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Abstract. This work deals with the spectral properties of the functional-di�erence equations, that
arise in a number of applications in the di�raction of waves and quantum scattering. Their link
with some of the spectral properties of perturbations of the Mehler operator is addressed. The latter
naturally arise in studies of functional-di�erence equations of the second order with a meromorphic
potential which depend on a characteristic parameter. In particular, this kind of equations is frequently
encountered with in the asymptotic treatment of eigenfunctions of the Robin Laplacians in wedge-
or cone-shaped domains. The unperturbed selfadjoint Mehler operator is studied by means of the
modi�ed Mehler�Fock transform. Its resolvent and spectral measure are described. These results
are obtained by use of some additional analysis applied to the known Mehler formulas. For a class of
compact perturbations of this operator, su�cient conditions of existence and �niteness of the discrete
spectrum are then discussed. Applications to the functional-di�erence equations are also addressed.
An example of a problem leading to the study of the spectral properties for a functional-di�erence
equation is considered. The corresponding eigenfunctions and characteristic values are found explicitly
in this case.
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1. INTRODUCTION

1.1. Functional-Di�erence (FD) Equations of the Second Order and Perturbations of the Mehler Operator

In the recent years, an obvious interest to the description of spectral properties of Laplacians with δ or δ′-
interactions supported on some surfaces [1, 2] occurred. In the classical formulation, the Robin-type boundary
conditions are exploited in the description of the corresponding selfadjoint operators, see, e.g., [1, 9, 13] and
the references therein. Traditionally, general methods [4] for such operators are applied in order to describe
their spectra qualitatively. However, provided that a model admits a separation of variables partly, due to
some symmetry, one could obtain additional information about the spectral properties. For instance, the
asymptotic behavior of the eigenfunctions have been studied in [12, 13]. To this end, by making use of
the incomplete separation of variables, the corresponding problems are reduced to a functional-di�erence
equation with a meromorphic potential

H(ν + 1)−H(ν − 1)− 2iΛW (ν)H(ν) = 0 , ν ∈ C, (1)

where, by de�nition, Λ is a characteristic parameter (so that µ = Λ−1 is the spectral parameter),1 and W is
the meromorphic potential belonging to a special class.

In [12], eigenfunctions and their asymptotic behavior at large distances are studied for the Laplace operator
with singular potential whose support is placed on a circular conical surface in three-dimensional space.
Within the framework of incomplete separation of variables, an integral representation of the Kontorovich�
Lebedev (KL) type for the eigenfunctions is obtained in terms of the solution of an auxiliary functional-
di�erence equation (see (1)) with a meromorphic potential. Solutions of the functional-di�erence equation
are studied by reducing it to an integral equation with a bounded selfadjoint integral operator. The latter
integral operator is exactly a perturbation of the Mehler operator.

In the recent paper [13], we have studied the eigenfunctions that describe eigenoscillations of acoustic waves
in angular domains with `semitransparent' boundary conditions. For some values of the spectral parameter in
the boundary-value problem, we have considered essential and discrete spectra of the equations and described

1In our applications, this characteristic parameter is directly connected with the spectral parameter E for the corresponding
Laplacian, e.g., Λ = γ√

−E
, γ is the Robin parameter.
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properties of the corresponding solutions. The study is based on the reduction of the functional-di�erence
equations to integral equations of the Mehler type with a symmetric kernel.

A similar kind of equations is also encountered with in the problems of quantum scattering [16, 17, 18].
For convenience of the reader, in the next section we give a simple example of derivation of such a functional-
di�erence equation and study the discrete spectrum of the problem explicitly.

An important observation is that the Fourier transform along the imaginary axis reduces equation (1)
to a homogeneous integral equation and then to an integral equation with the perturbed Mehler operator
depending on a characteristic parameter Λ, see also [12, 13]. As a result, the study of the spectral properties
of the perturbed Mehler operator (2) leads to a description of the corresponding results for equation (1).
Finally, an additional analysis based on the Kontorovich�Lebedev and Sommerfeld�Malyuzhinets integral
representations enabled one to obtain asymptotics of the eigenfunctions for some models [12, 13], which is
not considered in this paper.

It is obvious that the description of some spectral properties of the perturbed and unperturbed Mehler
operators becomes a crucial step in the study of the spectra of the corresponding functional-di�erence
equations. We notice, however, that the exhaustive study of the spectral properties of the Mehler operator
is not a basic goal of the present work. It is natural and possible to give elsewhere their complete description
which is similar to that obtained for the perturbations of the Carleman operator [23]. The other point is
that we study only a particular class of perturbations of the Mehler operator that is connected with the FD
equations, although more general results are also available.

1.2. Some De�nitions and the Adopted Terminology

We study the FD equation (1) in a special class of meromorphic functions described below. The coe�cient
W (ν) is called the potential and is a meromorphic function in a certain class. The class of potential is
motivated by applications (see, e.g., [12, 13]). The parameter Λ is called the characteristic parameter. Its
values are responsible for existence of nontrivial solutions of equation (1) which belong to the prescribed
class. Below we de�ne the so-called characteristic and essential values of this parameter.

We also formally de�ne the perturbed Mehler operator by the expression

[Ku](x) :=
1

π

1∫
0

w(x, y)

x+ y
u(y)dy (2)

in the space L2(0, 1), where, usually in applications, the function w is continuous on [0, 1)× [0, 1), symmetric
(w(x, y) = w(y, x)), and square integrable. (Note that the point (0, 0) is implied to be a singular point of
the kernel; thus, the operator K is bounded but need not be compact in the general case.) The name of this
operator is due to the fact that, in the majority of interesting cases, we can write

w(x, y) = 1 + [w(x, y)− 1]

with w(x, y)− 1 = o(1) as (x, y) → (0, 0), so that the operator K in (2) can be represented as follows:

K =M + V, (3)

where

[Mu](x) :=
1

π

1∫
0

u(y)

x+ y
dy (4)

is the (unperturbed) Mehler operator that is bounded (see also [20, 3], where this operator is attributed to
Dixon's integral equation)2 and the perturbation V = [K −M ],

[V u](x) :=
1

π

1∫
0

v(x, y)

x+ y
u(y)dy (5)

is often of the Hilbert-Schmidt class S2 due to the properties of v(x, y) := w(x, y)− 1. In our case of the FD
equation (1) the potential of the perturbation has a very particular form with v(x, y) :=

√
w0(x)w0(y)− 1.

2This operator has been recently encountered with in di�raction theory [3, 15], Chapter 5, see also Dixon integral equation
in [20]. We follow D. R. Yafaev who proposed to the author, to use this terminology for such an operator.
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Note that the Mehler operator is formally analogous to a Hankel operator

[Hu](x) :=

∞∫
0

h(x+ y)u(y)dy,

where h(t) = t−1/π and the integration is restricted to [0, 1]. In the paper [23], perturbations of the Carleman
operator (h(t) = t−1 for t ∈ (0,∞)) by the Hankel operators are carefully studied.

1.3. Structure of the Paper

In the second section we give an example of derivation of a functional equation that belongs to the class
discussed in this paper. It is remarkable that this equation is a solvable model, .e., the corresponding eigen-
functions can be found explicitly. A further analysis is devoted to more general situations when potentials
belong to the aforementioned class of meromorphic functions. The corresponding models are not explicitly
solvable (see, e.g., [12, 13]).

In the third section we describe a class of functional-di�erence equations (1), specifying a set of mero-
morphic potentials which are motivated by applications. We make use of the Fourier transform and reduce
the equation to an integral one with integration along the imaginary axis. After some additional reduction,
we arrive at a homogeneous integral equation with a perturbed Mehler operator (3) and a characteristic
parameter. To our knowledge ,some of the results of the following sections are new in general and only partly
considered in our papers [14, 13, 12] and some other works, see, e.g., [3]. The so-called dual singular integral
equation to a Mehler-type integral equation is obtained in Appendix.

