
Asymptotic Analysis of Free Vibrations
of Thin Cylindrical Shells

Irina M. Landman

Eliza M. Haseganu

Department of Mechanical Engineering
Concordia University

1455 de Maisonneuve Blvd. West
Montreal QC H3G 1M2, Canada

Email: landman@me.concordia.ca
hasegan@vax2.concordia.ca

Andrei L. Smirnov

Department of Theoretical and Applied Mechanics
St. Petersburg State University

2 Bibliotechnaya Sq.
St. Petersburg, 198904, Russia

E-mail: smirnov@bals.usr.pu.ru

Abstract: An algorithm for the solution of boundary
value problems involving vibrations of thin cylindrical
shells by means of symbolic computation is presented.
The algorithm is based on the method of asymptotic
integration of the shell equations. A linear shell theory of
the Kirchhoff - Love type is used. The equations
describing the vibrations of the shell contain several
parameters, the main of which is the small parameter of
the shell thickness. Formal asymptotic solutions in
different domains of the space of the parameters are
obtained by constructing the convex hull of points set.
The constructed solutions are used for studying the free
vibration spectra of the shells.

Résumé: Un algorithme de résolution des problèmes aux
limites par des méthodes de calcul symbolique est
présenté pour le cas des vibrations de coques minces.
L’algorithme est basée sur la méthode d’intégration
assymptotique de l’équations des coques.  Une théorie
linéaire du type Kirchhoff - Love est utilisée. Les
vibrations des coques sont régies par plusieurs
paramètres, dont le principal est le petit paramètre
d’épaisseur de coque. Des solutions assymptotiques
formelles dans les différent domaines de l’espace des
paramètres sont obtenues par la construction de
l’enveloppe convexe de l’ensemble des points. Les
solutions construites sont utilisées pour l’analyse
spectrales des vibrations libre des coques.

Introduction: The vibrations of thin cylindrical shells
are analyzed in this paper by applying the method of
asymptotic integration developed by Goldenveizer,
Lidsky and Tovstik [1]. A detailed review of their work as
well as a reference list may be found in [1, 2, 3, 4]. The
aim of this study is to develop an algorithm permitting
symbolic integration of the equations governing the free
vibrations of the shells, for any range of values of the
parameters that these equations contain. The study is
limited to the cases for which the asymptotic
representation of the solution is the same in the entire
domain of integration, and solutions are linearly
independent (no turning points, no multiple roots).
Axisymmetric as well as non-axisymmetric vibrations are
considered. Some preliminary results of this work have
been reported in [5].

Formulation of the Problem: A thin cylindrical shell
having the thickness t, the length L and the radius R is
considered. The system of orthogonal coordinates s, ϕ
that defines the position of a point on the neutral surface
of the shell is employed, where s is the length of the
generatrix, 0 ≤ s ≤ L, and ϕ is the longitudinal angle, 0 ≤
ϕ ≤ 2π. The shell is limited by two parallels s = 0 and s =
L.  The cylindrical shell is considered to be thin if its
relative thickness t/R is small. A local orthogonal system
of coordinates e1, e2, n is also introduced, where e1 and e2

ϕ



n is the normal unit vector (n = e1  × e2).  Let u, v, and w
be the components of the displacement U in the directions
e1, e2 and n.

Using the shell equations of 2D Kirchoff-Love
theory one obtains, after separating the variables in
circumferential and axial directions, the equations of
vibrations for thin cylindrical shells in the form
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where A is a square [8×8] matrix and Y(s) = {y1(s), …,
y8(s)} is a vector function of [8×1] size, µ is the parameter
of the shell thickness, m is the number of waves in
circumferential direction and λ is the frequency
parameter. In this study the parameter µ, which is

proportional to Rt , is considered as the main small

parameter. The boundary conditions are imposed as

                    210 ,i,)s( iii ==ΥΒ                           (2)

where s1 = 0 and s2 = L, and Bi are matrices of the size
[4×8].

When employing the Kirchoff-Love theory it is
most convenient to use the following variables: Y = (u, v,
w, T1, S21, N1, M1, γ1), where T1, S21 are the stress
resultants, N1 is the transverse shear resultant, M1 is the
moment resultant, and γ1 is the angle of rotation of the
normal [4]. For such variables, boundary conditions of the
following form are considered: u = 0 or T1 = 0, v = 0 or
S21 = 0, w = 0 or N1 = 0, γ1 = 0 or M1 = 0, at s = 0 or s = L.

