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From the Authors

In 1996 Springer Publishing Company issued the book entitled ”The
Introduction to the Theory of Stability” written by Prof. D.R. Merkin
and translated and edited by Profs. F. Afagh and A. Smirnov. The
main advantage of the book is its simple yet simultaneously rigorous
presentation of the concepts of the theory, which often are presented in
the context of applied problems with detailed examples demonstrating
effective methods of solving practical problems.

The above features have made the Introduction to the Theory of
Stability of Motion the most popular textbook in its field at faculties
of mathematics and mechanics as well as engineering faculties in Rus-
sian universities and now in the universities of the English speaking
countries.

The examples constitute about 25% of the entire volume of the book
and cover various areas in science and engineering. Moreover, some of
the examples possess an independent value in that they could be used in
the analysis of various real structures and mechanisms. The problems
are supplied with the answers and some hints.

Using the same numeration as in Introduction to the Theory of Sta-
bility, the present book contains a detailed solution and discussion of
all the problems of the text book. Moreover, the reported errors and
misprints of the text book have been corrected in the present volume.

Chapter 8 of this volume does not correspond to the respective chap-
ter in Introduction to the Theory of Stability. Instead, a new Chapter 8
entitled ”Structural Stability” has been included where some classical
problems on stability of equilibrium states in elastic systems have been
presented.

The present book is a result of scientific cooperation of the Depart-
ments of Theoretical and Applied Mechanics of the Faculty of Mathe-
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matics and Mechanics at St. Petersburg State University in Russia and
the Department of Mechanical and Aerospace Engineering at Carleton
University in Ottawa, Canada.

This work was supported in part by the Russian Foundation for
Basic Research under grant # 98-01-01010. A major part of Chapter
9 was prepared by Prof. A. H. Gelig. The help of Mrs. V. Sergeeva
and Mr. N. Filippov in typesetting the manuscript and preparing the
drawings is highly appreciated. The authors would also like to thank
their students for their input and suggestions as well as pointing out the
errors that they found out during the preparation of the manuscript.



Chapter 1

Formulation of the
Problem

1.1. The perturbed motion of a system is defined by the following
equations:

ẋ1 = αx32 + βx1
3

√
x41 + x42,

ẋ2 = −αx31 + βx2
3

√
x41 + x42.

Determine the stability of the motion of this system. (In the book [11]
the ”–” sign by β should be replaced by ”+”. )

S o l u t i o n:

We multiply the first equation by x31 and the second equation by
x32, and add the corresponding terms of the resulting equations to get

x31ẋ1 + x32ẋ2 = β
(
x41 + x42

) 4
3

or
1

4

d

dt

(
x41 + x42

)
= β

(
x41 + x42

) 4
3 .

Let x21 = y1 and x22 = y2. Now, stability (or instability) of y1
and y2 would mean the stability (or instability) of x1 and x2 and visa



6 CHAPTER 1. FORMULATION OF THE PROBLEM

versa. Let r designate the distance between the point (y1, y2) and the
reference origin so that r2 = y21 + y22 . Now, we have

1

4

dr2

dt
= βr

8
3

or
1

2

dr

dt
= βr

5
3 .

From this it follows that
1

2

dr

r
5
3

= βdt,

which upon integration gives

−3

2
r−

2
3 +

3

2
r
− 2

3
0 = 2β (t− t0) ,

and

r
2
3 =

r
2
3
0

1− 4
3r

2
3
0 β (t− t0)

.

Now, if β < 0, then r → 0 as t→ ∞, and the solution is asymptotically
stable.

On the other hand, if β > 0 and t → t0 + 3
4β r

− 2
3

0 , we will have
r → ∞, and the system is unstable.

For β = 0 the system is stable (cf. Example 1.1 in [11]).

1.2. The isotropic thin bar with mass m, length l, and horizon-
tal axis of rotation is retained in equilibrium by a spiral spring with
stiffness c. The spring is not deformed when the bar is in the upper
vertical position. Neglecting all frictional forces, derive the equation
that depicts the equilibrium states. Obtain the equation of perturbed
motion near the equilibrium state of the bar and the equation of first
approximation (see Fig. 1.1).

S o l u t i o n:

In the state of equilibrium of the bar the torque cθ, due to the spring
should be equal to the moment 1

2mgl sin θ, caused by the weight of the
bar, i. e. ,

cθ =
1

2
mgl sin θ,
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Figure 1.1: Problem 1.2.

or

sin θ = kθ, (1.1)

where

k =
2c

mgl
.

As it can be seen in Fig. 1.2, for small k, the equation sin θ = kθ
has several solutions.

Figure 1.2: Problem 1.2.

Let θn be one of the roots of this equation. Denote the change in
this angle due to a perturbation as xn. Then, considering the angular
momentum of the rod during this perturbation about the fixed axis O
at the support, we have
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1

3
ml2

d2

dt2
xn = −c (θn + xn) +

1

2
mgl sin (θn + xn)

or, in view of (1.1),

ẍn +
3g

2l
k (θn + xn)−

3g

2l
sin (θn + xn) = 0,

so that the perturbed motion of bar is described by the equation

ẍn +
3g

2l
[k (θn + xn)− sin (θn + xn)] = 0. (1.2)

Now, to get the equation of first approximation, let us expand
sin (θn + xn) as the following series

sin (θn + xn) = sin θn + xn cos θn + · · ·

Then, considering only the first two terms of this expansion and
substituting it in equation (1.2), we get

ẍn +
3g

2l
[kθn + kxn − sin θn − cos θnxn] = 0.

Finally, noting that θn should satisfy (1.1), we obtain the equation
of first approximation as

ẍn +
3g

2l
[kxn − cos θnxn] = 0.

1.3. The ring M can move freely, without friction, along a cir-
cular wire of radius a that is rotating uniformly about a vertical axis.
Determine the position of dynamic equilibrium of the ring. Derive the
equation of perturbed motion with respect to the equilibrium state
and the equation of first approximation. The angular velocity of the
uniform rotation of the wire is ω (see Fig. 1.3).

S o l u t i o n:

There are three forces, which act on the ring M . These are:
1) the weight mg of the ring that is directed downward along the

vertical axis;
2) the centrifugal force Fc = maω2 sin θ that is directed horizontally;
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Figure 1.3: Problem 1.3.

3) the reaction from the wire which is directed towards its centre.
In a state of equilibrium the resultant of the two first forces should be
equal and opposite to the reaction force. Therefore,

tan θ =
maω2 sin θ

mg
.

From this it follows that

cos θ =
g

aω2
.

Thus, the three angles at which equilibrium prevails are

θ0 = arccos
g

aω2
, θ1 = 0, θ2 = π,

where the last two correspond to the evident cases of when the second
force is equal to zero.