The fourth section deals with applications of the modi�ed Mehler�Fock transform (mMF-transform) to
the study of the unperturbed Mehler operator (4). To this end, we derive some useful formulas dealing
with mMF-transform, and then compute the resolvent of the Mehler operator; we show that it has an
essential (absolutely continuous) spectrum σe(M) that coincides with the segment [0, 1], and derive the
`eigenfunctions' of the continuous spectrum and the spectral resolution. These studies are based on the
classical Mehler formulas.

The �fth section is devoted to the study of the spectrum of the perturbed Mehler operator K, K =M+V ,
where V is de�ned by (5) and is assumed to be compact. The Weyl theorem leads to preserving of the essential
spectrum, so that the main attention is paid to the existence of the discrete spectrum σd(K). We obtain
some su�cient conditions for this. An application of the Birman�Schwinger principle and the discussion of
�niteness of the discrete spectrum is then considered.3

In the sixth section, we apply the results of the previous sections to the functional-di�erence equations
(1), which enables us to give a de�nition and a precise description of the characteristic sets for the class
of potentials under consideration. Some examples are also discussed. In Conclusion, we underline some
important aspects of the study and consider some further prospects.

2. EIGENFUNCTIONS OF A ROBIN LAPLACIAN
AND FUNCTIONAL-DIFFERENCE EQUATIONS

Consider an angular domain Ω∗ = {r ⩾ 0, 0 < φ < Φ} with the opening Φ < π/2 and the boundary S
which consists of two half-lines S+ = {r > 0, φ = Φ}, and S− = {r ⩾ 0, φ = 0} with the same origin O,
and

X = r cosφ, Y = r sinφ

are the interconnected Cartesian and polar coordinates.

We are looking for solutions of the homogeneous problem in Ω∗ with the spectral parameter E

Aγ U = E U (6)

for a formally symmetric operator Aγ de�ned in the `classical' terms of di�erential equations and boundary
conditions,

−△U(r, ω) = EU(r, ω), (r, φ) ∈ Ω∗ , (7)

3This result is analogous to that discussed in [23] for perturbations of the Carleman operator.
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△ = 1
r

∂
∂r r

∂
∂r + 1

r2
∂2

∂φ2 . The boundary conditions on S = S+ ∪ S− read

∂U

∂n

∣∣∣∣
S+

= γU |S+ ,

∂U

∂n

∣∣∣∣
S−

= 0,

(8)

where γ > 0 is the Robin parameter, the normal n is directed from Ω and ∂
∂n

∣∣
S+

= 1
r

∂
∂φ

∣∣∣
φ=Φ

. A precise

de�nition of the selfadjoint operator Aγ is discussed in [9, 14]. The spectrum of Aγ is essential for E ⩾ −γ2
and is discrete for E < −γ2 with a �nite number of eigenvalues. This model is explicitly solvable, see [14].
In particular, the eigenfunctions and eigenvalues can be found in a closed form [14].

We look for the eigenfunctions as solutions in H1(Ω∗) of equation (6) with conditions (7), (8) in the form
of the Kontorovich�Lebedev integral

U(r, φ) =
1

iπ

i∞∫
−i∞

sin(πν)Kν(κr)uν(φ)dν , (9)

where κ =
√
−E, E < 0, Kν stands for the Macdonald function. After the substitution into the equation,

we �nd

uν(φ) = H∗(ν)
cos(νφ)

cos(νΦ)

which satis�es the second boundary condition in (8) because uν is even with respect to φ.
From the �rst boundary condition and (9) (see, e.g., [13] for similar calculations), for

D(ν) = H∗(ν)tan(Φν),

we arrive at the functional-di�erence equation

D(ν + 1)−D(ν − 1)− 2iΛW (ν)D(ν) = 0 (10)

with

W (ν) = i cot(Φν) , Λ =
γ

κ
.

Equation (10) gives an example of a second-order functional-di�erence equation (1) with meromorphic poten-
tial. We omitted the details of justi�cation, see [13], for the derivations in a similar problem. These solutions
should be even, exponentially vanishing on the imaginary axis, and holomorphic in its neighborhood. In this
case, the Kontorovich�Lebedev integral representation converges and solutions are understood in classical
sense.

Note that the functional-di�erence equation (10) of the second order with meromorphic potentialW (ν) =
i cot(νΦ) is a direct analog of the FD equation in the Maryland model [5]. Alternative examples of FD
equations under consideration are discussed in [12, 13]. We can solve this equation (10) explicitly and
determine the eigenfunctions and characteristic values in an explicit form. We compute D = Dn and Λ =
Λn = γ/κn, (κn =

√
−En) satisfying the equation.

By the direct substitution, we see that

Dn(ν) = 2
sinΦν

sinπν

n−1∑
m=0

Cm cos(2mΦν)

and Λn = sin(Φtn) , tn = 2n− 1 , Φtn < π/2, the coe�cients Cm are recurrently determined and are given
below. The following estimate is obvious:

|Dn(ν)| < C
∣∣∣eiν[π−Φtn]

∣∣∣ ,
as ν → i∞, ν ∈ iR. The values Λn can naturally be called characteristic values, and Dn the eigenfunctions
of the equation, n = 1, 2 . . . , N .
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Having Dn in hand, we substitute Hn into (2) and then into the Kontorovich�Lebedev integral (9) and
make use of the known integral representation 6.795(1) in [7],

e−a cosh(b) =
2

π

∞∫
0

dx cos(bx)Kix(a) ,

a > 0, |Imb| < π/2. After some reductions, one has the expressions for the eigenfunctions (see also [14]):

Un(r, φ) =

n−1∑
m=0

Cm

(
e−κnr cos[2Φm−φ] + e−κnr cos[2Φm+φ]

)
. (11)

The constants Cm in (11) have the form C0 = 1,

Cm =
1

2

m∏
k=1

sin(Φ[2k − 1])− γ/κn
sin(Φ[2k − 1]) + γ/κn

.

The corresponding eigenvalues of Aγ are En = − γ2

Λ2
n
= − γ2

sin2(Φ[2n−1])
, n = 1, 2, . . . N . The total number N of

eigenvalues is �nite and depends on the opening of the angle Ω∗ having the value Φ. If Φ ∈ [π/6, π/2), then

there is only one eigenvalue E1 = − γ2

sin2 Φ
, N = 1. For Φ ∈ [π/10, π/6), there are two eigenvalues, N = 2.

In general, we have N = ent
(
1
2

(
π
2Φ̄

− 1
))

+ 1 (ent(·) is the entire part of a number which is assumed to be
continuous from the right).

3. FUNCTIONAL-DIFFERENCE EQUATIONS AND INTEGRAL
EQUATIONS WITH THE PERTURBED MEHLER OPERATOR

In the situations when the corresponding FD equation (1) cannot be solved explicitly (see, e.g. [12,
13]), we intend to consider the following questions. First, we specify a class of functions for which an
equation has nontrivial solutions for some values Λ. Then we expect to describe the sets of such values,
giving them the title of the so-called characteristic set Cd, and the set Ce of essential values. The �niteness
of the discrete part is also of interest. 4 For each value in the set of characteristic values, we hope to
construct a corresponding eigenfunction in the desired space. (Note that the construction of the generalized
eigenfunctions corresponding to Λ in the set Ce of essential values is also possible, although it is omitted
herein.) To this end, we establish a natural link of the FD equation with the corresponding integral equation.
The operator in the latter equation is the perturbed Mehler operator which is bounded and selfadjoint. Some
of its spectral properties are studied and then exploited to answer the aforementioned questions. In particular,
the discrete part of of the spectrum of the perturbed Mehler operator is connected with the characteristic set
Cd of the FD equation in hand. As was noticed, the �niteness of this set is analyzed by use of the Birman�
Schwinger principle applied to the perturbed Mehler operator. We study the corresponding eigenfunctions
and exploit this information in order to construct the corresponding nontrivial solutions of the FD equation
(1). Finally, the results thus obtained are expected to be applicable to several examples originating from
applications.

