
Diff tool for comparing .NET assemblies in the
Rider IDE
Vladislav Miroshnikov

Department of Software Engineering
St. Petersburg State University

University Embankment 7/9, 199034, Saint Petersburg, Russian Federation
vladislaw.miroshnikov@gmail.com

Abstract—A .NET developer occasionally needs to compare
compiled programs or assemblies, e.g., when updating versions of
third-party libraries or when working with their own binary files.
However, the existing tools have some significant drawbacks, for
example they don’t support comparison of .NET Core assemblies.
In this paper we reviewed different types of .NET assemblies and,
taking into account their structure, developed and integrated
into Rider IDE our own Assembly Diff tool which considers the
disadvantages of the existing tools and expands the comparison
possibilities. We presented several variants of comparison tool
presentation and implementation and chose the most functional
one in the form of a comparison tree, for which we developed
and described special algorithms allowing to take into account
semantic features of .NET types.

Index Terms—Assembly Difference, assembly diff tool, .NET
assembly diff, Rider, assembly comparison, Exe/Dll diff, compar-
ing compiled assemblies

I. INTRODUCTION

The .NET [1] platform — is Microsoft’s software platform
for developing various applications. One of the distinguishing
features of this platform is the ability to develop applications
using several programming languages, e.g., C#, F#, Visual Ba-
sic .NET, thanks to Common Language Runtime (CLR). Cur-
rently, there are two different platforms from Microsoft: .NET
Framework and .NET Core/.NET. .NET Framework
is an older version and supports only the Windows operating
system, which differs it from .NET Core/.NET that is
already cross-platform and corresponds to modern industry
standards. Thus, according to Stack Overflow research
[2], for 2021 .NET Core/.NET and .NET Framework
are among the top three most popular frameworks.

One of the basic, structural and functional units of the
.NET platform is assembly, which is used for version control,
application deployment and configuration. .NET assembly
— is a collection of .NET types (classes, interfaces, etc.)
and resources (JSON, XML files, etc.) assembled to work
together to form a logically functional unit. During the .NET
development process, it is often necessary to compare the ver-
sions of the compiled programs. For example, sometimes this
need arises when updating third-party libraries or debugging
problems with dependency resolution of .NET applications,
and sometimes — it can be our own binary files, for which
we want to understand which version of code corresponds to
any of the previously published binary files.

However, there are various ways to compare .NET assem-
blies. For example, a developer can use any decompiler to
get the source code and then apply a text comparison tool.
Nevertheless, such solutions are not very convenient because
they don’t allow to compare assemblies directly without addi-
tional tools. There are also “complete applications” providing
comparison of assemblies, but they have own significant
drawbacks, for example, lack of support for comparing .NET
Core/.NET assemblies.

One of the existing development environments for the .NET
platform is Rider [3] — JetBrains cross-platform develop-
ment environment, which is one of the “most loved” [4]
IDEs according to the mentioned above Stack Overflow
research of 2021. In addition to the existing functionality
in Rider, this paper proposes extending the capabilities to
work with the .NET platform, namely — adding a tool
for comparing compiled .NET assemblies. This should take
into account the weaknesses of the existing solutions and
improve the comparison capabilities. In this paper we consider
various ways of comparing assemblies and also offer the
implementation of one of them in the Rider IDE. We also
need to consider the technical challenges of the task, which is
not only about searching for source code differences provided
in the C# language. For example, due to the large number of
structural units and language features in .NET assemblies it is
necessary to search and display “semantic” differences, both
in the metainformation of the assembly and in the resources
and code, which will be discussed in more detail in this paper.

This paper is organized as follows. Section II includes the
different types of .NET assemblies, provides the structure
and contents of the assembly, gives an overview of existing
solutions and the Rider architecture required for the imple-
mentation. Section III provides the first version of the im-
plementation based on a directory comparison, and discusses
the alternative implementation as a comparison tree. Section
IV describes the final implementation based on the assembly
diff tree, and gives various algorithms for constructing the tree
and comparing types. Section V gives general conclusion of
the paper and further plans.

II. BACKGROUND

Assemblies can be created from one or more source code
files. For simplicity, they can be thought of as archives, which



have a specific structure and in particular contain source code
data. Typically, a compiled assembly is presented on disk as
a file with the extension .exe or .dll.