For the solution θ = θ0 we introduce the deviation x for the angle
θ0. Then, to exclude the unknown reaction R from the wire, at point
M , we consider Newton’s second law in the tangential direction τ :

maẍ = maω2 sin (θ0 + x) cos (θ0 + x)−mg sin (θ0 + x)

or
ẍ− ω2 sin (θ0 + x) cos (θ0 + x) +

g

a
sin (θ0 + x) = 0. (1.3)
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To get the equation of first approximation we can consider that

sin (θ0 + x) = sin θ0 + x cos θ0,
cos (θ0 + x) = cos θ0 − x sin θ0.

Substituting these expressions in (1.3) while considering only the first
order terms and noting that

−ω2 sin θ0 cos θ0 +
g

a
sin θ0 = 0,

we obtain the equation of first approximation for the perturbed motion
as

ẍ−
(
ω2 cos 2θ0 −

g

a
cos θ0

)
x = 0.

1.4. The double pendulum depicted in Fig. 1.4 is maintained in
the upper vertical position by two spiral springs with stiffness c1 and
c2. The pendulums have masses m1 and m2 and lengths l1 and l2.
The spiral springs are not deformed when the pendulums are in upper
vertical position. Derive the equation for the perturbed motion in the

Figure 1.4: Problem 1.4.

first approximation with respect to the upper vertical position. Neglect
the mass of the bars and all frictional forces.

S o l u t i o n:

This system has two independent variables. To write the equation
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for the perturbed motion we use the Lagrange equation

d

dt

∂T

∂φ̇k
− ∂T

∂φk
= − ∂Π

∂φk
(k = 1, 2) . (1.4)

The kinetic energy T of the system is T = 1
2m1v

2
1 + 1

2m2v
2
2 , where v1

and v2 are the velocities of mass points M1 and M2. Using Fig. 1.4, we
can find the coordinates (x1, y1) and (x2, y2) as follows:

x1 = l1 sinφ1, x2 = l1 sinφ1 + l2 sinφ2,
y1 = l1 cosφ1, y2 = l1 cosφ1 + l2 cosφ2.

Now, upon differentiation we obtain

ẋ1 = l1 cosφ1φ̇1, ẋ2 = l1 cosφ1φ̇1 + l2 cosφ2φ̇2,
ẏ1 = −l1 sinφ1φ̇1, ẏ2 = −l1 sinφ1φ̇1 − l2 sinφ2φ̇2.

Now, we have v21 = l21φ̇
2
1, v

2
2 = l21φ̇

2
1+2l1l2 cos (φ2 − φ1) φ̇1φ̇2+l

2
2φ̇

2
2.

Since the angles φ1 and φ2 are small we have cos (φ2 − φ1) = 1 and
since we are seeking the equation of first approximation the kinetic
energy T can be written as

T =
l21
2
(m1 +m2) φ̇

2
1 +m2l1l2φ̇1φ̇2 +

1

2
m2l

2
2φ̇

2
2.

The potential energy Π of the system is due to both the elastic
energy of the springs and gravitational potential energy due to weights,
i. e. ,

Π = 1
2c1φ

2
1 +

1
2c2 (φ2 − φ1)

2 − (m1 +m2) gl1 (1− cosφ1)−
− m2gl2 (1− cosφ2) ,

or more simply,

Π =
1

2
[c1 + c2 − (m1 +m2) gl1]φ

2
1 − c2φ1φ2 +

1

2
[c2 −m2gl2]φ

2
2.

Thus, the Lagrange equations (1.4) become

(m1 +m2) l
2
1φ̈1 +m2l1l2φ̈2 + [c1 + c2 − (m1 +m2) gl1]φ1 − c2φ2 = 0,

m2l1l2φ̈1 +m2l
2
2φ̈2 − c2φ1 + (c2 −m2gl2)φ2 = 0.
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These two equations can be presented in the matrix form AΦ̈ + C = 0
where

Φ =

(
φ1

φ2

)
, A =

(
(m1 +m2)l

2
1 m2l1l2

m2l1l2 m2l
2
2

)
,

C =

(
c1 + c2 − (m1 +m2)gl1 −c2

−c2 c2 −m2gl2

)
.

1.5. The rigid body M with mass m is fixed to the free end of
a compressed and twisted cantilever bar that has a uniform bending
stiffness (see Fig. 1.5) (see Section 2.12 of [2]) Neglecting the mass of the

Figure 1.5: Problem 1.5.

bar and treating M as a point mass, obtain the equations of perturbed
motion near the equilibrium state for the first approximation.

Remarks: Two forces, located in the horizontal plane Oxy, are
applied to M under the problem conditions. The radial force Fr is
directed from M to O, and the transverse force Fφ is perpendicular
to Fr. Both forces are proportional to the distance MO. Neglect any
vertical displacement of the rigid body M and all frictional forces.

S o l u t i o n:

The bending force Fr and the twisting force Fφ that are mutually
perpendicular are applied to M (see Fig. 1.6). Both forces are propor-
tional to the distance r = OM (see Section 2.12 of [2]), i. e. ,

Fr = c1r, Fφ = c2r.
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Figure 1.6: Problem 1.5.

or in projections on the axes

Frx = −c1r sinα = −c1x, Fry = −c1r cosα = −c1y,
Fφx = c2r cosα = c2y, Fφy = −c2r sinα = −c2x.

Invoking Newton’s second law and using the magnitudes of Fr and
Fφ we obtain the equations of perturbed motion for the first approxi-
mation as

mẍ = −c1x+ c2y,
mÿ = −c2x− c1y.

1.6. A rigid body with one fixed point moves inertially (the case of
Euler–Poinsot). Prove that such a body can rotate uniformly around a
fixed axis that coincides in this motion with one of the principal axes
of inertia, for instance with z-axis. Considering

ωx = ωy = 0, ωz = ω0 = const,

derive the equation of the perturbed motion in terms of the components
of the angular velocity. Let the moments of inertia of the body with
respect to its principal axes of inertia x, y, z be designated as A, B, C,
respectively.

S o l u t i o n:

Consider the following Euler equations for the given dynamic sys-
tem:

Aω̇x + (C −B)ωyωz =Me
x ,
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Bω̇y + (A− C)ωzωx =Me
y , (1.5)

Cω̇z + (B −A)ωxωy =Me
z ,

where, according to the conditions of the problem, Me
x =Me

y =Me
z =

0. The steady rotation is defined by

ωx = ωy = 0, ωz = ω0 = const.

In the perturbed motion, let the deviations of the angular velocities
ωx, ωy and ωz be designated as x1, x2 and x3, respectively, i. e. ,

ωx = x1, ωy = x2, ωz = ω0 + x3.

Substitute these in equation (1.5), to get

Aẋ1 + (C −B)x2 (ω0 + x3) = 0
Bẋ2 + (A− C) (ω0 + x3)x1 = 0

Cẋ3 + (B −A)x1x2 = 0.

1.7. Two boxes with two identical gyroscopes inside are shown in
Fig. 1.7. The boxes are connected by gears so that they can rotate

Figure 1.7: Problem 1.7.

in different directions by an equal angle β. The axis of rotation of
the external frame that contains the whole apparatus is free. A spiral
spring with stiffness c is installed on the axis of rotation of one of
the boxes. Neglecting the mass of the external frame and the boxes
and all frictional forces, determine the condition of stationary motion
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under which the angle β and the angular velocity α̇ of the frame remain
constant. Derive the equation of perturbed motion with respect to the
stationary motion.

