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СООТНОШЕНИЯ ВЗАИМНОСТИ ОНЗАГЕРА В НЕРАВНОВЕСНОЙ ТЕРМОДИНАМИКЕ 

Когда два или более неравновесных процесса (например, передача тепла, перенос электричес­
кого заряда, диффузия) происходят одновременно в макроскопической системе, они могут влиять 
друг на друга. Так, электрический ток в цепи, состоящей из различных металлических проводников, 
будет в общем случае вызывать выделение или поглощение тепла в местах соединений проводников 
(эффект Пельтье). Наоборот, если проводники поддерживаются при разной температуре, то в цепи 
возникает термоэлектродвижущая сила (эффект Зеебека). 

Аналогично соотношениям взаимности, связывающим силы и смещения при равновесии в 
механике и термодинамике, можно ожидать существования соотношений взаимности и в неравно­
весной термодинамике. Открытие и обоснование таких соотношений как фундаментального зако­
на симметрии для кинетических коэффициентов в уравнениях неравновесной термодинамики свя­
зано с именем Ларса Онзагера. 

На поиск универсальных соотношений симметрии кинетических коэффициентов Онзагера 
первоначально подтолкнули проведенные им в 20-е годы XIX столетия исследования по теории 
проводимости электролитов в рамках обобщения модели Дебая-Хюккеля, из которых следова­
ло, что перекрестные коэффициенты в соотношениях между потоками и силами остаются сим­
метричными вне зависимости от используемых математических приближений. Для частных 
случаев термоэлектрических явлений в проводниках соотношения взаимности ранее постули­
ровались В. Томсоном (Кельвином) в 1854 г.; для взаимодействия между электрическим током 
и диффузией в растворах электролитов между обратимыми электродами - Г. Л. Ф. Гельмголь-
цем в 1876 г.; для связи между потоком тепла и диффузией- Е. Д. Истманом в 1926 г. Важным 
шагом к созданию общей теории для Онзагера стал проведенный им анализ кинетики цикли­
ческих химических реакций в задаче о взаимопревращениях Сахаров, из которого вытекало, что 
соотношения взаимности эквивалентны соотношениям детального баланса на каждом звене 
превращений. 

Опишем кратко содержание сделанного Онзагером открытия в наиболее общей формули­
ровке, не обращаясь к конкретному механизму неравновесных процессов. Предполагая, что 
состояние рассматриваемой замкнутой макроскопической системы достаточно близко к рав­
новесному, разобьем мысленно систему на большое число макроскопических же подсистем, 
каждая из которых, однако, находится в состоянии внутреннего равновесия. Средние энергии, 
импульсы, числа частиц разных сортов отдельных подсистем образуют набор {х,} термодина­
мических величин х„ характеризующих неравновесное состояние всей системы. В предполо­
жении небольшого отклонения системы от равновесия последние мало меняются за времена, в 
течение которых все остальные величины системы меняются уже существенно и в результате 
успевают «подстроиться» под текущие значения термодинамических величин х,. 
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Определяя состояние системы, термодинамические величины х, определяют и развитие сис­
темы во времени. Это значит, что скорости^ изменения х, во времени являются в Каждый момент 
времени функциями набора {xt} самих х,- в тот же момент. Справедливы, следовательно, уравнения 

*/=*,({*/}), 0) 
которые имеют смысл уравнений неравновесной термодинамики. 

Удобно считать, что из термодинамических величин х,- вычтены их значения в равновесном 
состоянии системы. Тогда при небольшом отклонении от равновесия xt будут малыми. Разла­
гая Xj ({х,}) по степеням х,- и ограничиваясь линейными членами, представим уравнения нерав­
новесной термодинамики (1) в линеаризованном виде 

к 
где а1к - некоторые постоянные коэффициенты; члены нулевого порядка в уравнениях отсут­
ствуют, поскольку в равновесии, когдахА= 0, скорости х, должны обратиться в нуль. 

Как показал Онзагер, уравнения (2) обладают глубокой внутренней симметрией. Чтобы 
вскрыть ее, нужно в правых частях (2) предварительно перейти от хк к «термодинамически 
сопряженным» величинам 

Xk=-dS/dxk, (3) 
где S - энтропия системы, зависящая от {х,}. 