A. Types of .NET assemblies

According to Microsoft’s official .NET [5] documentation,
assemblies are divided into two types:

• Executable assemblies — assemblies that are represented
as an executable file with the .exe extension. For the
sake of brevity, this type of assembly is called an “Exe-
assembly”.

• Assemblies that are presented as a dynamic link library
file — files with the extension .dll. Hereafter, for the
sake of brevity, this type of assembly is called a “Dll-
assembly”.

There is also a division of assemblies into single-file and
multi-file assemblies. A single-file assembly is the simplest
type of assembly, with all its contents placed inside a single
*.exe or *.dll file. Multi-file assembly, on the other hand,
consists of a set of .NET modules, which are deployed as
a single logical unit and are provided with single version
number. Such assemblies can be created, for example, using
command line compilers. One of the main advantages of this
type of assemblies is that they allow combining modules
written in different .NET compatible programming languages.
A multi-file assembly can also be represented as a file with
the extension *.exe or *.dll.

.NET assemblies also satisfy with the ECMA-335 standard
[6]. This standard is a specification of common language in-
frastructure and .NET platform, defining architecture of .NET
runtime system, arrangement of different libraries, structure,
and types of assemblies, description of intermediate language
CIL and others.

Let’s take a closer look at Exe and Dll assemblies, as well
as their various subtypes.

a) Exe-assembly: According to ECMA-335 standard [6],
the distinguishing features of Exe-assemblies are follows:

• Possibility of “direct” invocation — the user can directly
run a .NET application with the .exe extension.

• Availability of its own address space and memory area
— since the Exe-assembly is executable, it can be run as
a separate operating system process with its own address
space and memory area.

As described in Section I, there are two main .NET plat-
forms: .NET Framework and .NET Core/.NET. Each of
these platforms provides a different implementation of Exe-
assemblies:

1) .NET Framework
In this platform there is a single and so called “classic”
type of Exe-assembly. As a result of compilation, we
get one file with the extension .exe, which remains
to be run by the user. The limitation in the form of
dependencies on other assemblies should be taken into
account.

2) .NET Core/.NET

• Native host assembly — compilation results in both
a file with extension .exe and a dynamic library
file with extension .dll. There is a restriction
though: an Exe-application cannot be started with-
out a corresponding dynamic library file, because
the DLL containing the application source code is
loaded during the startup.

• Single File assembly (or so-called standalone as-
sembly) — an assembly presented as a single file,
allows to combine all files that application depends
on, resources, other assemblies into a single assem-
bly. This type of assembly makes it much easier to
deploy and distribute the application, but the size
of such a file will be large, as it will include the
runtime and platform libraries.

b) Dll-assembly: In accordance with the ECMA-335
standard mentioned above [6], the distinguishing feature of
this type of assembly is that it cannot be “directly” launched,
so the DLL-assembly has no address space or memory area
of its own. The assembly is dynamic in the sense that it can
only be loaded or mounted in some other process, such as a
console or web application. A Dll-assembly is also called a
class library, because it actually contains the source code, but
has no “entry point” of its own.

It’s worth noting that there is only one type of DLL-
assembly in .NET Framework and in .NET Core/.NET.

To summarize the overview of the different types of .NET
assemblies, we also declare that a comparison of all the types
described above should be supported in the diff tool.

B. Structure and content of the .NET assembly

According to the official documentation from Microsoft
[7], any .NET assembly, both Exe and Dll, consists of the
following:

• Assembly manifest — a key component of the assembly,
without which the source code cannot be run. It includes
name, version, a list of all assembly files, a list of
references to other assemblies, and a list of references to
types used by the assembly. Manifest allows the system
to identify all the files included in an assembly, map
references to types, resources, and assemblies to their
files, and manage version control.

• Type metadata — used to define the location of types in
an application file.

• Application code in the intermediate CIL language. The
assembly file does not contain source code in C# or any
other .NET compatible language, but instead contains IL
code (a.k.a. bytecode) — the language of the .NET virtual
machine.

• Assembly Resources. These can be various JSON, XML
files as well as images and audio files.

Additionally, it is worth noting that there is such a thing as
format of .NET assembly [8] — binary file format. The format
is fully defined and standardized in the ECMA-335 specifica-
tion [6]. All .NET compilers and runtime environments use this



format. For example, it defines that the assembly is processor-
and operating system-independent.