Sometimes it is more convenient to express the
resultants and the angle of rotation as functions of the
displacements and get the system of equations for U = (u,
v, w)

( ) ( ) ,Um,,ULm,,UL 04 =++ λµµµ µ                  (3)

where Lµ and L are linear differential operators of the 8th
order and of the fourth order, respectively. In this case the
boundary conditions must be formulated in terms of u, v,
w and their derivatives.

To solve the boundary value problem (1) - (2)
the method of asymptotic integration described in [2, 3, 4]
is applied. For this, one needs to construct the formal
asymptotic solution for equation (1) and then impose that
boundary conditions (2) be satisfied.

The solution of equation (1) is sought in the form
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where Ci are arbitrary constants, Yi
k is the matrix of the

amplitude vectors, and κi depends on the order of pi with
respect to µ. For example, if  pi ~ µ -1 then   κi = 1.

Substituting solution (4) into equation (1) leads
to the characteristic equation for pi

( ) ,0p,,m =− ΙλµΑ                               (5)

where I is the identity matrix. In this study only the cases
when all pi are simple roots of equation (5) are
considered, i.e. when pi ≠ pj for all i ≠ j. In these cases all
solutions are linearly independent, and their linear
combination provides the general solution of the initial
equation.

For different relations between the parameters
solutions (4) have different forms. To construct formal
asymptotic solutions for different values of the parameters
µ, λ and m, symbolic computation is used.

The order of the function |p| in µ is called the
index of variation of the solution. The solution is
exponentially increasing away from the edge s = 0 if  ℜpi

> 0. Such integral is called the integral of the edge effect
near end s = L. The solution is exponentially decreasing
away from the edge s = 0 if ℜpi < 0. Such integral is
called the edge effect integral near the end s = 0. The
solution is oscillating if ℜpi = 0  and ℑpi ≠ 0.

If pi ≡ 0 the solution is called slowly varying. In
solving the boundary value problem with an error of the

order 
dce µµ− , where c and d are some positive constants,

one may take the value of the edge effect integrals to be
equal to zero at the other end.

After constructing the formal asymptotic
solutions, the boundary conditions should be imposed to
find the frequency parameter λ. Substituting (4) into (2)
one obtains a system of linear equations in Ci that has
nonzero solutions if its determinant vanishes

        ( ) .0, =µλ∆                                               (6)
This is an equation of the eighth degree that can

be solved numerically. In some cases this equation may
be simplified.

Concomitant with the problem for µ ≠ 0 (per-
turbed problem) the problem with µ = 0 (imperturbed
problem) is considered. If all pi are different from 0 and
not pure imaginary, then

limµ→0∆(λ,µ) ≠ ∆(λ,0),                               (7)
and

,K++= 10 µλλλ                                 (8)

where λ0 is the frequency for the imperturbed system, i.e.
∆(λ0,0) = 0.

Of special interest are the cases of regular
degeneracy [6]. Let the perturbed system have the order n,
and the imperturbed system have the order m. Let the
perturbed system have l = n – m additional roots, such that
l1 of them have negative real parts and l2 have positive
real parts, where l1 is the number of additional boundary
conditions on the left edge and l2 is the number of



case the solution may be constructed using an iterative
method.

The existence of pure imaginary roots makes the
problem more difficult. As a rule in this case, the function
∆(λ,µ) has a limit point at µ = 0 and limµ→0∆(λ,µ) ≠
∆(λ,0).

Formal Asymptotic Solutions for the Equations
of Cylindrical Shells: Let consider the equations
describing the vibrations of thin cylindrical shells in terms
of displacements [1]:
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Here 
2

2
4

12R

t
=µ is the main small parameter,

E
R22ρω

λ = is the frequency parameter, E is Young's

modulus, ν is Poisson's ratio, ρ is the shell mass density,
and ω is the natural frequency.