We turn to the equation (1) and discuss �rst the class W of potentials to be considered. We suppose
that W ∈ W is a meromorphic odd function of the complex variable ν ∈ C. It is holomorphic in some
strip Πδ := {ν ∈ C : |Re ν| < δ} for some positive δ with possible exception of zero, where it may have a
simple pole. Moreover, W (ν) > 0 for ν ∈ iR+, i.e., on the positive part of the imaginary axis, and W → 1
as ν → i∞ there.5 On the one hand, this class W of potentials arises from natural applications, e.g., for
the Robin Laplacians [14, 13, 12]; however, on the other hand, they lead to selfadjoint perturbations of the
Mehler operator corresponding to equations (1), so that some traditional machinery can be applied for their
study. A concrete example of the potential has been considered above, W (ν) = i cot(Φν); however, the other
ones are also discussed below.

It is worth describing properties of the solutions H to the equation (1) which are natural in applications
and, in particular, ensure correspondence to the characteristic set of the equation. We introduce a class of
functions M consisting of meromorphic functions H such that

4It is remarkable that each charateristic value Λm ∈ Cd generates the corresponding eigenvalue Em of the corresponding
operator Aγ (see, e.g., [12, 13]).

5In many cases, we actually have W (ν) = 1 + O(exp(−aIm ν)), a > 0; however, the power-law convergence (e.g., W (ν) =
1 +O(ν−1)) is also of interest in applications.
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� H(ν) = H(−ν) is even,

� H is holomorphic in the strip Π1+δ = {ν ∈ C : |Re ν| < 1 + δ} for some δ > 0,

� |H(ν)| < Const | exp(iν[π/2 + δ0])|, ν → i∞, ν ∈ Π1+δ as δ0 ∈ (0, π/2).

Remark that in the latter estimate δ0 = 0 corresponds to the solutions of the so-called essential characteristic
set which can be similarly considered.

Taking into account that H ∈ M , we can write equation (1) as two equations (i.e., with only upper or
lower signs)

H(ν ± 1)−H(−ν ± 1) = ±2iΛW (ν)H(ν) .

The di�erence operator on the left-hand side can be `inverted' by using the following assertion.

Lemma 3.1. Let q(ν) be holomorphic for ν ∈ Πδ and |q(ν)| ⩽ cqe
−κ|ν| , |ν| → ∞ ,κ > 0 in this strip,

q(ν) = −q(−ν). Then an even solution s(ν) of the equations

s(ν ± 1)− s(−ν ± 1) = ∓ 2i q(ν) ,

which is regular (holomorphic) in the strip ν ∈ Π1+δ and exponentially vanishes as |ν| → ∞ there, is given
by

s(ν) =
1

2

i∞∫
−i∞

dτ q(τ)
sinπτ

cosπτ + cosπν
, ν ∈ Π1+δ .

The proof is given in [14, 15] and is based on the Fourier transform along the imaginary axis. Making use
of this lemma, we arrive at

H(ν) = − Λ

2

i∞∫
−i∞

dτ
W (τ) sinπτ

cosπτ + cosπν
H(τ) , ν ∈ Π1+δ , (12)

where W ∈ W.
It is worth noticing that, provided H(·) is known on the imaginary axis on the right-hand side of (12),

the left-hand side is de�ned and holomorphic on the strip Π1+δ. Having speci�ed H(·) on this strip, one
can continue the function H to the whole complex plane as a meromorphic function. Due to this simple
observation, it is su�cient to �nd H on the imaginary axis, and the aforementioned procedure enables one
to determine the corresponding solution H ∈ M of the functional-di�erence equation. In order to derive
H on the imaginary axis, we let ν → iR and consider (12) as an integral equation with the characteristic
parameter Λ. We are looking for solutions of this equation.

To this end, we reduce the integral equation (12) to an equivalent form. We make use of the new variables

x =
1

cosπν
, y =

1

cosπt
,

dy

π
=

sinπt

cos2 πt
dt,

and new unknown
h(x) = cosπν H(ν)|x= 1

cosπν
,

x, y ∈ [0, 1],

h(x)− Λ

π

1∫
0

dy
w0(y)

x+ y
h(y) = 0 , (13)

where
w0(y) =W (t)|y= 1

cosπt
> 0

and w0(y) = 1+o(1) as y → 0. Below, in examples, we specify the behavior of w0(y) as y → 0 more explicitly.
Finally, by (13), the desired form of the integral equation with a symmetric integral operator reads

ρ(x)− Λ

π

1∫
0

dy

√
w0(x)w0(y)

x+ y
ρ(y) = 0 , (14)
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where ρ(x) =
√
w0(x)h(x).

In accordance with our de�nition in the introduction, the integral operator in (14) is a perturbed Mehler
operator with w(x, y) =

√
w0(x)w0(y). The perturbation V of the Mehler operator M in (4) is speci�ed

by (5) with v(x, y) =
√
w0(x)w0(y) − 1. Concluding, we observe from the derivations in this section that

solutions of the functional-di�erence equation for H ∈ M are directly connected with solutions of the integral
equation (14) with a perturbed Mehler operator. However, before studying the perturbations of the Mehler
operator and its spectral properties, we consider the unperturbed Mehler operator. In the appendix, a
singular integral equation dual to (12) is derived; it can be used to study some further properties of solutions
to the FD equation (1).

4. MODIFIED MEHLER�FOCK TRANSFORM AND
SPECTRAL PROPERTIES OF THE MEHLER OPERATOR

In [23], properties of the Carleman operator are investigated by means of the Mellin transform that
`diagonalizes' this operator. In our case of the Mehler operator, the modi�ed form of the Mehler�Fock
transform (mMF-transform) plays a similar role.

It should be stressed that the results of this section rely upon the Mehler formulas of 1881 [21] (see
also Chap. 7 of [19]), and we only give their modern interpretation, explicitly describing the resolvent and
spectral measure of the Mehler operator, exploiting also the results of [22]. The formulas of the (modi�ed)
Mehler�Fock transform can be derived directly from the Mehler results of 1881. However, unitary property
of the transform requires an additional discussion which is given in this section.

In addition, we study the behavior of the resolvent on the cut along the essential (absolutely continuous)
spectrum of the Mehler operator discussing also some estimates. The latter are further exploited for the
investigation of the existence and �niteness of the discrete spectrum.

4.1. Diagonalizability of the Mehler operator M

It is useful to clarify the possibility to diagonalize the Mehler operator M by use of the so-called modi�ed
Mehler�Fock transform (mMF-transform) which is de�ned in this section (see also the original transform in
Chap. 7 of [19, 6, 11, 8]) .

First we observe that the Mehler operator M is directly connected with the bounded selfadjoint operator
M1 in L2(1,∞) which is de�ned by

[M1h](t) =
1

π

∞∫
1

h(τ)dτ

t+ τ
. (15)

Indeed, introduce the unitary operator ϕ : L2(1,∞) → L2(0, 1),

[ϕw](x) =
1

x
w

(
1

x

)
.

The operator ϕ establishes an isometric isomorphism between L2(1,∞) and L2(0, 1),

(ϕw, ϕw)L2(0,1) = (w, w)L2(1,∞) .

Then we directly prove, using the de�nition of M1 in (15) and of the Mehler operator M , that

M = ϕ∗M1 ϕ

because

[M u](x) =
1

x

1

π

∞∫
1

1
tu
(
1
t

)
1
x + t

dt = [ϕ∗M1 ϕ u](x),

which means that the operators M and M1 are unitary equivalent.
Now we make use of an important observation (see the discussion in [22], Sect. 2, 3) that the operator

M1 and the selfadjoint Legendre operator L commute, where L is de�ned by

L = − d

dt
(t2 − 1)

d

dt
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with the domain Dom(L) = {f ∈ H2
loc(1,∞) such that lim

t→1
f(t) exists, f ′(t) = o([t − 1]−1/2), Lf ∈

L2(1,∞), f ∈ L2(1,∞)}. As discussed in [22], M1 is a function in Dom(L), M1 = 1/ cosh(π
√
L− 1/4),

noticing that the spectrum of L is simple and occupies the half-line λ ∈ [1/4,∞), nd

ψp(t) =
√
p tanh(πp)Pip−1/2(t)

are the `eigenfunctions', λ = p2 + 1/4,
Lψp = λ(p)ψp .