This format makes the assembly diff tool platform-
independent in the sense that there is no need for any checks
on which processor or operating system a particular assembly
was derived. Thanks to the unified assembly format, it is
possible to compare any assemblies, even if one of them
was derived, for example, from Windows and the other from
macOS.

C. Existing solutions

The existing solutions can be divided into two groups:
• Solutions that allow to compare assemblies using several

tools. This type of solutions are based on using some
.NET decompiler (Ildasm, IlSpy, dotPeek) to get the C#
source code and then applying any diff tool for text
comparison.

• Complete solutions that allow to compare assemblies
directly without using any third-party tools. These full-
fledged diff tools provide both decompilation and source
code difference display. However, many of them have
some significant disadvantages. Some, for example, do
not support comparison of .NET Core/.NET assem-
blies, which makes such tools not very relevant these
days. Others do not support viewing decompiled C# code
and only allow user to see added/removed types.

In our assembly diff tool, we take many of these disadvan-
tages into account and offer solutions to fix them.

D. Rider architecture

As stated earlier, Rider [3] — a cross-platform develop-
ment environment for the .NET platform from JetBrains.
To understand the inner workings and architecture of the
Rider environment, we refer to the corresponding article [9]
published in the journal CODE Magazine.

Thus, the Rider consists of two main operating system
processes running in parallel:

• Frontend process — responsible for rendering the user
interface, based on the IntelliJ platform [10] and runs
on a Java Virtual Machine.

• Backend process — a process without user interface,
responsible for code analysis, code inspections, format-
ting and other logic. Based on the ReSharper [11],
which is an extension to the Visual Studio development
environment from JetBrains and runs on a .NET virtual
machine.

One of the key points of the Rider IDE is that the two pro-
cesses “communicate”. For this purpose, a specially developed
“Reactive Distributed” protocol [12], presented as an open-
source library, is used. This protocol ensures the principle of
reactivity: it provides entities that can react to changes through
an event subscription mechanism. It also provides consistency
in the state of the system at any given time, and importantly, it
allows to work with distributed systems. This protocol enables
the exchange of information between two processes.

The Rider architecture is shown schematically in Figure 1.

Fig. 1. Architecture of the Rider (from the related article [9])

III. ASSEMBLY DIFF METHODOLOGY

A. Project decomposition

Assembly diff is decomposed into three key subtasks:
• “Disassemble” the assembly and find objects that are

different and contain source code. This subtask is due to
the fact that an assembly can consist of several source
files and has a certain structure described in Section
II-B. Therefore, among various metadata tables, assembly
resources and other contents it is necessary to find source
code objects.

• Decompile found objects to C# code, as they will be
represented in intermediate IL code in the assembly.

• Calculate and display the difference represented as C#
code.

Thus, taking the Rider architecture into account, the follow-
ing decision has been made:

• “Reading” the assembly and finding source code objects,
as well as the decompilation process into C# code should
be performed on the backend process and implemented
in C# using the ReSharper capabilities.

• Difference calculation and display should be done on the
frontend process and implemented in Kotlin/Java using
the capabilities of the IntelliJ platform.

• The exchange of information between the two processes
must be provided by the protocol described in Section
II-D.

B. Implementation based on directory comparison of the In-
telliJ platform

The IntelliJ platform already includes the ability to compare
arbitrary directories and archives. In the IntelliJ IDEA IDE,
it is also possible to compare JAR files, which are a kind
of analogue of .NET assembly. JAR files are archives that
contain source code, manifest files, and various resources such
as audio files. The JAR file diff tool shows the difference
between the decompiled versions of Java classes within them.

Based on the existing capabilities of the IntelliJ platform,
we decided to make the first version of the .NET assembly diff
tool, presented in Figure 2. There is a table for the user that
contains the .NET types — classes, interfaces, enumerations,
etc. When you click on a row, you can see the difference of
the decompiled C# code.



Fig. 2. Assembly diff tool based on directory comparison

However, the implementation of the diff tool is not limited
to the one method presented above. We suppose it’s appro-
priate to consider an alternative option. To do this, Assembly
Explorer Rider subsystem should be reviewed.