Separating the variables in s and ϕ in the
expressions of the displacements

                        u (s, ϕ) = U(s) sin mϕ,
                        v (s, ϕ) = V(s) cos mϕ,                          (10)
                        w (s, ϕ) = W(s) sin mϕ

and substituting them in (9) the following system of
ordinary differential equations is obtained

( ) ,
s

W
s
V

mUUm
s

U
0

2
1

1
2

1 22
2

2

=
∂

∂
+

∂
∂+

+−−
−

+
∂
∂

− ν
ν

λν
ν

( )

( ) ( ) ,Wm
s

W
mWV

Vm
s

V
Vm

s

V

s

U
m

021

12
2

1

2

1

3
2

2
42

2
2

2
42

2

2

=









+

∂

∂
−−++−

−









+

∂

∂
−−++

∂

∂−
−

∂
∂+

−

νµλν

νµ
νν

( ) ( )

.Wm
s

W
m

s

W

WWVm
s

V
mV

s
U

02

12

4
2

2
2

4

4
4

23
2

2
4

=









+

∂
∂

+
∂
∂

+−−+









+

∂

∂
−−++

∂
∂

−

µ

λννµν

                                                                                      (11)
To determine the structure of the asymptotic expansions,
the solution is sought in the form

        U=U0 e ps, V=V0 e ps , W=W0 e ps.                          (12)

Substituting (12) in (11) gives the system of equations
with respect to U0, V0 ,and W0
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The system (13) has nontrivial solutions if its determinant
is equal to zero. So, one has the eighth order equation
from which all p may be determined.

Axisymmetric Vibrations: For the case of axi-
symmetric vibrations (m = 0), system (13) becomes
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The system of equations splits. The set of the first and
third equations in (14) defines the transverse-axial
vibrations, and the second equation defines the torsional
vibrations. Only the case of transverse-axial vibrations is
considered.

The characteristic equations is
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or
P (p; h, λ) = λ - λ2 + λ2 ν2 + p2 - λ p2 +

h4 λp4  - h4λν2p4 + h4p6 = 0,                         (16)
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Now, one must find the roots pi of equation (16)
for different values of the small parameter h«1. Equation
(16) may be written in the form
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where ai are coefficients not depending on p, h and λ, and
i is the number of the term in (16). The points Mi = {ki, αi,
βi} in the space p, h, λ are called representative points.
Through M*

i = {αi, Mi} we denote a point associated with
the coefficient αi, that is later called the weight of the
point. For equation (16) we have M*

i = {{1,{0, 0, 1}}, {{-
1+ν2, {0, 0, 2}}, {{1, {2, 0, 0}}, {{-1, {2, 0, 1}}, {{1-ν2,
{4, 4, 1}}, {{1, {6, 4, 0}}.

If the order of the parameter λ is given, i.e. λ =
λ0 hκ, where λ0 ~ 1 and κ is known, equation (16)
contains only one small parameter, h. To obtain the roots
of such an equation Newton's diagram method may be
used [3]. In this case the representative points lie in the
plane (p, h) and have the form Mi = {ki, αI + βiκ}. The
segments of the lower part of the convex hull of the set of
points Mi, i. e. the segments that are visible from the point
(p, h) = (0, -∞), define the terms of equation (16) that
should be kept to determine the main terms of the roots pi.

Three cases are considered here, when κ is equal
to 1, 0 and -1 respectively. For the the case κ = 1
Newton's diagram is plotted in Figure 1.

1 2 3 4 5 6
p

1

2

3

4

5

h

M1

M2

M3

M4

M5

M6

      Figure 1.  Newton's diagram for κ = 1, m = 0.

For this case the representative points for
equation (16) are    M1 = (0, 1),  M2 = (0, 2),  M3 = (2, 0),
M4 = (2,1),  M5 = (4, 5), M6 = (6, 4). Newton's diagram
consists of 2 segments. The first segment is determined by
points  M1 = (0, 1),  and M3 = (2, 0), and the second
segment by points M3 and M6. Therefore, equation (16)
has 2 groups of roots, the first of which is defined by the
equation

λ + p2 = 0,                                      (18)

while the second one may be found from the equation

p2 + h4 p6 = 0.                                  (19)

Hence, the roots are

ip , λ±=21                                    (20)
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The orders of the variables p may be determined as the
inclination angles between the segments and axis p.

One also can determine the relative orders of the
eigenvectors U0

i, W0
i. For this, one keeps only the main

terms in equations (14) and the expressions for the roots pi

are substituted into either the first or the third equation.
The only limitation for the choice is that both coefficients
of U0

i and W0
i are nonzero. The main terms for U0

i and
W0

i are given in Table 1.

Table 1:  Roots and eigenvectors for m = 0, κ = 1.