Recall that the Legendre function with x = coshα has the representation [7], 8.715,

Piτ−1/2(coshα) =

√
2

π

α∫
0

cos(τt)dt√
coshα− cosh t

.

As a consequence of the commutativity, one has

M1 ψp = µ(p)ψp , µ(p) =
1

cosh(πp)
.

Both the operators M1 and L have simple absolutely continuous spectra with the eigenfunctions ψp(t),
µ ∈ [0, 1], λ ∈ [1/4,∞). It is useful to recall that, in the modern terminology, F. G. Mehler in his paper [21]
of 1881 could diagonalize the operator M1 by proving the latter formula, so that it looks reasonable to call
the operators M1 and M the Mehler operators.

As a result, due to the unitary equivalence of the selfadjoint operators M and M1, we see that M has
simple absolutely continuous spectrum σa(M) = [0, 1] with the `eigenfunctions'

Pp(x) := [ϕ∗ ψp](x) =

√
p tanh(πp)

x
Pip−1/2(1/x)

having the asymptotics (see [7], 8.772(1))

Pp(x) =

√
p tanh(πp)

x

(
Γ(−ip)

Γ(−ip+ 1/2)

[x
2

]1/2−ip

+
Γ(ip)

Γ(ip+ 1/2)

[x
2

]1/2+ip
)(

1√
π
+O(x2)

)
,

x → 0+, p > 0, and Pp(x) = O(1) as p → ∞, 1 ⩾ x > 0. The functions Pp(x) are real for p ⩾ 0, in
particular, P0(x) > 0.

By means of `completeness and orthogonality' of the set {ψ(t)}, due to formulas by Mehler, we obtain

Theorem 4.1. The modi�ed Mehler�Fock transform given by the formulas

F (x) =

∞∫
0

Pp(x)F
∗(p)dp , (16)

F ∗(p) =

1∫
0

Pp(x)F (x)dx , (17)

is a unitary mapping U : L∈(′,∞) → L∈(′,∞). The mMF-transform diagonalizes the Mehler operator M ,

1

π

1∫
0

Pp(y)

x+ y
dy =

Pp(x)

cosh(πp)
, (18)

or, equivalently,
[MPp](x) = µ(p)Pp(x), µ ∈ [0, 1] ,

where

µ = µ(p) =
1

cosh(πp)
, p = p(µ) =

1

π
log([1 +

√
1− µ2]/µ) ⩾ 0 .

The operator M is absolutely continuous with the simple spectrum σa(M) = [0, 1] and the `eigenfunctions'
Pp(·).

Note also that

1

π (x+ y)
=

∞∫
0

Pp(x)Pp(y)

cosh(πp)
dp . (19)
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4.2. Resolvent of the Mehler operator

We apply the mMF-transform to the equation [Mu](x) − µu(x) = f(x) and, taking into account (17),

obtain
(

1
cosh(πp) − µ

)
u∗(p) = f∗(p) and

u∗(p) = f∗(p)
1

1
cosh(πp) − µ

= f∗(p)

(
− 1

µ
− 1

µ2

1

cosh(πp)− µ−1

)
.

We make use of (16) (µ /∈ σa(M) = [0, 1]),

u(x) =

∞∫
0

Pp(x) f
∗(p)

(
− 1

µ
− 1

µ2

1

cosh(πp)− µ−1

)
dp

= − 1

µ

∞∫
0

Pp(x) f
∗(p)dp− 1

µ2

∞∫
0

dp
Pp(x)

cosh(πp)− µ−1

1∫
0

Pp(y) f(y)dy

= − 1

µ

f(x) + 1

π

1∫
0

a(x, y;µ) f(y)dy

 , (20)

where

a(x, y;µ) = π

∞∫
0

Pp(x)Pp(y)

µ cosh(πp)− 1
dp. (21)

Thus,

u(x) = [M − µ]−1f(x) = − 1

µ
{I +Aµ} f(x) (22)

and Aµ is an integral operator in L2(0, 1) de�ned by

[Aµf ](x) =
1

π

1∫
0

a(x, y;µ) f(y)dy (23)

with the kernel (21).
Remark. The kernel (21) is represented in the form

a(x, y;µ) = π

∞∫
0

Pp(x)Pp(y)

µ cosh(πp)− 1
dp =

π

µ

∞∫
0

Pp(x)Pp(y)

cosh(πp)
dp+

π

µ

∞∫
0

Pp(x)

cosh(πp)

Pp(y)

[µ cosh(πp)− 1]
dp. (24)

We take into account (19) for the �rst summand on the right-hand side of (24) and the Parseval relation for
the mMF-transform for the second summand and obtain

µa(x, y;µ) =
1

x+ y
+

1

π

1∫
0

a(y, z;µ)

z + x
dz. (25)

The kernel a(x, y;µ) solves the integral equation (25) for all µ /∈ σ(M).
From the representation (21), one can describe properties of the resolvent kernel a(x, y;µ) as a function

of the complex variable µ. It is obvious that a is a holomorphic function of µ acting from C \ [0, 1] to
C((0, 1]× (0, 1]), because Pp(x)Pp(y) is continuous as a function of (x, y) ∈ (0, 1]× (0, 1]. The integral in (24)
uniformly converges with respect to µ belonging to any compact subset of C \ [0, 1]. For any µ ∈ C \ [0, 1],
the operator Aµ : L2(0, 1) → L2(0, 1) is bounded. We have the following assertion.

Theorem 4.2. The resolvent of the Mehler operator is a holomorphic on C \ [0, 1] operator function in
L2(0, 1). It is represented by formulas (22) and (23). The kernel of the integral operator Aµ solves equation
(25).
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Now we turn to the behavior of the kernel a(x, y;µ) on the sides of the branch-cut [0, 1]. We introduce
the following notation:

a±(x, y; τ) := lim
ϵ→0+

a(x, y; τ ± iϵ), τ ∈ (0, 1)

and show the existence of the limits. In order to describe a± explicitly, we consider zeros of the denominator
cosh(πp)− 1/µ in

a(x, y;µ) =
π

2µ

∞∫
−∞

Pp(x)Pp(y)

cosh(πp)− 1/µ
dp. (26)

as µ ∈ C \ [0, 1]. From the equation cosh(πp) − 1/µ = 0, we formally �nd its solution p =
1

π
log([1/µ +√

1/µ2 − 1]).We must properly de�ne the branch of the analytic function on the right-hand side of the latter
formula.

To this end, we consider
√
µ2 − 1 in the complex plane cut along [−1, 1] with its branch �xed by the

condition
√
µ2 − 1 > 0 for µ > 1. We then make use of the function

1−i
√

µ2−1

µ that takes no positive values

(see also [23], Sec. 2). This enables us to set arg

(
1−i

√
µ2−1

µ

)
∈ (0, 2π). As a result, the function p(µ) given

by

p(µ) :=
1

π
log

(
1− i

√
µ2 − 1

µ

)
is holomorphic on C \ [−1, 1]. By the direct substitution, we see that cosh(πp(µ)) − 1/µ = 0. All solutions
of this equation are

±p(µ) + 2im, m = 0,±1,±2, . . . ,

because cosh(·) is even and 2iπ-periodic.
Consider µ = τ + iϵ, τ ∈ (0, 1) and some small ϵ > 0; then p(τ + iϵ) goes to the positive part of the real

axis as ϵ → 0 from the lower half-plane Imµ < 0. As a result, the contour of integration in (26) near the
point p(τ) > 0 is to be deformed into the upper half-plane Imµ > 0 in order to pass the pole p(τ) of the
integrand from above. Similarly, the pole at −p(τ) is to be passed from below. We denote the contour of
integration deformed in such a way by L+. In the same way, we consider p(τ − iϵ) as ϵ → 0 and introduce
the contour L−, which is the complex conjugate of the contour L+, L− = L∗