C. Assembly Explorer subsystem

Assembly Explorer — an existing subsystem of the
Rider IDE, which provides a wide range of opportunities to
explore the contents of assemblies. An assembly is represented
as a tree with assembly name, version, and platform in the
root node, e.g., .NET Framework v.4.8 or .NET Core
v5.0.

In the tree itself, the user can see the following information
when the root node is expanded:

• Metadata — this subtree contains all metadata informa-
tion, various metadata tables, special type tokens and
more.

• References — this subtree contains information about the
dependencies of the assembly, i.e., which other assem-
blies, packages, and modules the current assembly refers
to.

• Resources — this subtree contains various resources, e.g.,
audio files, images, XML documents. By double-clicking
on a resource node, you can view its contents.

• Namespaces and nested types — this subtree is responsi-
ble for the source code. You can view classes, its internal
parts, such as methods, fields, constructors and other.
Double-clicking on a node decompiles the source code
into C#, opens in a new window and navigates through
the document.

An example of an assembly tree is shown in Figure 3.

Fig. 3. Assembly tree in Assembly Explorer

It is also worth noting that this subsystem is imple-
mented in other products of the JetBrains .NET ecosystem
— ReSharper and dotPeek.

Considering the capabilities of the Assembly Explorer
subsystem, we made the following key decision — to use a
tree view in the diff tool implementation for the following
reasons:



• The assembly diff tree view greatly extends the func-
tionality of the tool in contrast to the version based on
directory comparison. Such a tree view allows to compare
not only source code differences, but also resources and
references from other assemblies.

• Comparison of assemblies in the tree view will also allow
to extend the scope of application of this tool. Integration
with Assembly Explorer subsystem in future will
allow to add assembly comparison functionality in other
products — ReSharper and dotPeek. For this reason,
choosing a method based on directory comparison will
significantly reduce the scope of this functionality and
possible work scenarios, as it will only allow comparing
assemblies in Rider.

IV. IMPLEMENTATION BASED ON ASSEMBLY DIFF TREE

A. General operating principle

By choosing to represent the difference of the assemblies
as a tree, we have implemented this approach.

Assembly diff tool works as follows:
1) When a user requests to compare two assemblies on

the frontend, the frontend assembly tree is initialized, as
well as various additional components. At the same time,
an asynchronous request is sent to the backend to “read”
assemblies and the “internal backend” tree is initialized,
which is created separately for each request. When pars-
ing assemblies, among the various meta-information and
other contents, objects are searched and divided into 3
subtrees: a subtree of references, resources and assembly
types. This involves matching appropriate pairs to merge
into a single tree node (e.g., the same method with
a changed implementation from one assembly version
to another), and also applies various algorithms, such
as semantic .NET type comparison, which will be de-
scribed in Section IV-C. The data found is sent to the
frontend process using the protocol described in section
II-D and displayed as a final assembly diff tree. It is
worth noting that it is thanks to the reactive protocol
that data consistency is ensured at any time between the
frontend and backend trees.

2) By double-clicking on the tree node responsible for
the .NET type (class, field, method, etc.), a request is
sent to the backend, the desired backend tree node is
found and then the IL code is translated into C# using
the decompiler and the decompiled code is forwarded
back to the frontend. Navigation is also provided: the
frontend also receives the required parameter to which
the carriage should be moved in the corresponding
window.

3) The frontend calculates the C# code difference using
Myers and LCS [13], [14] algorithms, shifts the car-
riage, and displays it to the user with the C# syntax
highlighting.

4) A specially created protocol model in Kotlin DSL is
used to “communicate” between processes. This model

describes containers/protocol types that contain some
data (such as decompiled class code or assembly paths).
These protocol types are then serialized and deserialized
when the two processes “communicate”.

Additionally, it’s worth mentioning that this diff tool sup-
ports comparison of both .NET Framework and .NET
Core/.NET assemblies, including Exe and Dll assemblies
and their subsets described in Section II-A. This fact distin-
guishes this tool from existing solutions.

An example of the assembly diff tool is shown in the Figure
4.

Consider the structure and principle of operation of individ-
ual subtrees.

B. Algorithm of assembly diff tree construction

The assembly diff tree is a key component in the diff tool,
it allows to view difference in resources, references and .NET
types themselves, as well as C# code differences.