S o l u t i o n:

The system consists of two connected identical gyroscopes that each
have a fixed point. For each gyroscope, let the mass moment of inertia
about each of its two axes x and y be denoted by A while the moment
of inertia with respect to the z axes is denoted by C. Then, the kinetic
energy T of the system will be

T = 2 ·
(
1

2
A
(
ω2
x + ω2

y

)
+

1

2
Cω2

z

)
. (1.6)

If one of the gyroscopes, for example the left one (see Fig. 1.8), is
rotated so that

ωx = −β̇,
ωy = α̇ cosβ,

ωz = φ̇+ α̇ sinβ,

then, for the one on the right we will have ωx = β̇, ωy = −α̇ cosβ. Here
φ̇ is the angular velocity of gyroscope. Substituting the expressions for

Figure 1.8: Problem 1.7.

ωx, ωy, and ωz in (1.6), we get

T = Aβ̇2 +Aα̇2 cos2 β + C (φ̇+ α̇ sinβ)
2
. (1.7)



16 CHAPTER 1. FORMULATION OF THE PROBLEM

The potential energy Π of the system is due to the torsional spring
and is

Π =
1

2
cβ2. (1.8)

Since we are considering the steady rotation of the gyroscopes when
the induced moment Mrot

φ is equal to the resisting moment Mres
φ , the

angle φ is a cyclic coordinate. Therefore, the generalised force Qφ =
Mrot

φ −Mres
φ corresponding to the coordinate φ is equal to zero.

Noting that in (1.7) the kinetic energy does not depend on the angle
φ, the Lagrange equation with respect to φ becomes

d

dt

∂T

∂φ̇
= 0.

Now,
∂T

∂φ̇
= 2H, where H is the angular momentum of each gyro-

scope (H = const).
Using (1.7), we note that

C (φ̇+ α̇ sinβ) = H. (1.9)

This integral is called cyclic integral. Next, we can write the La-
grange equation with respect to the β coordinate as

d

dt

∂T

∂β̇
− ∂T

∂β
= −∂Π

∂β
. (1.10)

Using relations (1.7), (1.8) and (1.9), we find

∂T

∂β̇
= 2Aβ̇,

d

dt

∂T

∂β̇
= 2Aβ̈,

∂T

∂β
= −2Aα̇2 cosβ sinβ + 2Hα̇ cosβ,

∂Π

∂β
= cβ.

Substitution of these expressions into (1.10) results in the differen-
tial equation

2Aβ̈ + 2Aα̇2 sinβ cosβ − 2Hα̇ cosβ = −cβ. (1.11)

For the steady motion, we should have

β = β0 = const, β̈ = 0, α̇ = ω = const. (1.12)
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Substitute (1.11) into (1.12), to obtain the condition for steady
motion as

Aω2 cosβ0 sinβ0 −Hω cosβ0 +
1

2
cβ0 = 0. (1.13)

To get the equations for perturbed motion, we consider

β = β0 + x1, α̇ = ω + x2. (1.14)

Substitute (1.14) into the expressions for kinetic and potential en-
ergy (note that β̇ = ẋ1), then

T = Aẋ21 +A (ω + x2)
2
cos2 (β0 + x1) +

C [φ̇+ (ω + x2) sin(β0 + x1)]
2
, (1.15)

Π =
c

2
(β0 + x1)

2
.

Now the cyclic integral (1.9) reads as

C[φ̇+ (ω + x2) sin (β0 + x1)] = H.

Next, considering the Lagrange equation for x1,

d

dt

∂T

∂ẋ1
− ∂T

∂x1
= − ∂Π

∂x1
, (1.16)

by virtue of (1.13) we have

∂T

∂ẋ1
= 2Aẋ1,

d

dt

∂T

∂ẋ
= 2Aẍ1,

∂T

∂x1
= −2A (ω + x2)

2
cos (β0 + x1) sin (β0+ = x1) + (1.17)

2H (ω + x2) cos (β0 + x1) ,

∂Π

∂x1
= c (β0 + x1) .

Moreover, the functions cos (β0 + x1), sin (β0 + x1), and (ω + x2)
2
each

can be expanded into the following series:

cos (β0 + x1) = cosβ0 − sinβ0x1 + · · · ,
sin (β0 + x1) = sinβ0 + cosβx1 + · · · , (1.18)

(ω + x2)
2
= ω2 + 2ωx2 + · · · ,
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where the dots denote the higher-order terms in x1 and x2.
Using (1.18) and (1.17) in (1.16), and after a brief manipulation we

get

Aẍ1 +Aω2 cosβ0 sinβ0 −Hω cosβ0 +
1
2β0+(

Aω2 cos 2β0 +Hω sinβ0 +
1
2c1
)
x1 + (Aω sin 2β0 −H cosβ0)x2 = X1.

Here X1 represents all the terms that contain x1 and x2 in powers
higher than one.

By means of (1.13) we obtain the first equation of perturbed motion
as

Aẍ1 +
(
Aω2 cos 2β0 +Hω sinβ0 +

1
2c1
)
x1+

+(Aω sin 2β0 −H cosβ0)x2 = X1.
(1.19)

The α coordinate is also cyclic one, because according to (1.7) the
kinetic energy is a function of the velocity α̇ only, while the potential
energy does not depend on α either. Thus, the differential equation for
α coordinate, and hence for x2, becomes

d

dt

∂T

∂α̇
=

d

dt

∂T

∂x2
= 0. (1.20)

By means of (1.15) we have

∂T

∂x2
= 2A (ω + x2) cos

2 (β0 + x1) + 2H sin (β0 + x1) .

Substituting this into (1.20), we get

2Aẋ2 cos
2 (β0 + x1)− 4A (ω + x2) cos (β0 + x1) =

sin (β0 + x1) ẋ1 + 2H cos (β0 + x1) ẋ1 = 0.

Upon dividing this expression by 2 cos (β0 + x1) and retaining only first
order terms in ẋ1 and ẋ2 we obtain the second equation for perturbed
motion as

(H − 2Aω sinβ0) ẋ1 +A cosβ0ẋ2 = X2. (1.21)

Equations (1.19) and (1.21) define the perturbed motion of the sys-
tem about the steady state motion.



Chapter 2

The Direct Liapunov
Method. Autonomous
Systems

2.1. For the given equations of a perturbed motion,

ẋ1 = −x31 + x1x2,
(2.1)

ẋ2 = −5x2 − 3x21

determine the Liapunov function, and show that the unperturbed mo-
tion x1 = x2 = 0 is stable in the large.

(There is a misprint in the second equation in the book [11].)

S o l u t i o n:

Multiply the first equation by x1, and the second one by x2 and add
the corresponding terms of the resulting equations to get

x1ẋ1 + x2ẋ2 = −
(
x41 + 2x21x2 + 5x22

)
or

1

2

d

dt

(
x21 + x22

)
= −

(
x41 + 2x21x2 + 5x22

)
.
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The function V = x21 + x22 is a positive definite function for all x1 and
x2, and its derivative with respect to time,

−
(
x41 + 2x21x2 + 5x22

)
is negative definite for all x1 and x2.