+. We thus �nd the limiting
values of the kernel a on the sides of the branch-cut,

a±(x, y; τ) =
π

2τ

∫
L±

Pp(x)Pp(y)

cosh(πp)− 1/τ
dp, τ ∈ (0, 1) . (27)

From formula (27), we conclude that a+(x, y; τ) = a−(x, y; τ).
To study the perturbed Mehler operator, we also need to describe the behavior of a(x, y;µ) as µ→ 1.6 It

is obvious that a(x, y;µ) is continuous at µ = 1 and

a(x, y; 1) := lim
µ→1

a(x, y;µ) =
π

2

∞∫
−∞

Pp(x)Pp(y)

cosh(πp)− 1
dp ,

where p = 0 is a removable singularity of the integrand.
Consider some small vicinity B1 of the point µ = 1, where the points of the cut are excluded. It is

important to estimate the kernel a(x, y;µ) as (x, y) ∈ (0, 1]× (0, 1] and, in particular, as (x, y) → (0, 0) with
µ ∈ B1. We exploit the estimate for the Legendre function

|Pit−1/2(1/x)| ⩽ P−1/2(1/x) ⩽ C
√
x log(1 + 1/x),

where C is a positive constant and x ∈ (0, 1], t ∈ R (or t ∈ L, see below). The latter estimate directly
follows from the integral representation for Pit−1/2 given above (see also [7], 8.715 and [11]).

Now we turn to the corresponding estimate in B1. When µ varies in this small domain B1, we can locally
deform the integration contour (−∞,∞) in the integral for a(x, y, µ) in such a way that the denominator

6In this work we do not consider a(x, y;µ) as µ → 0, although its behavior can be also clari�ed.
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cosh(πp) − 1/µ in (26) is not zero for any µ ∈ B1. Denote the corresponding deformed contour by L. Thus
we have

|a(x, y, µ)| ⩽ π

2xy

∫
L

∣∣∣∣ p tanh(πp)

µ cosh(πp)− 1

∣∣∣∣ |Pip−1/2(1/x)||Pip−1/2(1/y)||dp|

⩽ C1
π

2
√
xy

∫
L

∣∣∣ p tanh(πp)
µ cosh(πp)−1

∣∣∣ |dp| log(1 + 1/x) log(1 + 1/y) ⩽ C | log(2/x) log(2/y)|√
xy

(28)

for (x, y) ∈ (0, 1]× (0, 1], where the constant C is independent of µ ∈ B1

Theorem 4.3. The kernel (26) of the operator Aµ has the limiting values a± (see (27)) on the sides of
the branch-cut, and it satis�es the bound (28) for µ ∈ B1. The limiting value a(x, y; 1) at µ = 1 also exists
and admits the bound

|a(x, y; 1)| ⩽ C
| log(2/x) log(2/y)|

√
xy

, (x, y) ∈ (0, 1]× (0, 1] , (29)

which follows from (28).

4.3. Resolution of identity for the operator M

Having the resolvent in hand, one can compute the spectral measure of the Mehler operator and the
resolution of identity by means of the formula

Etg(x) = lim
ϵ→0+

1

2πi

∫
Cϵ

t

dµ [M − µ]−1g(x) = lim
ϵ→0+

1

2πi

∫
Cϵ

t

dµ
−1

µ
{I +Aµ} g(x) , (30)

where we have used (22), g ∈ L2(0, 1). The integration contour Cϵ
t begins at the point t− iϵ, then goes below

the spectrum σ(M) = [0, 1], bypasses it from the left, and arrives at the point t+ iϵ over the spectrum.
From (30) and (23), one has

Etg(x) = g(x) + lim
ϵ→0+

1

2πi

∫
Cϵ

t

dµ
1

(−µ)
1

π

1∫
0

a(x, y;µ) g(x)dy , (31)

where a(x, y;µ) is given by (26). We change the orders of integration, which is justi�ed, and compute the
most inner integral with respect to µ by taking its limit as ϵ→ 0+, t ∈ (0, 1),

lim
ϵ→0+

− 1

2πi

∫
Cϵ

t

dµ

µ [µ cosh(πp)− 1]
= 0 , as t >

1

cosh(πp)

and

lim
ϵ→0+

− 1

2πi

∫
Cϵ

t

dµ

µ [µ cosh(πp)− 1]
= −1 , as t <

1

cosh(πp)
.

Thus we obtain
Etg(x) = 0, t ⩽ 0 ,

Etg(x) = g(x) +
1

π

1∫
0

e(x, y; t) g(y)dy , t ∈ (0, 1] ,

Etg(x) = g(x), t > 1 ,

(32)

with

e(x, y; t) = −π
∞∫
0

Pp(x)Pp(y)H

(
1

cosh(πp)
− t

)
dp, (33)

where H(·) is the Heaviside unit-step function. In the integral (33), we change the integration variable by

τ = 1
cosh(πp) and p(τ) =

1
π log

(
1
τ +

√
1
τ2 − 1

)
implying that p(τ) ⩾ 0, p(τ) → ∞ as τ → 0+,

e(x, y;µ) = −
1∫
0

dτ

τ

H (τ − µ)√
1− τ2

Pp(τ)(x)Pp(τ)(y) , µ ∈ (0, 1). (34)
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The representation (34) can be also rewritten as

e(x, y;µ) = −
1∫
µ

dτ

τ
√
1− τ2

Pp(τ)(x)Pp(τ)(y) , µ ∈ (0, 1).

Lemma 4.1. For all x, y ∈ (0, 1), the kernel e(x, y;µ) of the operator Eµ is di�erentiable with respect to
µ and

d e(x, y;µ)

dµ
=

Pp(µ)(x)Pp(µ)(y)

µ
√
1− µ2

, µ ∈ (0, 1).

Spectral properties of the Mehler operator are exploited in the study of its perturbations.

5. ESSENTIAL AND DISCRETE SPECTRA OF COMPACT
PERTURBATIONS OF THE MEHLER OPERATOR

In this section, we assume that the Mehler operator M in (4) is perturbed by a selfadjoint operator V in
(5), which is compact in L2(0, 1). Making use of the Weyl theorem on preserving of the essential spectrum
under compact perturbations, we arrive at the following assertion.

Lemma 5.1. The essential spectrum σe(M +V ) of the perturbed Mehler operator, where V is selfadjoint
and compact, coincides with the interval [0, 1].

For instance, the bound |v(x, y)| ⩽ C/| logα(x + y)| as (x, y) → (0, 0) with α > 1/2, provided that v is
continuous, is su�cient for the relation V ∈ S2 (of the Hilbert�Schmidt class).

With the aim to apply our results to the functional-di�erence equations (1), we consider the existence
problem for the discrete spectrum of M + V on the right of σe(M + V ).7 In order to obtain su�cient
conditions for σd(M + V ) to be nontrivial, we use the following simple argumentation. Due to the minimax
principle it is su�cient to submit a function u in L2(0, 1) such that

([M + V ]u, u) > 1 (35)

that reads in our case in the form

1∫
0

dx

1∫
0

dy

√
w0(x)w0(y)

π(x+ y)
u(y)u(x) > 1 .

We can take u = h/∥h∥ with h(x) = 1√
w0(x)

; then inequality (35) is valid provided that

2 log 2

π
>

1∫
0

dx

w0(x)
. (36)

This su�cient condition has been applied in [13] and works for some parameters of the problem under
consideration.

We can also consider an alternative condition which is not so simple as the previous one, but we expect
that it is e�cient for a wider class of potentials. The idea is as follows. We look for a sequence of test
functions un such that, for some of them, the inequality ([M + V ]un, un) > 1 holds true. A natural choice
is to take a normalized sequence in order to have Mun ≈ un and (Mun, un) ≈ 1 for su�ciently large n and
such that ([(M − I) + V ]un, un) =: δn > 0.