On the backend, a separate AssemblyDiffTreeHost
instance is created when an appropriate request is received.
This instance is responsible for building and updating the tree.

The general algorithm for constructing a tree is as follows:
1) Once the pair of assembly paths is obtained, the assem-

blies are loaded and a root tree node is created, contain-
ing information about the two assemblies, differences in
name, versions, platforms, and architecture on which the
assembly was obtained.

2) After the assemblies are loaded among the various meta-
information and other content, so-called “entry points”
are searched and a level 1 of the tree is created from
the root node of level 0. Level 1 of the tree contains a
references node, a resource node and nodes representing
containers for .NET types — in this case namespace
nodes. The tree is thus divided into 3 subtrees, which
are processed and built independently in asynchronous
mode.

3) The following is true for each level of the tree: globally
there are three groups of entities: nodes, providers and
presenters. Each level of the tree is built as follows:
for each node the corresponding provider is triggered,
which builds a subtree of the next level, calculating
children and creating the necessary instances of nodes. It
is possible to say that provider of n-1 level collects nodes
of n level of the tree. For example, when you visit node
ClassDiffNode the corresponding provider will be
called, which will spawn children, i.e., the next level
containing types of the given class: methods, fields,
events, nested classes and so on. Thus, an assembly diff
tree is built by applying a breadth-first search (BFS) to
traverse the tree in order of levels. At each level of the
tree it is necessary to search and match the entity of the
old assembly with the new one and merge it into one tree
node (in case there is no pairing, the entity is considered
as deleted or added). For each of the resource, references
and types subtrees, its own matching algorithms are
applied.



Fig. 4. Assembly diff tool work example

4) Presenters are used to compose the presentable item of
the node: generating text, setting styles and colours, and
selecting a suitable icon. The node data is then wrapped
in a special protocol container and sent to the frontend
to be unpacked and displayed to the user.

Consider the operation of the individual subtrees:
a) References subtree: This subtree contains nodes of

two types: AssemblyReference (a dependency on another
assembly, e.g., System.Runtime) and ModuleReference
(these can be references to some third-party library). All
references of old and new assemblies are merged and further
grouped by name without regard to version or additional
tokens. In this way, each found old-new reference pair will
be merged into one node and for it the version difference will
be calculated to show to the user. If there is no pair for any
reference, it is considered as added or deleted.

b) Resources subtree: This subtree contains various re-
source nodes: images, XML, JSON files, etc. Similar to the
references subtree, the resources are merged and grouped by
name, then pairs are searched and merged. In this way the user
will be able to identify which resource files have been added
or removed from one version to another.

c) Assembly types subtree: This subtree contains names-
paces and nested types: classes, interfaces, enums, etc. with
their own nested types.

When constructing this subtree, the logic and general
approach changes somewhat. The general algorithm is as
follows:

1) The first stage is to search for namespaces from
both assemblies and group them by the unique CLR
QualifiedName, noting that no two namespaces with
the same FQN can be in the same assembly. Thus, we
will have two groups: the first will represent namespaces

Fig. 5. Example of Reference subtree

with no pairing, i.e., deleted or added namespaces.
The second group will have old-new namespace pairs,
meaning that we have found the right pair to merge
into a single node in the tree. To determine the state of
such a node (modified/unmodified) our Quick Check
method first compares the number of nested types for a
namespace pair. For example, if the number of classes



Fig. 6. Example of Resources subtree

inside the old and new namespaces does not match, then
the node is considered to be changed. If the Quick
Check fails, a Full Check is performed: for both
namespaces CLRName of nested types is collected and
compared as sets. There is one extreme case, where
the namespaces do not differ in their subtypes and the
difference is only at deeper levels (e.g., the method body
within the class has changed). In this case, the state of
the namespace node will be dynamically updated with
a special trigger.

