenburg 
et al. 2007, 2008). Flight costs in Rosy Starlings (Sturnus roseus) 
were shown to increase with m0.55 (95% confidence interval [CI] 
of the scaling exponent: 0.36–0.75; Engel et al. 2006). In another 
study of the same species, the scaling exponent was 0.57 (95% CI: 
0.40–0.74) if the data for birds carrying harnesses and those not 
carrying were pooled for analysis, and 0.47 (95% CI: 0.18–0.76) if 
only the birds with harnesses (loaded and unloaded) were included 
(Schmidt-Wellenburg et al. 2008). In the Barn Swallow (Hirundo 
rustica), the scaling exponent was 0.58 (95% CI: 0.19–0.97; 
Schmidt-Wellenburg et al. 2007), and in the Red Knot (Calidris  
canutus) it was 0.35 (95% CI: 0.08–0.67; Kvist et al. 2001). All these 
values are clearly below 1; that is, flight costs increase much less 
steeply than assumed by the accepted aerodynamic theory (scaling 
exponent: 1.1–1.6; Norberg 1990, 1996; Pennycuick 1975; Rayner 
1990). The flight-range equation can be obtained by integrating the 
flight-power equation (Weber and Houston 1997: equation 9):
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Fig. 1.  Power required for a bird to fly by horizontal flapping flight in rela-
tion to its air speed, based on Equation 3.
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is noteworthy that both cases of the unequivocally U-shaped re-
lationship involved species that do not migrate long distances. 
Berger (1985) found J-shaped relationships in the Sparkling Vio-
letear (Colibri coruscans) and Green Violetear (C. thalassinus): 
their flight metabolism did not vary significantly between hov-
ering speeds and up to 7 m·s−1 (which is a quite significant speed 
for a bird of this size). At even higher flight speeds, metabolic rate 
increased.

Thus, both main theoretical assumptions on which optimal 
migration theory is based are not supported by most empirical data. 
When fuel stores are low, the relationship between potential flight 
range and relative fuel stores deviates from the linear proportional-
ity less than assumed by Equation 1 (Fig. 2). Under such conditions, 
flight cost is low, and it becomes higher and in better agreement 
with the predictions of the current aerodynamic flight theory with 
increasing fuel stores. This is supported by the data on escape flights 
of Blackcaps (Sylvia atricapilla; Kullberg et al. 1996) and Sedge 
Warblers (Acrocephalus schoenobaenus; Kullberg et al. 2000). The 
authors claimed that flight speed and acceleration decreased with 
increasing fuel load, but this effect was apparent only when fuel load 
exceeded 30% of lean body mass (Kullberg et al. 1996: fig. 3, Kullberg  
et al. 2000: fig. 1). Current calculations of optimal migration theory 
may approach reality for birds that cross large ecological barriers 
(e.g., the Sahara or the Gulf of Mexico) and carry large fat stores, but 
this is an interesting special case of avian long-distance migration. 
Most passerines that migrate over suitable habitats with continuous 
stopover possibility usually carry moderate fuel stores <30% of their 
lean body mass (Bairlein 1991, 1997).

U-shaped flight-power curves appear to be just a special 
case probably confined to some birds of low aerodynamic capac-
ity, or at least to those whose annual cycle does not include long- 
distance migration. Most birds that spend a significant proportion 
of their time flying seem to be able to fly equally efficiently across a 
wide range of speeds. The data on parrots and hummingbirds em-
phasize that this ability is certainly not unlimited, but migrants 
seem to fly quite efficiently across the range of speeds they rou-
tinely employ. Aerodynamic calculations that predict mass expo-
nents ranging between 1.1 and 1.6 (Pennycuick 1975, 1978; Rayner 
1990; Norberg 1996) and a U-shaped flight-power curve are based 
on fixed-wing theory and are apparently not relevant for modeling 
avian flight (Dolnik 1995, Videler 2005). This means that the con-
cepts of distinct minimum-power speed, maximum-range speed, 
and speed of time-minimizing migration (e.g., Hedenström 2008) 
also need to be reevaluated and probably revised.
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