To this end, consider a singular (Weyl) sequence un ∈ L2(0, 1), n = 1, 2, . . . corresponding to the point
µ = 1 of the essential spectrum of the Mehler operator M , for example, let ∥un∥ = 1 and let un be an
orthogonal sequence, i.e., un ⇀ 0 (weakly), and ley ∥Mun − un∥ → 0 as n→ ∞. We obviously obtain

([M + V ]un, un) = ∥un∥2 + ([M + V − I]un, un) = 1 + ([M + V − I]un, un)

and conclude from (35) that the condition that the inequality

([(M − I) + V ]un, un) > 0, (37)

7In particular, M + V ⩾ 0 in many practical cases.
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holds for some n is a su�cient condition for the existence of a discrete spectrum for µ > 1.
We further reduce condition (37) by using the spectral resolution Et := E(−∞, t) for the Mehler operator

discussed in the previous section. Consider a sequence εn > 0 (εk > εk+1) and εn → 0 (e.g., εn = 1/n).
Introduce

H := L2(0, 1), δn = (1− εn, 1− εn+1), |δn| = εn − εn+1.

We choose an orthonormal sequence un such that un ∈ E(δn)H, noticing that dimE(δn)H = ∞. From the
Spectral Theorem we see that

([M − I]un, un) =

∞∫
−∞

(t− 1)d(Etun, un) =

∫
δn

(t− 1)d(Etun, un),

because Etun = ∥E(δn)h∥−1EtE(δn)h = 0 when h ∈ H and δn ∩ (−∞, t) = ∅, recalling also that σ(M) =
[0, 1]. We have

([V + (M − I)]un, un) =
1

π

1∫
0

dxun(x)

1∫
0

dy
v(x, y)

y + x
un(y) +

∫
δn

(t− 1)d(Etun, un)

⩾
1

π

1∫
0

dxun(x)

1∫
0

dy
v(x, y)

y + x
un(y) − εn(E(δn)un, un)

noting that 1− t ⩽ εn for t ∈ [1− εn, 1− εn+1] and

−
∫
δn

(t− 1)d(Etun, un) ⩽ εn(E(δn)un, un) .

We take into account that E(δn)un = un and assume for some n that

1

π

1∫
0

dxun(x)

1∫
0

dy

(
v(x, y)un(y)

y + x
− εn π un(x)

)
> 0. (38)

Introduce the notation
ωn(x, y) = v(x, y)un(y)− εn π(x+ y)un(x) .

Exploiting (35),(37) and (38), we arrive at the following assertion.

Theorem 5.1. Let V be selfadjoint and compact in H = L2(0, 1) (see (5)) and let, for some n, the
inequality

1

π

1∫
0

dx

1∫
0

dy
ωn(x, y)

y + x
un(x) > 0 (39)

hold. Then the perturbed Mehler operator M+V has a nontrivial discrete spectrum on the right from σe(M+
V ) = [0, 1].

It is worth commenting on the su�cient condition (39). We can take un(x) to be real, un(x) = un(x).
Then condition (39) can be written in the symmetric form

1

π

1∫
0

dx

1∫
0

dy
Ωn(x, y)

y + x
> 0 (40)

with

Ωn(x, y) = v(x, y)un(y)un(x)− εn π(x+ y)
u2n(x) + u2n(y)

2
.

We recall that, for the functional-di�erence equations, one has v(x, y) =
√
w0(x)w0(y)− 1, and, therefore,

Ωn(x, y) = (
√
w0(x)w0(y)− 1)un(y)un(x)− εn π(x+ y)

u2n(x) + u2n(y)

2
.
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Condition (39) (and (40)) is written in terms of the perturbation V and some objects (the Weyl sequence
for µ = 1) dealing with the operator M . Having the spectral measure of M , one can construct this sequence
e�ciently. In practice, for any concrete v(x, y), condition (39) could be veri�ed, say, numerically. Condition
(39) is connected with the values of ωm(x, y)un(x) on the square [0, 1]× [0, 1]. From (40), we then obtain a
su�cient condition for the nonemptiness of the discrete component, also in the form

1

π

1∫
0

dx

1∫
0

dy

√
w0(x)w0(y)− 1

y + x
un(y)un(x) > εn (41)

for some n = 1, 2, . . . , where un is a Weyl sequence for µ = 1, ∥un∥ = 1, and εn → 0 as n→ ∞.
However, to make conditions (39),(40) and (41) more constructive, it is useful to write out un explicitly,

which is not di�cult because the spectral resolution Et is known. The sequence

un = wn/∥wn∥

is normalized and orthogonal, since wn = E(δn)h with h ∈ H,

wn(x) =
1

π

1∫
0

dy (e(x, y; 1− εn+1)− e(x, y; 1− εn))h(y)

=
1

π

1∫
0

dy h(y)

∞∫
0

dp

(
H

(
1

cosh(πp)
− [1− εn]

)
−H

(
1

cosh(πp)
− [1− εn+1]

))
Pp(x)Pp(y)

=
1

π

1∫
0

dy h(y)

pn∫
pn+1

dpPp(x)Pp(y),

where

pn =
1

π
log

(
1

[1− εn]
+

√
1

[1− εn]2
− 1

)
= O(

√
εn) .

We change the order of integration in the expression for wn and obtain

wn(x) =
1

π

pn∫
pn+1

dpPp(x)h
∗(p), (42)

where h∗(τ) is the mMF-transform (17) of h ∈ H. Note that h can be chosen in an optimal way and un
is an orthonormal sequence by construction. We can always choose h ∈ H in such a way that h∗ > 0. The
function Pp(x) is positive for p ∈ [pn+1, pn] for su�ciently small εn, because P−1/2(1/x) > 0. As a result,
if it is necessary for the analysis, we can always assume that un(x) ⩾ 0 (see (42)) for su�ciently large n,
because h∗ can be taken positive and such that h(x) =

∫∞
0

Pp(x)h
∗(p)dp , h ∈ L2(0, 1).

5.1. Finiteness of the discrete component

We turn to the discussion of �niteness of the discrete component. In this section, we follow the line of the
paper [23] and make use of the Birman�Schwinger principle which takes the form

Theorem 5.2. Let M0 be a bounded and selfadjoint operator such that M0 ⩽ 1. Let V0 ⩾ 0 and V0 ∈ S∞
(i.e., V0 is compact). Then the total number (i.e., counted according to the multiplicity) of the eigenvalues of
K0 =M0 + V0 that are greater than µ (µ ⩾ 1) is equal to the total number of the eigenvalues of the operator

B(µ) = V
1/2
0 [µ−M0]

−1V
1/2
0 .

Making use of the representation (22) for the resolvent, one has

B(µ) = µ−1(V + V 1/2AµV
1/2) . (43)

Introduce the operator Q,
[Qf ](t) =< log t > f(t),

with < log t >= log(2/t), f ∈ L2(0, 1). It is easy to de�ne Qβ , for β ∈ R in a natural way.
In accordance with (23), the operator A1 is an integral operator with the kernel a(x, y; 1) admitting the

bound (28) and (29) with µ = 1. We arrive at the following assertion.
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Lemma 5.2. Let α > 3/2. Then

lim
µ→1

∥Q−α (Aµ −A1)Q
−α∥2 = 0 (44)

in the Hilbert�Schmidt norm.

Indeed, we should prove that

lim
µ→1

∫ 1

0

∫ 1

0

< log t >−2α |a(x, t, µ)− a(x, t, 1)|2 < log x >−2α dxdt = 0 .

Due to the Lebesgue dominated convergence theorem, one should represent an integrable majorant for the
integrand. In view of the bounds (29) and(28), we �nd such a function in the form

C < log t >−2α < log t >2< log x >2

t x
< log x >−2α

which is obviously in L1((0, 1)× (0, 1)) for 2α > 3. Lemma 5.2 is followed by the next assertion.

Lemma 5.3. Let α > 3/2, let the operator V ⩾ 0, V ∈ S2 be of the Hilbert�Schmidt class, and let
QαV Qα ∈ S∞ be compact. Then the operator B(µ) in (43) has the limit

B(1) = V + V 1/2A1V
1/2 (45)

in the Hilbert�Schmidt norm ∥ · ∥2 as µ→ 1.