The function

x41 + 2x21x2 + 5x22

satisfies the Sylvester criterion (see relations (2.9) in [11]) for all x1 and
x2 because

∆1 = 1 > 0, ∆2 =

∣∣∣∣1 1
1 5

∣∣∣∣ = 4 > 0.

Thus, according to Liapunov’s theorem of stability of motion system
(2.1) is stable asymptotically.

2.2. The following functions and their derivatives with respect to
time, as determined by virtue of the respective equations of perturbed
motion, are given as follows:

1. V = x61 + x32, V̇ = −x61 − x42;

2. V = 5x41 − 4x21x2 + x22, V̇ = −4x41 + 2x21x2 − x22;

3. V = x61 + 3x22, V̇ = −
(
x31 − x2

)2
;

4. V = x1 − x32, V̇ = 4x31,

Can these functions be used to determine stability of motion?

S o l u t i o n:

1. The function V = x61+x
3
2 can not be used because the sign of this

function changes (for x1 = 0 and x2 > 0, V > 0, while for x1 = 0 and
x2 < 0, V < 0). Moreover, its derivative V̇ = −x61 − x42 is a negative
definite function.

2. The function V = 5x41 − 4x21x2 + x22 is positive definite, because
the Sylvester criterion is satisfied ((2.9) in [11]):

∆1 = 5 > 0,

∆2 =

∣∣∣∣ 5 −2
−2 1

∣∣∣∣ = 1 > 0.
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Also, the derivative V̇ = −4x41 + 2x21x2 − x22 is a negative definite
function, because the Sylvester criterion ((2.10) in [11]) is satisfied:

∆1 = −4 < 0,

∆2 =

∣∣∣∣−4 1
1 −1

∣∣∣∣ = 3 > 0.

Therefore according to Liapunov’s theorem the system is asymptot-
ically stable.

In applying Sylvester’s criterion we replace x1 by x21.
3. The function V = x61 + x22 is positive definite, and it’s derivative

V̇ = −
(
x31 − x2

)2
is negative semidefinite. Therefore, according to

Liapunov’s theorem the system is stable.
4. The function V = x1−x32 is positive for x1 > 0 and x2 < 0 while

it’s derivative V̇ = 4x31 > 0 for x1 > 0. Thus according to Chetaev’s
theorem the system is unstable.

2.3. Show that the equations of the perturbed motion of a rigid
body in a uniform rotation (see Problem 1.6) have two integrals:

Ax21 +Bx22 + C (x3 + ω0)
2
= const,

A2x21 +B2x22 + C2 (x3 + ω0)
2
= const.

Give the physical meaning of these integrals; compose a bundle of
integrals, and prove that the uniform rotation about the large as well
as the small axis of the ellipsoid of moment of inertia (in this case,
respectively, C < A < B and C > A > B) is stable.

S o l u t i o n:

These two integrals could be obtained in the following manner. Con-
sider the equations derived in Problem 1.6. Multiply the first equation
by x1, the second equation by x2, and the third one by (x3 + ω0) to
get

Ax1ẋ1 = Bω0x1x2 − Cω0x1x2 +Bx1x2x3 − Cx1x2x3,
Bx2ẋ2 = Cω0x1x2 −Aω0x1x2 + Cx1x2x3 −Ax1x2x3,

C (x3 + ω0) ẋ3 = Ax1x2x3 −Bx1x2x3 +Aω0x1x2 −Bω0x1x2.

Adding these equations gives

Ax1ẋ1 +Bx2ẋ2 + C (x3 + ω0) ẋ3 = 0,
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so that upon integration one gets

Ax21 +Bx22 + C (x3 + ω0)
2
= const, (2.2)

i.e., the first of the two integrals.
To get the second integral, again refer to the three equations given

in Problem 1.6. Multiply the first equation by Ax1, the second equation
by Bx2, and the third one by C(x3 + ω0). Then, add all the resulting
equations to obtain a single equation. Integrate this equation to obtain
the second integral as

A2x21 +B2x22 + C2(x3 + ω0)
2 = const. (2.3)

We denote the integral in (2.2) by V1, and the one in (2.3) by V2.
Now, consider the bundle of integrals

V = −V2 + CV1 ±
1

ω2
0

(
V1 − Cω2

0

)2
,

where the coefficient
1

ω2
0

is introduced to retain the dimensional validity

of the equation. Upon substituting the expressions for V1 and V2 and
regrouping of the terms, the bundle becomes:

V = A (C −A)x21+B (C −B)x22±
1

ω2
0

(
Ax21 +Bx22 + Cx23 + 2Cω0x3

)2
or,

V = A (C −A)x21 +B (C −B)x22 ± 4C2x23 + · · · , (2.4)

where higher order terms of xk are denoted by the dots.
First, we consider the ” + ” sign in (2.4), i.e.,

V = A (C −A)x21 +B (C −B)x22 + 4C2x23 + · · ·

If C > A, C > B and |xk| is small enough, then V is positive definite
and its derivative is equal to zero. Thus, all the corresponding condi-
tions of Liapunov’s theorem are satisfied and for C > A and C > B
the motion is stable.

Now we consider the ”− ” sign in (2.4), i.e.,

V = A (C −A)x21 +B (C −B)x22 − 4C2x23 + · · ·
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Here, for C < A and C < B the function V is negative definite, and
again according to Liapunov’s theorem the motion is stable.

2.4. The rotational motion of a rigid body in a gravitational field
about a fixed point O is considered. For a set of principal axes with the
origin at O and attached to the rotating body, the equations of motion
are

Aω̇x + (C −B)ωyωz = γymz − γzmy,
Bω̇y + (A− C)ωzωx = γzmx − γxmz,
Cω̇z + (B −A)ωxωy = γxmy − γymx,

where A, B, and C are principal mass moments of inertia of the body
with respect to the (x, y, z) set of axes; ωx, ωy, and ωz are components
of the angular velocity ω along the x, y, and z axes; mx, my, and mz

are the static moments of the weight of the rigid body m about the
x, y, and z axes; γ is the vertical axis of the fixed coordinate system;
and γx, γy, and γz are components of the unit vector of γ along the
x, y, and z axes (direction cosines). Staude and Mlodzeevsky have
independently proved that under some conditions a body can rotate
with constant angular velocity about an axis γ. A set of such axes
forms a cone. Not all rotations with constant velocity are stable.

Construct the motion integrals and using their bundle, prove stabil-
ity of rotation with constant angular velocity about that principal axis
of the rigid body with respect to which the mass moment of inertia of
the body is maximum.

Hint. The integrals of motion are

F1 =
1

2
ωTJω + γTm = h, F2 = γTJω = L, F3 = γγ = 1,

where h and L are constants, and

ω =

ωx

ωy

ωz

 , J =

A 0 0
0 B 0
0 0 C

 , m =

mx

my

mz

 , γ =

γx
γy
γz

 .