1 2 3 4 5 6

p iλ iλ−
h
1ε

h
2ε

h
3ε

h
4ε

U0 p1 p2 ν ν ν ν

W0 -νλ -νλ p3 p4 p5 p6

For the second case, κ = 0, the representative
points for equation (16) are M1 = (0, 1),  M2 = (0, 1),  M3 =
(2, 0),  M4 = (2,0),  M5 = (4, 4), M6 = (6, 4). In this case
Newton's diagram consists of 2 segments (Figure 2).
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      Figure 2.  Newton's diagram for κ = 0, m = 0.

The first segment is determined by M1, M2, M3

and M4 and the second one by points M3, M4 and M6.
Therefore, equation (16) has 2 groups of roots, the first
one being defined by equation

,pp 022222 =−++− λνλλλ                       (22)



and the second one by equation
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Hence
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For this case the roots and the eigenvectors are shown in
Table2.

Table 2: Roots and eigenvectors for m = 0, κ = 0.

1 2 3 4 5 6

p F(λ)  -F(λ) ( )
h

1 4
1

−λ ( )
h

1 4
1

−
−

λ ( )
h

i1 4
1

−λ ( )
h

i1 4
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λ

U0 p1 p2 ν ν ν ν

W0

1−λ
λν

1−λ
λν p3 p4 p5 p6

Note that the above results for κ = 0 are valid
when λ is not too close to 1, otherwise the first negligible
term for p has the same order as the main term [3].
Finally, for the third case, κ = –1, and the representative
points are M1 = (0, -1),  M2 = (0, -2),  M3 = (2, 0),  M4 =
(2,-1),  M5 = (4, 3) and M6 = (6, 4) (Figure 3).
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Figure 3.  Newton's diagram for κ = – 1,  m = 0.

In this case Newton's diagram consists again of 2
segments. The first segment is determined by points M2

and M4, and the second one by points M4 and M6.
Therefore, equation (16) has 2 groups of roots, the first
one being defined by equation

,p 02222 =−+− λνλλ                            (26a)
and the second one defined by

.php 0642 =+− λ                             (26b)
For this case, the roots and the eigenvectors are given in
Table 3.

Table 3:  Roots and eigenvectors for m = 0, κ = – 1.

1 2 3 4 5 6

p ( ) i1 2 λν− ( ) i1 2 λν−−

h

4
1

λ
h

4
1

λ
−

h
i4

1
λ

h
i4

1
λ

−

U0 p1 p2 ν ν ν ν

W0 ν ν p3 p4 p5 p6

Note that for roots p1 and p2 the coefficient of U0

in the first equation in (14) is equal to zero, and to
determine U0 and W0 the third equation in (14) must be
used.

The representative points move in the plane p, h
as κ changes. The cases (called separative) when the
convex hull changes are of interest. These occur when one
of the interior points reaches the convex hull, or two or
more segments form a straight line.

By plotting the representative points in the 3D-
space (p, h, λ), the separative cases may be determined by
the 3D convex hull facets.  For equation (16) the 3D
convex hull is plotted in Figure 4.

M1

M2

M3

M4 M5

M6

Figure 4.  3D Convex hull for m = 0.

Since one assumes that parameter h is small,
only the facets that are visible from the point h = -∞ are
needed. In the case considered, the 3D convex hull
consists of 3 facets: 1: (M1 ,  M2 ,  M3 ,  M4 ); 2: (M3 ,  M4 ,
M6 ); 3: (M2 ,  M4 ,  M5 ,  M6 ). Imposing that the orders of
all terms forming a facet be equal to each other, one can
find the relations from which the orders of λ for
separative cases may be determined:



222 ~~~ pp λλλ
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644422 ~~~ phphp λλλ
So, if we assume that λ = λ0 h

κ, then for the first
and the second relations κ = 0, and for the third κ = – 4.

Therefore, the entire range of parameter λ is
divided into 3 domains where the 2D convex hulls are
essentially different. Each of these domains defined as
Domain I:  κ  > 0,  Domain II:  0 > κ  > – 4,  Domain III:
κ  < – 4, as well as the separative cases A: κ  = 0, and B:
κ = – 4 must be considered separately. Since the initial

equations are valid for λ « h-4, cases III and B have no
physical meaning. Case A is special, since in this case the
second term in the expansion for p is important [3]. So
here, only the solutions in Domains I, II and A are
considered. For any λ inside a domain the structure of the
convex hull and therefore the roots and the eigenvectors
are similar. Thus, one can obtain the values of the roots
and eigenvectors considering only one value of λ for each
domain. Using this, we substitute for the case A: κ = 0,
Domains I and  II κ = 1 and κ  = – 1 respectively.