2) At the second stage, for each namespace, subtrees are
constructed independently of each other. This level
will contain the “children” of namespaces — classes,
interfaces, structures, enums and records. It will also
group by type CLRName and have two groups. The first
group will contain unpaired nodes, i.e., nodes meaning
that the type was removed or added depending on its
location (from the old assembly or from the new one).
The second group will have pairs to merge into a single
tree node. The modified/unmodified state of the node is
defined as follows:

a) First, we apply a Quick Check for the two
types by comparing their signatures. For example,
if a class was public in the old assembly and
private in the new assembly, then that node is
identified as the changed node.

b) If the signatures match, a Full Check is per-
formed — a rendering of the IL code is performed
for the two types. For example, for two classes we

will generate all their IL code and then compare
it to determine the state of the node. We believe
that in this case the IL code rendering is the key
point in determining the node state. We could
consider another approach and generate C# code
for the classes, but this approach would be slower
compared to IL code rendering, which is what we
have chosen to achieve the fastest performance in
tree construction.

3) When constructing the next levels, we work with “chil-
dren” of classes, interfaces, etc., i.e. fields, methods,
properties, nested classes, etc. The general logic here is
partly the same as in point 2: for each type, e.g., class,
we collect its old and new nested types from assemblies
and also group them by CLRName. However, here we
have 3 groups:

a) The first group consists of types for which there
are no other types with the same name, i.e., they
are treated as deleted or added depending on their
location.

b) The second group consists of pairs, i.e., we have
found pairs of types with the same name. In this
case the logic changes: first we need to determine if
both types belong to some single assembly. If they
do, it means that the types don’t need to be merged
into one tree node, they are two different types and
two different nodes. This is possible because of
the overloading mechanism in the .NET platform:
the types in a given tree level can have the same
name. For example, the old assembly had two
overloaded methods named Start in the Fabric
class, but the new assembly has no such methods
in the same class. In this case, the two methods
are considered deleted and treated as different
tree nodes. If, however, each of the two types
belongs to a different assembly, we have a merge
into one node and state detection is performed. A
Quick Check — a signature comparison — is
also performed first. If this check fails, a Full
Check — IL code rendering — is performed.
But there are peculiarities here, depending on the
.NET type being checked. For example, if we have
a property, then in addition to rendering the IL
code we need to find and render the IL code of
the corresponding Getter and Setter, because
they are located separately from the property in the
assembly. Similar behaviour for events, where we
need to search for the corresponding Adder and
Remover. A method deserves special attention: if
a method is an iterator and yield return is
used in it or if a method is marked with async
keyword, a special StateMachine class is gen-
erated in a compiler-generated class in IL code. In
such a case to understand whether the method has
changed or not, besides rendering the IL code of



the method itself, it is necessary to search among
various metadata and CustomAttributes and
then render this StateMachine. The situation
is similar when using lambda expressions: in this
case, separate compiler-generated methods are cre-
ated during compilation, and sometimes even entire
classes if there is a closure.

c) The third group contains tuples of 3 or more types
with the same name. Here will only be types that
can be overloaded in .NET: methods and operators.
This group is of the greatest interest, including
research interest. Here we immediately face the
problem of type matching: suppose we have three
overloaded methods Start with different signa-
tures in the old assembly, and the new assembly has
three overloaded methods Start with different
signatures in the same class. The question arises:
how exactly do we map these methods for further
merging into one node? The problem could be
solved by using a special token given to each
type at compile time. If it were unique and didn’t
change, we could accurately find the right pairs
of methods by this token, but it changes when
recompiling. In this case we have to choose some
other approach. To do that, we developed a special
algorithm for semantic matching and comparison
of .NET types, which we will discuss next.

Also at each level, after the providers are completed, the
view for the node is computed using the appropriate node
presenter. Particularly noteworthy is the generation of text with
colour definitions. Thus, for nodes at each level of this subtree
(excluding the namespace level as an unnecessary case), a
signature difference calculation algorithm is applied. This
algorithm computes and identifies parameter addition/removal,
parameter type or return value changes, and generic parameter
changes. The signature difference will be displayed to the user
in the tree and he will not need to look through the decompiled
code additionally.

Fig. 7. Example of Assembly types subtree (including signature diff)

We consider this tree-constructing algorithm to be unique,
as it provides wide functionality in exploring differences
of assemblies. It is worth noting that existing solutions do

not have this kind of tree-constructing behaviour and use
approaches that, in our opinion, are not the most accurate.
For example, some existing solutions consider all types with
different signatures as different. In this case, assume there
is a method in the old assembly and assume that in the
new assembly only one parameter has been added to the
signature in that method, but the body of the method itself
has not changed. Then there will be two different nodes in
the tree: the method with the old signature will be considered
completely removed, and with the new signature completely
added, despite the fact that the implementation of the method
has not changed at all. However, in this case we suppose it’s
more correct to show the user a single node in the tree with
the state changed, showing the addition of a parameter to the
signature.