If the mass moment of inertia is maximal with respect to the z-axis,
then stability has to be determined for this axis; in this case ωx = ωy =
0, mx = my = 0, γx = γy = 0. The following bundle of integrals can
be considered:

V (ω,γ) = F1 + λF2 +
1

2
µF3,
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where λ and µ are factors to be determined. Show that λ = −|ω|, and
that for the chosen axis the relation µ = Aω2 − mz holds. This can
help you to prove the stability of uniform rotation about the z-axis.

S o l u t i o n:

F1 = h is an energy integral, F2 = L represents an axes transfor-
mation, and F3 expresses a simple well known condition of direction
cosines. None of these functions, when considered alone, can lead to
a positive definite Liapunov function. Therefore, we can construct the
bundle of integrals

V (ω,γ) = F1 + λF2 +
1

2
µF3.

Substitute the values of F1, F2 and F3 into this bundle and evaluate
the first variation of the function V :

δV = δω (Jω + λJγ) + δγ (m+ λJω + µγ) .

This variation vanishes if

J (ω + λγ) = 0,
m+ λJω + µγ = 0.

From here one concludes that

λ = −|ω|, µ = ω2C −mz. (2.5)

In order to obtain the condition of positive definiteness for V one
may consider the second variation of this function in the neighbourhood
of a constant set of definite positive we write the second variation of
this function in ω, γ :

δ2V = δωJδω + 2λδγJδω + µδγδγ.

We note that F3 = γγ = 1 and hence γδγ = 0. From here it follows
that in our case δγz = 0.

Then we get

δ2V = Aδω2
x+Bδω

2
y+Cδω

2
z+2λ (Aδγxδωx +Bδγyδωy)+µ

(
δγ2x + δγ2y

)
.
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For this quadratic form in δγ2x, δγ
2
y , δω

2
x, δω

2
y, δω

2
z we write the

matrix of coefficients of the quadratic form as given in (2.7) of [11]:
µ 0 λA 0 0
0 µ 0 λB 0
λA 0 A 0 0
0 λB 0 B 0
0 0 0 0 C

 .

Now, using Sylvester’s criterion ((2.9) in [11]) we get:

∆1 = µ > 0,

∆2 = µ2 > 0,

∆3 = µ2A− λ2µA2 = µA
(
µ− λ2A

)
> 0,

∆4 = AB
(
µ− λ2B

) (
µ− λ2A

)
> 0.

Noting that mz > 0, in view of (2.5), the condition that ∆1 = µ > 0
results in

ω2 >
mz

C
. (2.6)

From the condition that ∆3 > 0 it follows that

ω2 >
mz

C −A
. (2.7)

If the inequality (2.7) is satisfied, from the condition that ∆4 > 0
it follows that

ω2 >
mz

C −B
. (2.8)

If C > B > A, then all conditions of stability for this rotation
reduce to the single inequality (2.8).
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Chapter 3

Stability of Equilibrium
States and Stationary
Motions of Conservative
Systems

3.1. The end B of a perfectly flexible, weightless, and inextensible
cord of length l is fixed (see Fig. 3.1). At the other end a load P is
attached.

Block D is fixed and block C can slide on the vertical line that
bisects the distance a between points B and D. Block C carries a load
Q. Neglecting the dimensions of blocksD and C and all resistant forces,
determine the equilibrium positions of the system and investigate the
stability of these positions.

S o l u t i o n:

Let the coordinates of points C and P be denoted by z1 and z2,
respectively. From Fig. 3.1 we have

z1 =
a

2
tanφ, z2 = l − 2

a

2 cosφ
.
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Figure 3.1: Problem 3.1

The potential energy of the system is

Π = −Qz1 − Pz2 = −Qa
2

tanφ− P

(
l − a

cosφ

)
.

In a state of equilibrium we should have
∂Π

∂φ
= 0, i.e. by Theorem 3.1:

∂Π

∂φ
= −Qa

2

1

cos2 φ
+ Pa

sinφ

cos2 φ
= − a

cos2 φ

(
Q

2
− P sinφ

)
= 0.

Hence,

sinφ =
Q

2P
< 1, (3.1)

so that for Q ≥ 2P equilibrium vanishes. Thus, if Q < 2P , then
equlibrium prevails for

φ0 = arcsin
Q

2P
.

This state is stable because(
∂2Π

∂φ2

)
φ=φ0

=
Pa

cosφ0
> 0.

In evaluating the second derivative, equation (3.1) has been em-
ployed.



29

3.2. Ring A can slide over a smooth wire ring of radius R without
friction (see Fig. 3.2). The ring R lies in a vertical plane. Load P is
suspended from ring A by a perfectly flexible but inextensible cord.
The load Q is suspended from the other end C of the cord, which is

Figure 3.2: Problem 3.2

stretched over the infinitesimal block B. Block B lies on the horizontal
diameter of the wire ring R, and its weight is negligible. Determine the
equilibrium positions of ring A and investigate their stability.

S o l u t i o n:

It should be noted that the load P is supported by a cord, the upper
end of which is attached to ring A. A second cord, which supports the
load Q is attached to the same ring. We write the potential energy
of the system for the position when ring A is in the upper half of the
ring R. The potential energy of P is equal to its weight multiplied by
R sinφ, i.e., the elevation of ring A. Similarly, the energy of Q is equal
to its weight Q multiplied by the length l of the cord AB.

Noting that the angle BAO is equal to
φ

2
, we get l = 2R cos

φ

2
.

Considering that the total length of the cord is constant, except for a
constant amount, the potential energy of the whole system when the
ring A is in the upper half is given as:

Π = PR sinφ+ 2QR cos
φ

2



30 CHAPTER 3. STABILITY OF ... CONSERVATIVE SYSTEMS

or

Π = PR

(
sinφ+ 2

Q

P
cos

φ

2

)
.

For a state of equilibrium we should have
∂Π

∂φ
= 0. Upon differen-

tiation we get

∂Π

∂φ
= PR

(
cosφ− Q

P
sin

φ

2

)
= 0. (3.2)

Using the identity cosφ = cos2
φ

2
− sin2

φ

2
= 1 − 2 sin2

φ

2
we can

find an expression for sin
φ

2
in the following manner:

1− 2 sin2
φ0

2
− Q

P
sin

φ0

2
= 0

or

sin2
φ0

2
+

Q

2P
sin

φ0

2
− 1

2
= 0.

From which we get

sin
φ0

2
= − O

4P
+

√
Q2

16P 2
+

1

2

(only the ”+” sign in front of the square root should be considered,
since sin φ0

2 > 0).
From this expression the equilibrium position of the ring A in the

upper half is given by

sin
φ0

2
=

1

4

(√
Q2

P 2
+ 8− Q

P

)
. (3.3)

In order to determine the stability of this position, the second
derivative of Π should be determined. Using (3.2) we have

∂2Π

∂φ2
= PR

(
− sinφ− 1

2

Q

P
cos

φ

2

)
= −PR

(
sinφ+

1

2

Q

P
cos

φ

2

)
.