Boundary Value Problem: The geometry of the point
set and its convex hull for Domain I is shown in Figure 1.
For this case the solution may be written as
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where pi, Ui and Wi are determined from Table 1.
Two types of boundary conditions are

considered: freely supported edges and clamped edges.

For low frequency vibrations (λ « 1, κ > 0) of a
cylindrical shell with freely supported edges, the
boundary conditions have the form

u' = w = w'' = 0 at s = 0 and s = L.                  (29)

Substituting solution (28) into boundary conditions (29)
one gets the characteristic equation from which the first
approximation for the frequency parameter λ may be
found
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(30)

The values of λ may me obtained numerically
from this equation. But one can also try to simplify this
determinant. First, the values of the third and fourth
integrals on the left edge and the values of the fifth and
the sixth integral on the right edge are neglected. Then,
after factorization, the determinant is obtained in the form

( ) ( ) ( ) 0114 822222 =+−
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So, one series for the natural frequency parameter is
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This frequency coincides with that for the
imperturbed (momentless) system.  In this case two
additional roots have negative real parts, and two have
positive parts. Since there are four additional boundary
conditions (two on each edge) this is a case of regular
degeneracy and the next corrections for λ may be
constructed with an iterative method. Note that relation
(32) is valid for λ « 1.

Similarly, for high frequency vibrations of a
cylindrical shell with freely supported edges (λ »1, – 4 <
κ < 0), the same equation (30) is used, but now pi, Ui and
Wi are determined from Table 3.

As usual, the values of the edge effect integrals
on the other edge are neglected. As a result, after
simplifications, D(λ)  has the following expression
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So, one obtains two series for the natural frequency
parameter
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Here, there are 4 pure imaginary roots among the
additional ones, and this is not a case of regular
degeneracy. Expressions (34) and (35) are valid for λ» 1.
For low frequency vibrations of a cylindrical shell  with
clamped edges (λ « 1, κ > 0) the boundary conditions
have the form



u = w = w' = 0  at  s = 0 and s = L.                 (36)

So, the following equation must be solved
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where pi, Ui and Wi are determined from Table 1. After
some transformations, only the main terms are kept,
leading to
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This equation has only the series of roots
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Again this is a case of regular degeneracy.
For the higher frequency vibrations  (λ » 1, – 4 <

κ  < 0) the determinant (37) must be used, but pi, Ui and
Wi should be determined from Table 3.

After some transformations, only the main terms
are kept, leading to
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This equation has two series of roots
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The second series has no analog for the imperturbed
(momentless) system. Again, this is a case of nonregular
degeneracy. Note that the above expressions are obtained
assuming λ »1.

Nonaxisymmetric Vibrations: The same approach
may be used to study the nonaxisymmetric vibrations of
cylindrical shells. Equation (13) now should be analyzed
for m ≠ 0. The system does not split in this case, and one
has to find the roots of the characteristic equation of the

( )
( ) ( ) ( )

( ) ( ) ( )
,

mpm,,pfp

m,,pfm,,pgmp

pmpmp

0

11

1
2

1
2

1
1

2

1

22242

2

222

=

−+−−−

−−
+

−

+
−−

−
+−

µλνµν

µλνµ
ν

ν
ν

λν
ν

                                                                                      (42)
where

( ) ( )( )324 2 mmpmm,,pf +−−+= νµµ ,
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This equation is represented in the form

( ) .mhpa,h;pP
i

lk
i

iiii∑= βα λλ                     (43)

The representative points have four coordinates
},,,{ iiiii lkM βα=  in the 4D space (p, h, λ, m). Similar

to the previous axisymmetric case one must construct a
convex hull in 4D, the facets of which determine the lines
that divide the (λ, m)-plane into domains with different
structures of the roots of the characteristic equation.

In this paper only the cases for which the order
of m is known are considered. This permits to reduce the
4D problem to the 3D one discussed in the previous
section.

Let consider the case, when m = m0 h
τ, τ = 0, i.e.