The proof follows from the sequence of equalities

∥B(µ)−B(1)∥22 = ∥V 1/2QαQ−α(Aµ −A1)Q
−αQαV 1/2∥22 = ∥QαV QαQ−α(Aµ −A1)Q

−α∥22,

where ∥A∥22 =< A,A >S2
, < A,B >S2

:= Tr(B∗A) = Tr(AB∗).

Let N(µ) be the total number of eigenvalues of the operator K = M + V located on the right from
µ, (µ ⩾ 1). From the Birman�Schwinger principle, one has N(µ) ⩽ ∥B(µ)∥22; then, by Lemma 5.3, we arrive
at the bound

N(1) ⩽ ∥B(1)∥22.

Then, using (45), we see that

∥B(1)∥2 ⩽ (∥V ∥2 + ∥QαV Qα∥∥Q−αA1Q
−α∥2).

Taking into account properties of a(x, t, 1), we introduce

G2
α :=

∫ 1

0

∫ 1

0

< log t >−2α |a(x, t, 1)|2 < log x >−2α dxdt .

This leads to the bound

N(1) ⩽ (∥V ∥2 + Gα∥QαV Qα∥)2 (46)

and to the following assertion.

Theorem 5.3. Let α > 3/2, let the operator V ⩾ 0, V ∈ S2 be in the Hilbert�Schmidt class, and let
QαV Qα ∈ S∞ be compact. Then the total number N(1) of eigenvalues of the operator K =M + V that are
greater than µ = 1 is �nite and satis�es the bound (46).

If, in addition, the su�cient conditions (36) or (39), (40) are satis�ed, then the discrete spectrum of the
operator K on the right of µ = 1 is nonempty.

The result is analogous to that obtained in [23]. Note that, if the condition α ⩽ 3/2 holds instead of
α > 3/2 in Theorem 5.3, then the discrete component is in�nite.
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6. APPLICATIONS TO THE FUNCTIONAL-DIFFERENCE EQUATIONS AND EXAMPLES

Now we turn to nontrivial solutions of the functional-di�erence equation (1) for the potentialsW belonging
to W. In this way, we exploit the results of the last two sections. Any nontrivial solution ρ of the equation
Kρ = µρ corresponds to a solution of the functional-di�erence equation (1) for Λ = µ−1. The functional-
di�erence equation (1) has a set of characteristic values Λm = µ−1

m in (14), where µm ∈ σd(M +V ) implying
that the discrete spectrum is nonempty. We can specify the corresponding solutions of (1) by means of the
eigenfunctions ρm of M + V , satisfying the equation

(M + V )ρm = µmρm.

We have

Hm(ν) =
ρm(x)|x=1/ cosπν

cosπν
√
W (ν)

, Λm = µ−1
m (47)

so that Λm and Hm are characteristic values and eigenfunctions of equation (1), and Λm ∈ (0, 1). Recall that
Hm in (47) can be continued to the complex plane from the imaginary axis as a meromorphic function, as
was described above. From ρ ∈ L2(0, 1), one has

i∞∫
0

|dτ | |H(τ)|2W (τ)| sinπτ | < ∞ . (48)

Note that the eigenfunctions Hm belonging to M satisfy the bound |H(ν)| < Const | exp(−iν[π/2 + δ0])|,
ν → i∞, ν ∈ Π1+δ for δ0 ∈ (0, π/2), which implies (48).

The procedure of reconstruction of the meromorphic function Hm(ν) from M is as follows. Let one can
construct an integrable (and then continuous) solution Hm(ν) of the integral equation (12) on (i∞, i∞) for
some Λm, which exponentially decays at in�nity. This speci�es Hm(ν) on the imaginary axis, and then it
is continued to the strip Πδ for some positive δ. The integral representation (12) enables one to compute
values of Hm(ν) in the strip Π1+δ of its regularity. Indeed, having Hm(ν) in hand in some vicinity Πδ of the
imaginary axis, we see that the integral on the right-hand side of (12) speci�es a holomorphic function in the
strip Π1+δ, because the denominator has no zeroes in this strip, whereas the integral converges exponentially
and uniformly with respect to ν. Then Hm(ν) is continued as a meromorphic function to the complex plane
C by means of the functional-di�erence equation (1).

It is important to have not only the bound (48) for Hm(ν) in (47) corresponding to Λm =: sin τm with
τm ∈ (0, π/2) but also to compute the asymptotics as ν → ±i∞ in the strip Π1+δ. As is known, the
asymptotics of a function at in�nity on the complex plane can be computed by means of localization of the
singularities of its Fourier transform. Exploiting this simple observation for Hm and studying singularities
of the Fourier transform ( see Appendix), after some tedious work, we can conclude that

Hm(ν) = O(exp(iν[π − τm])|, ν → i∞, ν ∈ Π1+δ .

Now we can describe the so-called characteristic set Cd∪Ce of Λ for equation (1). The set of the character-
istic values Λm is nonempty and �nite if and only if the same holds for σd(M+V ). The corresponding theorem
in the previous section gives a su�cient condition for this fact.8 We say, by de�nition, that Λm = 1/µm be-
longs to the set Cd of characteristic values of equation (1) if µm = (sin τm)−1 ∈ σd(M + V ). It is obvious
that Cd ⊂ [0, 1]. In the same way, Λ ∈ Ce = [1,∞), i.e., by de�nition, its belonging to the essential char-
acteristic set means that µ = Λ−1 ∈ σe(M + V ) = [0, 1], where M + V is the perturbation of the Mehler
operator attributed to equation (1) with the potential W ∈ W. In this case, |H(ν)| < Const | exp(iνπ/2)|,
ν → i∞, ν ∈ Π1+δ.

By the results of the previous two sections, the following assertion holds.

Proposition 6.1. The set Cd of characteristic values of equation (1) is nonempty if the potential w0(x) =
W |x=1/ cosπν in v(x, y) =

√
w0(x)w0(y) − 1 satis�es the su�cient conditions (36) (or (40), (41)). The

corresponding solutions satisfy the bound (48) and belong to the class M.

The �niteness of the characteristic set Cd is described by Theorem 5.3.

8Solutions of (1) that correspond to Λ = µ−1 with µ ∈ σe(M + V ), i.e., speci�ed by the essential spectrum, can also be
studied.
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6.1. Examples

We turn to some examples of potentials that arise in applications, see, e.g., [13, 12]. We begin with the
potential W (it) = i cot(iΦt) from the Sec. 2. We make use of a simpler su�cient condition (that follows
directly from (36) and is also discussed in Sec. 3.2 of [13]) for the existence of the discrete spectrum

π

∞∫
0

dt
sinh(iπt)

cosh2(iπt)W (it)
<

log 2

π
(49)

that is satis�ed for 0 < Φ < π/2, where Φ is also assumed to be small enough. In view of the bounds
w0(x) =W (it)|x=1/ cosh(πt) = 1+O(x2Φ/π) as x→ 0, it can be shown that the discrete spectrum is �nite in
this problem ( see Theorem 5.3). This fact is also known from the literature (see, e.g., [14]).

The second example deals with the potential W (it) = i
2

(
cot(iΦt) + cot(iΦ̄t)

)
, where 0 < Φ < π/2 and

Φ̄ = π−Φ. This potential arises in the study of eigenfunctions for the Laplacian with δ′-potential supported
on the common boundary of two angles in R2

+, [13]. As in the previous example, the discrete spectrum of
the corresponding perturbed Mehler operator M + V exists and is shown to be �nite. This means that the
number of characteristic values of the functional-di�erence equation (1) is �nite in accordance with Theorem
5.3.