В состоянии равновесия системы энтропия S максимальна и Хк = 0. При небольших откло­
нениях от равновесия (при малыхх,) величиныХк будут, согласно (3), даваться линейными пох, 
соотношениями с постоянными коэффициентами, образующими симметричную, положитель­
но определенную матрицу. Потому можно разрешить эти соотношения относительно х,. Под­
ставляя затем результат в линеаризованные уравнения неравновесной термодинамики (2), све­
дем их к виду 

*,=-ХУ/А, (4) 
к 

где у,к- новые постоянные коэффициенты. Их называют кинетическими коэффициентами. 

Симметрия кинетических коэффициентов и была выявлена Онзагером, который показал, 
что она есть следствие инвариантности законов механики относительно обращения времени. 
Указанная инвариантность означает микроскопическую обратимость, т. е. что при изменении 
знака у времени и у всех скоростей частиц системы частицы будут проходить в обратном 
направлении пройденные ими ранее траектории, повторяя всю последовательность конфигу­
раций. Вследствие этой инвариантности термодинамические величины х, разделяются по вре­
мени на четные, т. е. такие, которые не меняют знак при изменении знака у времени и у всех 
скоростей частиц системы, и на нечетные, т. е. такие, которые меняют знак при изменении знака 
у времени и у всех скоростей частиц системы. Примерами четных по времени величин служат 
средние энергии и числа частиц разных сортов отдельных подсистем системы; нечетных -
средние импульсы отдельных подсистем системы. 

В рассуждениях Онзагера важную роль играла выдвинутая им гипотеза о том, что микро­
скопическое развитие во времени флуктуации термодинамических величин происходит в сред­
нем по тому же закону, что и макроскопическое развитие во времени этих величин, определя­
емое линеаризованными уравнениями неравновесной термодинамики (2). Эта гипотеза спра­
ведлива, когда термодинамические величины х, (как уже отмечалось выше) мало меняются за 
времена, за которые остальные величины системы успевают «подстроиться» под текущие зна­
чения термодинамических величин. Гипотеза Онзагера подсказала общий путь использования 
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неравновесной термодинамики при изучении флуктуации термодинамических величин. 
Выявленная Онзагером симметрия кинетических коэффициентов выражается соотношени­

ями 

Y*=e*Y*> (5) 
где е,к = 1, если термодинамические величины х, и хк обладают одинаковой четностью по 
времени (обе являются четными или нечетными функциями времени), и e / t= - 1 , если они 
имеют противоположную четность по времени (одна из них — четная, а другая — нечетная 
функция времени). 

В общем случае, когда система испытывает вращение с постоянной угловой скоростью О, 
(на частицы системы действует сила Кориолиса) и, кроме того, находится во внешнем магнит­
ном поле напряженности Н (на заряженные частицы системы действует сила Лоренца), инва­
риантность законов механики относительно обращения времени предполагает, помимо измене­
ния знака у скоростей частиц, также и изменение знака у Q и Н (при этом силы Кориолиса и 
Лоренца остаются неизменными). Тогда выявленная Онзагером симметрия кинетических коэф­
фициентов выражается соотношениями 

y,,(Q,H)=e„y,, ( -П.-Н), (6) 

в которых указаны зависимости кинетических коэффициентов от Q и Н как от параметров. 
Формулы (6) и уже отмечавшиеся выше формулы (5) при Q = 0 и Н = 0 называют в научной 

литературе соотношениями взаимности Онзагера. 
Проиллюстрируем общий подход на конкретном примере соотношений между электротер­

мическими коэффициентами переноса в изотропном металле. Рассмотрим систему, состоя­
щую из образца металла, присоединенного металлическим проводом к гораздо большему бло­
ку из того же металла, который играет роль термостата (при температуре 7) и резервуара элект­
ронов (с химическим потенциалом ц). Будем считать, что провод имеет поперечное сечение s и 
длину /, электростатическая емкость исследуемого образца металла в присутствии большого 
блока равна С. 