C. Algorithm of semantic comparison of .NET types

Suppose the following situation. An old assembly has a class
with two overloaded methods:

class OverloadListing
{
public void Add(int id, int age)
{
// Method body

}
// Other methods ...
public void Add(string name, string

email)
{
// Method body

}
}

The new assembly has the same class with two overloaded
methods, but these methods have different signatures:

class OverloadListing
{
public void Add(string name, string[]

emails)
{
// Method body

}
// Other methods ...
public void Add(int id, float age)
{
// Method body

}
}

We don’t consider methods with different signatures as
different and we don’t think it’s correct to show two deleted
methods and two added methods in the tree in this case. In
the case of several overloaded methods whose signatures have
changed in the new assembly, we believe it is most correct
to match methods with the most similar signatures. Thus, for



the old method it’s necessary to find the closest new method,
taking into account the semantic differences.

When implementing such an algorithm, it is most important
to propose an appropriate metric to determine the proximity
of the signatures. In this example, it is obvious that the
signature from the old assembly public void (int,
int) is closer to the signature of public void (int,
float) than to public void (string, string[]),
because in the first case the type of one parameter has
changed and in the second two have changed. Our metric
works as follows: for the chosen pair of .NET types we create
a similarityCounter that accumulates data about the
proximity of signatures. Then multiple checks are performed:
comparison of CLRName for two types, generic parameters
(if exists), comparison of access modifiers, keywords, return
value types, also compared types of passed parameters, their
number, name of parameters, presence of additional modifiers
ref/in/out, performed CLRTypeConversion — deter-
mination of data types affinity (for example, we determine
that type float is closer to type double or int than to
string) and other checks. Each check, if passed, has its own
weight by which the similarityCounter is incremented.
For example, for some keywords there are the following
checks:

public int
CompareByMostCommonParams(Element
first, Element second)

{
//...
if (first.IsStatic ==

second.IsStatic)
similarityCounter++;

if (first.IsVirtual ==
second.IsVirtual)
similarityCounter++;

//other keywords checks (override,
sealed, abstract, etc.)

}

Using this metric, we compare all signatures from the first
assembly with all signatures from the second assembly and
use a greedy algorithm: sort all possible pairs and take the
closest pair of signatures, then the closest of the remaining
ones, and so on. If we have 3 overloaded methods in the old
assembly and 5 in the new one, we’ll find only 3 mappings,
and 2 methods will be considered as added. It is quite possible
that there are pairs with the same proximity value (e.g., there
were signatures (int) and (double) and became (string) and
(object)), then we can choose the matching arbitrarily. Com-
paring method bodies and rendering IL code is unnecessary
in this algorithm, thus reducing the overhead.

This algorithm is in some sense a heuristic — we can define
other proximity metrics too. We do not consider our chosen
metric to be the only true one and leave the ability for research
in this area.

V. CONCLUSION AND FUTURE WORK

Assembly Diff tool is a tool designed and integrated into
the Rider IDE for comparing compiled .NET assemblies and
provides extensive functionality for exploring assembly differ-
ences. The tool includes not only differences in .NET types
but also references and resource differences and presents them
in a convenient diff tree. The Assembly Diff tool considers
and fixes the shortcomings of existing tools, expands the
number of supported .NET assembly types, and uses specially
designed algorithms in the comparison tree to compute sig-
nature differences and account for semantic features in type
mapping. The Assembly Diff tool is used in Rider with a
special assembly diff action (including the Ctrl+D shortcut)
and is also integrated with the version control subsystem,
allowing users to view assembly diffs in the Commit tab.

However, in the future we plan to integrate the Assembly
Diff tool into other products: ReSharper and dotPeek,
and to integrate with the NuGet Rider subsystem. This would
allow users to conveniently explore the differences between
the versions of the downloaded third-party libraries.

REFERENCES

[1] “.NET platform from Microsoft,” https://dotnet.microsoft.com/, [Online;
accessed 19-March-2022].