Mi = {ki, αi, βi}. Equation (42) for this case may be
written as

( ) ∑=
24

i

k
i

iii hpa,h;pP βα λλ ,

where the 24 representative points

}},,k{,a{M iiiii
* βα= ,         i = 1,… , 24, with their

weights ai are listed below

{-m2 (1 + m2),{0, 0, 1}},
{ - (1 + ν) ( -2 - 3 m2 + m2 ν),{0, 0, 2}},
{2 ( -1 + ν) (1 + ν)2,{0, 0, 3}},
{ ( -1 + m)2 m4 (1 + m)2,{0, 4, 0}},
{ m2 (1 + ν)( -2 + 3 m2 - 3 m4 + m2 ν+ m4 ν),
{0, 4, 1}},
{ -2 m2 (1 + m2) ( -1 + ν) (1 + ν)2,{0, 4, 2}},
{3 + 2 m2 + 2 ν,{2, 0, 1}},
{ ( -3 + ν) (1 + ν),{2, 0, 2}},
{-4 ( -1 + m)2 m2 (1 + m)2,{2, 4, 0}},
{ - (1 + ν)
×( -4 + 4 m2 - 9 m4 + 4 ν+ 3 m4 ν- 2 m2 ν2),{2, 4, 1}},
{ 4 (1 + m2 - ν) ( -1 + ν) (1 + ν)2,{2, 4,  2}},
{1,{4, 0, 0}}, { -1,{4, 0, 1}},
{ 2 (2 - 4 m2 + 3 m4 - 2 ν2 + m2 ν2),{4, 4, 0}},



{ (1 + ν) ( -4 - 9 m2 + 4 ν+ 3 m2 ν),{4, 4, 1}},
{ -2 ( -1 + ν) (1 + ν)2,{4, 4, 2}},
{m4 ( -1 + ν)2 (1 + ν)2,{4, 8, 0}},
{ -2 m2 ( -1 + ν)2 (1 + ν)3,{4, 8, 1}},
{ -4 m2,{6, 4, 0}},
{ - ( -3 + ν) (1 + ν),{6, 4, 1}},
{ 4 m2 ( -1 + ν) (1 + ν),{6, 8, 0}},
{ 4 ( -1 + ν)2 (1 + ν)2,{6, 8, 1}},
{1,{8, 4, 0}},{ -4 ( -1 + ν) (1 + ν),{8, 8, 0}}.

The convex hull for these points is plotted in Figure 5.
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            Figure 5.  3D Convex hull for m ~ 1.

The facets of the convex hull determine the
separative points κ (λ ~ hκ). In the case considered, the
3D convex hull consists of 4 facets: 1. (M1, M2, M3 M7,
M8, M12, M13); 2. (M12, M13, M23 ); 3. (M1, M4, M12 ); 4.
(M3, M8, M13, M16, M20, M23 ). Imposing that the orders of
all terms forming a facet be equal to each other, we find
the relations from which the orders of λ for separative
cases may be determined:

4422232 p~p~p~p~~~ λλλλλλ
8444 ph~p~p λ

44 p~~h λ                                    (44)
84644424223 ph~ph~ph~p~p~ λλλλλ

So, for the first and the second relations κ = 0,
for the third κ = 4, and for the fourth κ  = – 4. Note that
for  m = 1, the representative points  M4 and M9  are
absent since their weights ai = 0. For this specific case
there is no facet 3 and, therefore no separative point κ = 4.
This case is similar to m = 0.

The most interesting case is m ~ h-1/2. For such
waves numbers the natural frequency is the lowest [4].
The 3D convex hull for this case is plotted in Figure 6.

Here Mi = {{0,0,3},  {2,0,2}, {4,0,1}, {4,4,2}, {6,4,1},
{8,4,0}, {4,0,0}, {0,-2,1}, {0,-1,2}, {2,-1,1}, {0,0,0}},
where i = {2, 15, 26, 29, 35, 39, 25, 11, 13, 24, 3}.

Figure 6.  3D Convex hull for m ~  h -1/2.

The asymptotic expansions of the integral have
different structures in the four domains separated by the
separative points κ = 2, κ = 0, κ = – 1, κ = – 4.
 The steps of the subsequent analysis are the same
as in the case of axisymmetric vibrations: (i) construct all
solutions at the separative points and in the domains
between the separative points; (ii) find the relative orders
of the eigenvectors and substitute the solutions into the
imposed boundary conditions; and, (iii) solve the
characteristic equation numerically or analytically (if
possible) to obtain the natural frequency parameter.