In the next example, the potential W takes the form

W (it) =
t

2

(
Pit−1/2(cos θ)

∂θPit−1/2(cos θ)
−

Pit−1/2(− cos θ)

∂θPit−1/2(− cos θ)

)
,

Such a kind of potentials occurs in the study of the discrete spectrum of Laplacians in cone-shaped domains
[12] in the framework of incomplete separation of variables. In this case, the potential has the asymptotics
W (it) = 1 +O(1/t) and

v(x, y) = O

(
1

log(x)

)
+O

(
1

log(y)

)
, (x, y) → (0, 0).

The set of characteristic values is in�nite for this problem (the condition α > 3/2 in Theorem 5.3 fails to
hold), and they accumulate at Λ = 1. These results about the discrete spectrum are known for problems in
the cone-shaped domains [10], [12] from which this potential gives rise.

Remark that the potentials in our examples belong to the class W. We expect that other potentials in this
class can also be attributed to various applications of the functional-di�erence equation (1) in di�raction or
quantum scattering theory.

7. CONCLUSION

In this paper, we studied some questions dealing with spectral properties of the functional-di�erence
equation of the second order with meromorphic potential of a certain class. We reduced it to an integral
equation with a characteristic parameter. The integral operator in the equation is an operator which is
considered as a compact perturbation of the Mehler operator. The latter is an explicitly solvable model, so
that some of its spectral properties are studied. The corresponding results are given in an explicit form and
are actually based on the well-known Mehler formulas of 1881.

We then discussed the existence of the discrete spectrum of perturbations of the Mehler operator. In this
way, we exploited some information about the spectral properties of the Mehler operator, in particular, about
its resolvent and spectral measure. The problem of �niteness of the discrete spectrum is studied by means
of the Birman�Schwinger principle. This problem is directly connected with the behavior of the potential
W (it) as t → ∞, i.e., with the rate of decay of |W (it) − 1|. The results obtained here are then applied to
some examples that occur in applications.

A further development of the approach might deal with new applications of the functional-di�erence
equations in di�raction theory or in quantum scattering.
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8. APPENDIX. DUAL INTEGRAL EQUATION TO (12)

In this section, we consider a singular integral equation that is equivalent to equation (12). Together with
equation (12) derived from the FD equation (1) and playing a principal role in the study, we consider its
natural counterpart. Namely, a singular integral equation will be derived herein. Making use of the Fourier
transform along the imaginary axis

χ(ζ) =

∫
iR

eiζνh(ν)dν, h(ν) = −v.p.
2π

∫
iR

e−iζν χ(ζ)dζ

for (1), we have

sin ζ χ(ζ)− Λ

∫
iR

eiζν sign(iν)h(ν) dν + Λ

∫
iR

eiζν [W (ν) + sign(iν) ]h(ν) dν = 0.

We take into account that
W (ν) + sign(iν) = O(exp {±iq∗ν})

for q∗ > 0 as ν → ±i∞ along the imaginary axis. Exploit the formula∫
iR

eiζν sign(iν) dν = (−2i)P

(
1

ζ

)

in the sense of distributions, where P (1/ζ) is the Cauchy principle value. We arrive at

sin ζ χ(ζ)− Λ
v.p.

iπ

∫
iR

χ(τ)

τ − ζ
dτ − Λ

2π

∫
iR

Qa(ζ − τ)χ(τ) dτ = 0, (50)

where ζ ∈ iR,

Q(ζ) =

∫
iR

eiζν [W (ν) + sign(iν) ] dν ,

Qa(ζ) vanishes as ζ → ±i∞. We also have ∥χ(ζ)∥ < C exp(−α0|ζ|), α0 > 1 as ℑζ → ∞, since h is
holomorphic in the strip Π(−1− δ, 1 + δ).

Equation (50) is a classical singular integral equation that can be used for further studies. This equation
can be regularized from the left by using the singular operator

Rlχ0(ζ) := sin ζ χ0(ζ) + Λ
v.p.

iπ

∫
iR

χ0(τ)

τ − ζ
dτ .

REFERENCES

[1] B. Behrndt, P. Exner, and V. Lotoreichik, �Schr�odinger Operators with δ- and δ′-Interactions on Lipschitz
Surfaces and Chromatic Numbers of Associated Partitions�, Reviews in Mathematical Physics, 26:8 (2013).

[2] B. Behrndt, P. Exner, and V.Lotoreichik, �Schr�odinger Operators with δ-Interactions Supported on Conical
Surfaces�, J. Phys. A Math. Theor, 47:35 (2014).

[3] J.-M. L. Bernard, M�ethode analytique et transform�ees fonctionnelles pour la di�raction d'ondes par une singu-
larit�e conique: �equation int�egrale de noyau non oscillant pour le cas d'imp�edance constante, Rapport CEA-R-
5764. Editions Dist-Saclay, an extended version in Advanced Theory of Di�raction by a Semi-in�nite Impedance
Cone, (Alpha Science Ser., Wave Phenom., Alpha Science, Oxford, UK, 2014.

[4] M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Spaces, Dordrecht,
Holland, 1987.

[5] A. A. Fedotov and F. Sandomirskiy, �An Exact Renormalization Formula for the Maryland Model�, Commun.
Math. Phys, 334 (2015), 1083�99.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 29 No. 3 2022



FUNCTIONAL-DIFFERENCE EQUATIONS 397

[6] V. A. Fock, �On Expansion of an Arbitrary Function as an Integral of the Legendre Functions with Complex
Index�, Doklady AN USSR, 39 (1943), 279�283.

[7] I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products, 4th edn, Academic Press, Orlando,
1980.

[8] A. Erd�elyi et al., Higher Transcendental Functions, Mac-Grow Hill Book Company, New-York, Toronto, London,
1953.

[9] M. Khalile and K. Pankrashkin, �Eigenvalues of Robin Laplacians in In�nite Sectors�, Mathematische
Nachrichten, 291 (2018), 928�65.

[10] K. Pankrashkin, �On the Discrete Spectrum of Robin Laplacian in Conical Domains�,Math. Model. Nat. Phenom,
11 (2016), 100�110.

[11] N. N. Lebedev, �Parceval Theorem for the Mehler-Fock Transform�, Doklady AN USSR, LXVIII:3 (1949),
445�48.

[12] M. A. Lyalinov, �Functional Di�erence Equations and Eigenfunctions of a Schr�odinger Operator with δ′-
Interaction on a Circular Conical Surface�, Proc. R. Soc, A 476 (2020).

[13] M. A. Lyalinov, �Eigenoscillations in an Angular Domain and Spectral Properties of Functional Equations�,
Eur. J. Appl. Math, 33 (2022), 538�559.

[14] M. A. Lyalinov, �A Comment on Eigenfunctions and Eigenvalues of the Laplace Operator in an Angle with
Robin Boundary Conditions�, J. Math. Sci., 252 (2021), 646�653.

[15] M. A. Lyalinov and N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions,
Mario Boella Series on Electromagnetism in Information & Communication, Edison, NJ: SciTech-IET, 2012.

[16] R. Jost, �Mathematical Analysis of a Simple Model for the Stripping Reaction�, Z. angew. Math. Phys, 6 (1955),
316�326.

[17] S. Albeverio, �Analytische L�osung eines idealisierten Stripping- oder Beugungsproblems�, Helvetica Physica
Acta, 40 (1967), 135�184.

[18] M. Gaudin and B. Derrida, �Solution exacte d'un probl'eme mod'ele a trois corps. 'Etat li'e�, Journal de Physique,
36:12 (1975), 1183�1197.

[19] I. H. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972.

[20] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Press, 1937.

[21] G. G. Mehler, � �Uber eine mit den Kugel und Cylinderfunctionen verwandte Function und ihre Anwendung in
der Theorie der Elektricit�atsvertheilung�, Math. Annalen, 18 (1881), 161�194.

[22] D. R. Yafaev, �A Commutator Method for the Diagonalizability of Hankel Operators�, Funct. Anal. Appl., 44:4
(2010), 295�306.

[23] D. R. Yafaev, �Spectral and Scattering Theory for Perturbations of the Carleman Operator�, St. Petersburg
Math. J., 25:2 (2013), 399�422.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 29 No. 3 2022