For the upper half of the ring R we have 0 < φ < π, or 0 <
φ

2
< π

2 .

In this interval sinφ > 0 and cos
φ

2
> 0. Therefore,

∂2Π

∂φ2
< 0, implying

that the equilibrium position (3.3) is unstable.



31

From (3.3) it is clear that in the interval 0 < Q
P < ∞ the value

φ0

2 varies from π
4 to 0. Therefore, the angle φ0 lies in the interval

0 < φ0 <
π
2 .

Next, let us consider the case when the ring A is in the lower half
of the ring R, i.e., when

π < φ < 2π,
π

2
<
φ

2
< π.

In this interval

sinφ < 0, sin
φ

2
> 0, cos

φ

2
< 0. (3.4)

The potential energy of the system is given as
(
l = −2R cos

φ

2
> 0
)

Π = PR sinφ− 2QR cos
φ

2
= PR

(
sinφ− 2

Q

P
cos

φ

2

)
(the energy associated with P is negative, while the potential energy
due to Q is positive). Now we have

∂Π
∂φ = PR

(
cosφ+ Q

P sin φ
2

)
= PR

(
cos2 φ

2 − sin2 φ
2 + Q

P sin φ
2

)
= PR

(
1− 2 sin2 φ

2 + Q
P sin φ

2

)
.

By considering
∂Π

∂φ
= 0, we can find an expression for sin

φ

2
(note

that according to (3.4), we have sin
φ

2
> 0):

sin2
φ0

2
− Q

2P
sin

φ0

2
− 1

2
= 0.

Hence,

sin
φ0

2
=

Q

4P
+

√
Q2

16P 2
+

1

2
or

sin
φ0

2
=

1

4

(√
Q2

P 2
+ 8 +

Q

P

)
. (3.5)
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This expression defines the state of equilibrium for the ring A in

the lower half of the ring R. From the first expression for
∂Π

∂φ
we get

(note, that Q
P = − cosφ0

sin
φ0

2

)

∂2Π

∂φ2

∣∣∣∣∣
φ=φ0

= PR

(
− sinφ0 +

1

2

Q

P
cos

φ0

2

)
=

PR

− sinφ0 −
1

2

cosφ0

sin
φ0

2

cos
φ0

2

 =

−PR
cos

φ0

2

sin
φ0

2

((
sin

φ0

2

)2
+

1

2

)
.

From (3.4) it follows that ∂2Π
∂φ2

∣∣∣
φ=φ0

> 0 and the equilibrium state

in the lower half of the ring A is stable.

Since Q
P > 0 then from (3.5)

√
2
2 < sin φ0

2 < 1 and the equilibrium
position of the ring A in this lower half lies in the interval π < φ0 <

3π
2 .

3.3. Investigate the stability of the vertical state of the system of
pendula depicted in Fig. 3.3 along with all dimensions of the system.
The mass of each pendulum and the stiffness of each spring are equal
to m and c, respectively. We neglect the mass of the rods and assume
that each m is a mass point. In the vertical state of the pendula the
springs are not loaded.

S o l u t i o n:

Let us consider the potential energy of the system for small angu-
lar displacements φk. The deformations of the first, second and third
spring are 3hφ1, 2h (φ2 − φ1), and h (φ3 − φ2), respectively. So that
the total energy of all springs becomes

Πspr =
1

2
c (3hφ1)

2
+

1

2
c [2h (φ2 − φ1)]

2
+

1

2
c [h (φ3 − φ2)]

2
.

The potential energy due to the weight of a mass of an inverted
pendulum of length l, when the bar is displaced an angle φ (see Fig. 3.3)
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Figure 3.3: Problem 3.3

is

Πp = −pl (1− cosφ) ≃ −plφ
2

2
.

So, the potential energy Πpk
due to the weight of all masses in the

system becomes

Πpk
= −1

2
4hpφ2

1 −
1

2
3hpφ2

2 −
1

2
2hpφ2

3.

Therefore, the overall total potential energy of the system Π is
Πspr +Πpk

, i.e.,

Π = 1
29ch

2φ2
1 +

1
24ch

2 (φ2 − φ1)
2
+ 1

2ch
2 (φ3 − φ2)

2 −
1
24phφ

2
1 − 1

23phφ
2
2 − 1

22phφ
2
3.

Rearranging the terms we get

2Π =
(
13ch2 − 4ph

)
φ2
1 +

(
5ch2 − 3ph

)
φ2
2 +

(
ch2 − 2ph

)
φ2
3−

8ch2φ1φ2 − 2ch2φ2φ3.

The necessary and sufficient condition for the potential energy of the
system to have a minimum is that Sylvester’s criterion must be satisfied
(cf. eq. (2.9) in [11]). The matrix of coefficients on the right-hand side
of the last equation reads as13ch2 − 4ph −4ch2 0

−4ch2 5ch2 − 3ph −ch2
0 −ch2 ch2 − 2ph

 .
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So we have

∆1 = h (13ch− 4p) ,

∆2 = h2
∣∣∣∣13ch− 4p −4ch

−4ch 5ch− 3p

∣∣∣∣ = h2
(
49c2h2 − 59pch+ 12p2

)
,

∆3 = h3

∣∣∣∣∣∣
13ch− 4p −4ch 0
−4ch 5ch− 3p −ch
0 −ch ch− 2p

∣∣∣∣∣∣
= h3

(
36c3h3 − 153pc2h2 + 130p2ch− 24p3

)
.

From these we get the required conditions for stability as

13ch− 4p > 0,

49c2h2 − 59pch+ 12p2 > 0,

36c3h3 − 153pc2h2 + 130p2ch− 24p3 > 0.

3.4. Current i1 flows along a rectilinear vertical and fixed con-
ductor that attracts a parallel conductor AB (see Fig. 3.4). Current
i2 flows along conductor AB, and l is the length of each conductor.
A spring with stiffness c is suspended from conductor AB. If current

Figure 3.4: Problem 3.4

doesn’t flow along conductor AB, then the distance between the two
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conductors is a. Find the equilibrium positions of the system and in-
vestigate their stability.

Hint. The interaction force between the two parallel conductors is

F =
2i1i2
d

l. Here i1 and i2 are current flows in the two conductors, d

is the distance between the two conductors, and l is the length of each
conductor.

S o l u t i o n:

The force acting on the conductor AB is

F =
2i1i2l

d
− cx =

2i1i2l

a− x
− cx.

Noting that a− x > 0, from here we obtain

(a− x)F = 2i1i2l − acx+ cx2

or
a− x

c
F = x2 − ax+ α, (3.6)

where

α =
2i1i2l

c
.

The equilibrium of the conductor AB corresponds to F = 0. Setting
the right-hand side of (3.6) equal to zero, the roots of the resulting
equation will give the equilibrium positions of the conductor AB as:

x2 =
a

2
+

√
a2

4
− α, x1 =

a

2
−
√
a2

4
− α.