Finally, one considers the general case of non-
axisymmetric vibrations of the shell, when the order of m
is not given. In this case the coefficients in the
characteristic equation (42) depend on three parameters:
the small parameter h (0 < h << 1), and two positive
parameters λ (λ > 0) and m (m > 0). The case m = 0
(axisymmetric vibrations) has been considered in the
section above. The analysis of the roots of the
characteristic equation for non-axisymmetric vibrations
involves the construction of the 4D convex hull in the
space (p,  h,  λ,  m).

One assumes that m = m0  hτ and λ = λ0  hκ,
where m0 ~ 1 and λ0 ~ 1.

The steps of the algorithm are the same as for the
3D case, but to construct the 4D convex hull the code
Qhull has been used.  Since only the cases when
parameter h is small are of interest, after constructing the
4D convex hull one should select only the facets on the
"lower" part of the convex hull, i.e. the facets that are
visible from the point (p, h, λ, m) = (0, -∞, 0, 0). Each
facet is determined by 4 or more than 4 vertices.
Assuming that the orders of the terms corresponding to
the vertices of each facet are equal to each other, one

M2

M15

M26

M29

M35

M39
M25

M11

M13

M24

M3



finds the orders of λ and m, i.e. the separative points in (κ,
τ) plane.
     After finding the separative points κi,τI,, one can
construct the separative lines in the plane (κ, τ). In order
to do so, the horizontal lines τ = τi through the separative
points (κi,τi) are represented. In the case of non-
axisymmetric vibrations, the separative points are
(κi,τi)={(0,0), (0,1), (4,0), (-4,2)}, so the horizontal lines
are τi = 0, 1, 2. These lines split the entire plane into zones
0 < τ < 1, 1 < τ < 2, 2 < τ. For any fixed κ inside one zone
the structures of the corresponding 3D convex hulls are
similar. So, one may choose an arbitrary point inside each
domain and obtain the relations between κ and τ which
determine the separative lines.

For the case under consideration, the domain 0 <
τ < 1 is analyzed. Setting τ = 1/2 arbitrarily, one can find
the facets of the 3D convex hull, which are determined by
the facets {{M11, M3, M25}, {M11, M25, M24, M26}, {M11,
M13, M15, M24, M26, M2}, {M25, M39, M26},  {M2, M26, M39,
M15, M35, M29}} (see Figure 6). Note that for any τ in the
domain (0, 1) the 3D convex hull has such a form.

This leads to the following relations:

(1) h(-4α)λ ~ h -4(-1+2α) ~ p4 ⇒ λ ~ h(4-8α+4α) ⇒β=4-4α
⇒ α = 1-β/4.

(2) h(-4α)λ ~ p4 ~ λp4 ⇒ λ ~ 1 ⇒ β = 0.
(3) h(-4α)λ ~ λp4 ~ λ3 ⇒ α = -β/2.
(4) p4 ~ h4p8 ~ λp4 ⇒ β = 0.
(5) λ3 ~ λp4 ~ h4p8 ~ h4λ2p4 ⇒ β = -4.

For the domain analyzed, these segments are
plotted in Figure 7.

                                     τ

                                       1

      -4                                 0                                        4  κ

Figure 7.  τ versus κ.

For any point (κ, τ) inside one domain the structures of
the corresponding 2D convex hulls are similar.

The other 2 domains are analyzed in the same
manner.  The final graph representing the domains and
separative lines is similar to that obtained in [2]. Since the
initial equations describing vibrations of shells are valid if
the frequency is not too high and the number of wave in
circumferential direction is not too large [2], the analysis
is limited to the cases – 4 < κ and  – 2 < τ  ≤ 0.

Conclusions: The geometrical approach appears to be
fruitful, since the construction of the convex hull of points
set permits to build formal asymptotic solutions in
different domains of the space of the parameters. The
constructed solutions were used for studying the free
vibration spectra of the shells. The most important cases
of the relations between the parameters were analyzed,
but developing an algorithm for an arbitrary number of
small parameters is desirable. To pursue this, the
geometrical method can be generalized for an arbitrary
number of dimensions. In such a form the algorithm may
successfully compete with the standard numerical
methods of solution, especially when the relative shell
thickness is small.
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