[2] “Stack Overflow frameworks and platforms survey for
2021 year,” https://insights.stackoverflow.com/survey/2021#
most-popular-technologies-misc-tech, 2021, [Online; accessed 19-
March-2022].

[3] “JetBrains Rider IDE,” https://www.jetbrains.com/ru-ru/rider/, [Online;
accessed 19-March-2022].

[4] “Stack Overflow most loved collaboration tools survey for
2021 year,” https://insights.stackoverflow.com/survey/2021#
most-loved-dreaded-and-wanted-new-collab-tools-love-dread, 2021,
[Online; accessed 19-March-2022].

[5] “.NET assemblies types according to Microsoft documentation,” https://
docs.microsoft.com/en-us/dotnet/standard/assembly/, [Online; accessed
20-March-2022].

[6] “Standard ECMA-335: Common Language Infrastructure (CLI), 6th
edition, June 2012,” https://www.ecma-international.org/wp-content/
uploads/ECMA-335_6th_edition_june_2012.pdf, [Online; accessed 20-
March-2022].

[7] “.NET Assembly contents according to Microsoft documentation,” https:
//docs.microsoft.com/en-us/dotnet/standard/assembly/contents, [Online;
accessed 21-March-2022].

[8] “.NET Assembly format according to Microsoft documentation,”
https://docs.microsoft.com/en-us/dotnet/standard/assembly/file-format,
[Online; accessed 24-March-2022].

[9] C. Woodruff and M. Balliauw, “Building a .NET IDE with JetBrains
Rider, CODE Magazine,” https://www.codemag.com/Article/1811091/
Building-a-.NET-IDE-with-JetBrains-Rider, 2018, [Online; accessed
21-March-2022].

[10] “JetBrains IntelliJ Platform,” https://www.jetbrains.com/ru-ru/
opensource/idea/, [Online; accessed 23-March-2022].

[11] “JetBrains ReSharper,” https://www.jetbrains.com/ru-ru/resharper/, [On-
line; accessed 23-March-2022].

[12] “Reactive Distributed communication framework,” https://github.com/
JetBrains/rd, [Online; accessed 23-March-2022].

[13] E. W. Myers, “An o(nd) difference algorithm and its variations,” Algo-
rithmica, vol. 1, pp. 251–266, 1986.

[14] J. W. Hunt and M. D. Mcilroy, “An algorithm for differential
file comparison,” Computer Science, 1975. [Online]. Available:
http://www.cs.dartmouth.edu/%7Edoug/diff.pdf

https://dotnet.microsoft.com/
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-misc-tech
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-misc-tech
https://www.jetbrains.com/ru-ru/rider/
https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-new-collab-tools-love-dread
https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-new-collab-tools-love-dread
https://docs.microsoft.com/en-us/dotnet/standard/assembly/
https://docs.microsoft.com/en-us/dotnet/standard/assembly/
https://www.ecma-international.org/wp-content/uploads/ECMA-335_6th_edition_june_2012.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-335_6th_edition_june_2012.pdf
https://docs.microsoft.com/en-us/dotnet/standard/assembly/contents
https://docs.microsoft.com/en-us/dotnet/standard/assembly/contents
https://docs.microsoft.com/en-us/dotnet/standard/assembly/file-format
https://www.codemag.com/Article/1811091/Building-a-.NET-IDE-with-JetBrains-Rider
https://www.codemag.com/Article/1811091/Building-a-.NET-IDE-with-JetBrains-Rider
https://www.jetbrains.com/ru-ru/opensource/idea/
https://www.jetbrains.com/ru-ru/opensource/idea/
https://www.jetbrains.com/ru-ru/resharper/
https://github.com/JetBrains/rd
https://github.com/JetBrains/rd
http://www.cs.dartmouth.edu/%7Edoug/diff.pdf

	Introduction
	Background
	Types of .NET assemblies
	Structure and content of the .NET assembly
	Existing solutions
	Rider architecture

	Assembly diff methodology
	Project decomposition
	Implementation based on directory comparison of the IntelliJ platform
	Assembly Explorer subsystem

	Implementation based on assembly diff tree
	General operating principle
	Algorithm of assembly diff tree construction
	Algorithm of semantic comparison of .NET types

	Conclusion and Future work
	References