For positions of equilibrium these roots should be real, and there-

fore, we must have a2

4 > α.
The potential energy Π of the force F1 = a−x

c F is Π =
∫
F1dx or

using (3.6),

Π =
1

3
x3 − 1

2
ax2 + αx (3.7)

A plot of (3.7) is shown in Fig. 3.5.
From this plot it can be observed that the potential energy Π has a

minimum at x2 and a maximum at x1. Hence, x2 corresponds to a sta-
ble equilibrium, while x1 represents an unstable state. (The tangents
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Figure 3.5: Problem 3.4

at x2 and x1 should be parallel to x-axis.) The same conclusions can
be arrived at by using a more analytical approach. From (3.7) we have

∂2Π

∂x2

∣∣∣
x=x2

= (2x− a)x=x2
= a+ 2

√
a2

4
− α− a = 2

√
a2

4
− α > 0,

i.e., at x = x2 the potential energy has a minimum, and this point cor-
responds to a stable equilibrium state of the conductor AB. Similarly,

at x = x1 we have
∂2Π

∂x2
< 0, and therefore, this point corresponds to

an unstable equilibrium state. (Note: the answer provided in the book
[11] is switched around.)

When
a2

4
= α there is only one state of equilibrium x =

a

2
. This

state is unstable, because at this point d2Π/dx2 = 0 and d3Π/dx3 ̸= 0,
which indicates that Π is not a minimum at the point.

3.5. A solid oscillates freely about the horizontal axis NT (see
Fig. 3.6). The axis NT can rotate around the vertical axis Oz with a
constant angular velocity ω. Point G is the centre of mass, plane NTG
is a plane of symmetry, and axis OG is a principal axis of inertia. KL
is parallel to NT , and FD, which passes through point O, is perpen-
dicular to NT and OG. The moments of inertia of the solid about OG,
KL, and FD are equal to C, A, and B respectively; h is the length of
OG and M is the mass of the solid. Define the possible positions of
relative equilibrium of the solid and investigate their stability.
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Figure 3.6: Problem 3.5

S o l u t i o n:

The solid can rotate about the axis NT (see Fig. 3.6). Assume that
it has an angular velocity φ̇ so that at any given instant the axis OG
makes an angle φ with the vertical z-axis.

The angular velocity φ̇ is represented by a vector along the axis NT .
Moreover, after OG and OD have rotated an angle φ, the components
of the angular velocity ω will be

ωOG = −ω cosφ, ωOD = ω sinφ.

The mass moment of inertia of the body about the NT -axis is A+Mh2.
Therefore, the kinetic energy of the body is

T =
1

2

(
A+Mh2

)
φ̇2 +

1

2
Bω2 sin2 φ+

1

2
Cω2 cos2 φ.

The potential energy due to the weight is Π =Mgh (1− cosφ).
Moreover, from the expression for kinetic energy we have

T2 =
1

2

(
A+Mh2

)
φ̇, T1 = 0, T0 =

1

2
ω2
(
B sin2 φ+ C cos2 φ

)
.

(It is easy to show that in this example Tk = Rk. Cf. relations (3.12)
and (3.14) in [11].) The potential energy W of the generalised system
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becomes (cf. equation (3.20) in [11])

W = Π− T0,

or

W =Mgh (1− cosφ)− 1

2
ω2
(
B sin2 φ+ C cos2 φ

)
.

Then, for a constant ω we get:

∂W

∂φ
=Mgh sinφ− ω2 sinφ cosφ (B − C) , (3.8)

∂2W

∂φ2
=Mgh cosφ− ω2 (B − C)

(
cos2 φ− sin2 φ

)
.

The required condition for a stationary motion is to have
∂W

∂φ
= 0.

From equation (3.8) three states of equilibrium are deduced: φ = 0, φ =

π, and φ = arccos
Mgh

ω2 (B − C)
. Let us consider each state separately.

1. φ = 0. In this case

∂2W

∂φ2

∣∣∣
φ=0

=Mgh− ω2 (B − C) . (3.9)

Obviously, for B < C the second variation of W with respect to φ
is positive for all ω. Therefore, the state of equilibrium corresponding
to φ = 0 is stable for all ω. From equation (3.9) we can see that for

B > C we have
∂2W

∂φ2
> 0 provided ω2 <

Mgh

B − C
. In this case the

state of equilibrium is stable. For ω2 >
Mgh

B − C
the state of equilibrium

becomes unstable.

2. φ = π. In this case

∂2W

∂φ2

∣∣∣
φ=π

= −Mgh− ω2 (B − C) .

Therefore, for B > C we have
∂2W

∂φ2
< 0 and the state of equilibrium

is unstable.
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If B < C the state of equilibrium is stable for ω2 >
Mgh

C −B
, and

it is unstable for ω2 <
Mgh

C −B
(in the first case

∂2W

∂φ2
> 0, and in the

second case
∂2W

∂φ2
< 0).

3. φ = arccos
Mgh

(B − C)ω2
. In this case a state of equilibrium exists

if Mgh < |B − C|ω2. Then sinφ ̸= 0, and we have

cosφ = Mgh
ω2(B−C) ,

cos2 φ = M2g2h2

ω4(B−C)2
,

sin2 φ = 1− cos2 φ = 1− M2g2h2

ω4(B−C)2
.

so that

∂2W

∂φ2

∣∣∣
φ=φ3

=
M2g2h2

ω2 (B − C)
− ω2 (B − C)

[
2

M2g2h2

ω4 (B − C)
2 − 1

]
(3.10)

= − M2g2h2

ω2 (B − C)
+ ω2 (B − C) .

Provided thatMgh < ω2|B−C| we will haveM2g2h2 < ω4 (B − C)
2

or
M2g2h2

ω2 (B − C)
< ω2 (B − C).

Then, from (3.10) we get

∂2W

∂φ2

∣∣∣
φ=φ3

> 0,

for B > C, so that the state of equilibrium is stable.
However, for B < C we have

∂2W

∂φ2

∣∣∣
φ=φ3

< 0,

and an unstable state of equilibrium.

3.6. In Fig. 3.7 the vertical axis AB is an axis of symmetry of
the thin homogeneous round disk with weight P and radius r. AB can
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Figure 3.7: Problem 3.6

roll freely around the spherical bearing A. Two mutually perpendicular
springsBQ andBD in a horizontal plane hold the axis at pointB. Both
springs have the same stiffness, i.e., c1 = c2 = c. They are attached to
the axis of the disk at a distance L from the bearing A. The disk is at
a distance l from the bearing A. Determine the angular velocity of the
disk ω for which the system is stable.

S o l u t i o n:

Let us consider the fixed coordinate system Axyz where the z-axis
is pointed upward, and the x and y axes are parallel to springs BQ
and BD when the shaft AB is in a vertical position. Moreover, the
centroidal coordinate system of the disk is called (x′y′z′) which is taken
to be parallel to the (xyz)-system, when the axis of the disk is vertical.
The mass moment of inertia of the disk with respect to x′ and y′ is the

same and it is A =
mr2

4
. With respect to z′-axis, the mass moment of

inertia is C =
mr2

2
, where m =

P

g
is the mass of the disk, and r is its

radius.
The mass centre of the disk lies at a distance l from the bearing
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A. Now, let us determine the kinetic energy of the disk. It consists
of the kinetic energy due to the displacement of the centre of mass of
the disk plus the kinetic energy due to the rotation of the disk. For a
displaced position of the shaft which is identified by the angles α and
β, the coordinates of the mass centre of the disk is denoted by x and y
(see Fig. 3.7).