В качестве термодинамических величин х„ характеризующих неравновесное состояние рас­
сматриваемой системы, выберем отклонение числа электронов An и отклонение энергии АЕ в 
образце металла. Поскольку полная система изолирована, то для большого блока металла они 
равны по величине, но противоположны по знаку отклонениям для образца. Поэтому для всей 
системы термодинамически сопряженными к величинам An и АЕ будутХх = А(ц/7) иХ2 = АТ/Т2. 
Они определяются отклонениями температуры и химического потенциала в образце металла 
относительно большого блока. 

Линеаризованные уравнения неравновесной термодинамики (4) в рассматриваемом при­
мере с учетом симметрии кинетических коэффициентов у1к, выражаемой равенством у,2= у2!, 
могут быть записаны в виде 

Дй = - У п ^ - У , 2 | ^ . (7) 

Д£ = -у 1 2 д[±Ч-у 2 2 — . (8) 

Покажем, что они эквивалентны уравнениям, связывающим плотности электрического тока и 
потока тепла в изотропном металле с градиентами электрического потенциала q> и температуры 
Т. Для плотности электрического токау и плотности потока тепла q имеем 
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j = -eAfi/s, q = -AE/s, (9) 
где е - заряд электрона. Учитывая в (7), (8) формулы (9), равенство 

и то, что для рассматриваемой системы (дц/дп)г= е2/С, dTldz = Д77/, Эф/& = Аф// = еАп/1С [z-
координата вдоль проводника), находим 

е I oip е/ 
sT dz s дТ{Т 

У.2 дТ_ 
dz 

el ?1 + L 
dz s дТ\Т Yl2 + ' dz 

Отсюда видна связь кинетических коэффициентов yik с экспериментально измеряемыми 
коэффициентами переноса в металлах. В частности, коэффициент уп может быть выражен 
через электропроводность металла о: уи

=-\аТ/(г[)о. 
Соотношения взаимности Онзагера (6) вскрывают в фундаментальном виде взаимную связь 

между имеющими разную физическую природу необратимыми процессами в сложной макро­
скопической системе - процессами вязкого трения, теплопроводности и электропроводности, 
диффузии, химических превращений, а также между процессами одной природы, но протекаю­
щими в различных направлениях в анизотропной системе. Эта связь отражает перекрестный 
характер происходящих в системе необратимых процессов и обязана микроскопической обра­
тимости законов механики. 

Онзагер также показал, что его соотношения взаимности в линейной неравновесной термо­
динамике эквивалентны вариационному принципу «наименьшей диссипации энергии». Этот 
принцип обобщил сформулированные ранее аналогичные принципы Рэлея и Гельмгольца на 
произвольные линейные необратимые процессы и стал первым успехом на пути вариационной 
формулировки феноменологической неравновесной термодинамики, продолженной в дальней­
шем в исследованиях Т. де Донде, X. Казимира, С. Р. де Гроота и Р. Мазура, И. Пригожина. 

Развернутое исследование соотношений взаимности было опубликовано Онзагером в двух 
статьях в «Physical Review» в 1931 г. [ 1, 2], однако впервые результаты своего исследования он 
доложил на конференции в Копенгагене уже в 1929 г. Значение его открытия было понято далеко 
не сразу. Когда в 1933 г. Онзагер обратился в университет г. Тронхейма (Норвегия) с просьбой о 
рассмотрении работ по соотношениям взаимности в качестве диссертации на ученую степень 
доктора философии, ему было отказано [3]. Лишь после Второй мировой войны эти работы 
были оценены по достоинству, что и отмечалось при вручении Онзагеру Нобелевской премии 
по химии в 1968 г. с формулировкой «за открытие соотношений взаимности, носящих его имя, 
фундаментальных для термодинамики необратимых процессов». В современной научной лите­
ратуре эти соотношения нередко называют четвертым началом термодинамики. 

Summary 

Kuni F. A/., Shchekin А. К., Novozhilova T. Yu. Onsager reciprocal relations in nonequilibrium thermodynamics. 

On the invention and significance of the fundamental Onsager reciprocal relations in contemporary nonequilibrium 
thermodynamics and statistical physics. 
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