Then, the kinetic energy of the disk is

T =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
A
(
α̇2 cos2 β + β̇2

)
+

1

2
C (ω + α̇ sinβ)

2
.

From Fig. 3.7 we can see that

ẋ = lα̇, ẏ = lβ̇,

and if we assume that the angles α and β are small (cosα = 1, cosβ = 1,
sinβ = β), we get

T =
1

2
ml2

(
α̇2 + β̇2

)
+

1

2
A
(
α̇2 + β̇2

)
+

1

2
C (ω + α̇β)

2
.

Using the expressions for the moments of inertia A and C, we have

T =
1

2
m

(
l2 +

r2

4

)(
α̇2 + β̇2

)
+
mr2

4
(ω + α̇β)

2
. (3.11)

Neglecting the terms with order higher than two, the spring defor-
mations are obtained to be Lα and Lβ, and the potential energy due
to the weight P becomes

−Pl (1− cosα+ 1− cosβ) = −1

2
Pl
(
α2 + β2

)
.

Then the total potential energy will be

Π =
1

2

(
cL2 − Pl

) (
α2 + β2

)
. (3.12)

Using equations (3.11) and (3.12) we get the Lagrange equation
with respect to coordinate α as

∂T

∂α̇
= m

(
l2 +

r2

4

)
α̇+

mr2

2
(ω + α̇β)β.
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Considering that the term α̇β is negligible with respect to ω, we
may differentiate this expression with respect to time t, and obtain
the derivatives of Π with respect to α. In this way we can obtain the
equation of motion for α (a similar procedure will result in the equation
of motion for β):

m

(
l2 +

r2

4

)
α̈+

mr2

2
ωβ̇ +

(
cL2 − Pl

)
α = 0,

(3.13)

m

(
l2 +

r2

4

)
β̈ − mr2

2
ωα̇+

(
cL2 − Pl

)
β = 0.

Now, assume α = Deλt and β = Eeλt. Substitute these in equation
(3.13) and divide by eλt to get[

m
(
l2 + r2

4

)
λ2 +

(
cL2 − Pl

)]
D + mr2

2 ωλE = 0,

−mr2

2 ωλD +
[
m
(
l2 + r2

4

)
λ2 +

(
cL2 − Pl

)]
E = 0.

This is a system of homogeneous linear equations with respect to D
and E the determinant of which must vanish, i.e.,∣∣∣∣∣∣m

(
l2 + r2

4

)
λ2 +

(
cL2 − Pl

)
mr2

2 ωλ

−mr2

2 ωλ m
(
l2 + r2

4

)
λ2 +

(
cL2 − Pl

)
∣∣∣∣∣∣ = 0.

Expanding this determinant we get

m2
(
l2 + r2

4

)2
λ4 +

[
2m
(
l2 + r2

4

) (
cL2 − Pl

)
+ m2r4

4 ω2
]
λ2+

+(cL− Pl)
2
= 0.

This equation can be solved for λ2:

λ2 =
−1

2m2
(
l2 + r2

4

){[2m(l2 + r2

4

)(
cL2 − Pl

)
+
m2r4

4
ω2

]
±

m2r4

4
ω2

√
4m

(
l2 +

r2

4

)
(cL2 − Pl) +

m2r2

4
ω2

}
.

If Pl < cL2, then all terms are positive and both roots λ21 and
λ22 are negative and simple for any angular velocity ω. This means
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that for Pl < cL2, the vertical state of the shaft is stable in the first
approximation for any ω.

Next assume Pl > cL2. Then, the first term under the square root
sign becomes negative and for stability to prevail it becomes necessary
for the angular velocity ω to satisfy the condition that

ω2 >
4

r4
gl
(
4l2 + r2

)(
1− cL2

Pl

)
or

ω >
2

r2

√
gl (4l2 + r2)

(
1− cL2

Pl

)
.

If ω satisfies this condition, then for cL2 < Pl there is a positive value
under the square root sign and both roots λ21 and λ22 are simple and
negative. Then, the stability of the disk in the first approximation is
proven.

3.7. The mass point depicted in Fig. 3.8 moves over the smooth
surface of a torus given by the parametric equations

x = ρ cosψ, y = ρ sinψ, z = b sinϑ,

ρ = a+ b cosϑ,

where the z-axis is pointing upward. Find the possible motions of the

Figure 3.8: Problem 3.7.
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point when the angle ϑ is a constant, and analyse the stability of these
motions.

S o l u t i o n:

Let ψ̇ = ω = const. Therefore ψ = ωt. Then, we have

x = (a+ b cosϑ) cosωt, y = (a+ b cosϑ) sinωt, z = b sinϑ,

from which

ẋ = −b sinϑϑ̇ cosωt− ω(a+ b cosϑ) sinωt,

ẏ = −b sinϑϑ̇ sinωt+ ω(a+ b cosϑ) cosωt,

ż = b cosϑϑ̇.

Now, the kinetic energy of the mass is

T =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
=

1

2
m
[
b2ϑ̇2 + ω2 (a+ b cosϑ)

2
]
,

and its potential energy is Π = mgz = mbg sinϑ. From the expres-
sion for T we find that T2 = 1

2mb
2ϑ̇2, and T0 = 1

2mω
2(a + b cosϑ)2.

Therefore, the potential energy of the generalised system becomes

W = Π− T0 = mbg sinϑ− 1

2
mω2(a+ b cosϑ)2,

such that
∂W

∂ϑ
= mb

[
g cosϑ+ ω2(a+ b cosϑ) sinϑ

]
, (3.14)

∂2W

∂ϑ2
= mb

[
−g sinϑ− ω2b sin2 ϑ+ ω2(a+ b cosϑ) cosϑ

]
(3.15)

We find the relative equilibrium from ∂W
∂ϑ = 0. Using (3.14), we get

g cosϑ+ ω2(a+ b cosϑ) sinϑ = 0.

From here

a+ b cosϑ = − g

ω2
cotϑ (3.16)

or

1 + α cosϑ = −β cotϑ, α =
b

a
, β =

g

aω2
(3.17)
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The two solutions of equation (3.17) can be easily obtained as

−π
2
< ϑ1 < 0,

π

2
< ϑ2 < π.

In order to determine which of these is stable, let us consider the right-
hand side of (3.15).

First, we proceed as follows:

∂2W

∂ϑ2
= mb

[
−g sinϑ− ω2b sin2 ϑ+ ω2a+ ω2b cos2 ϑ

]
or

∂2W
∂ϑ2 = mb

[
−g sinϑ+ aω2 + bω2(cos2 ϑ− sin2 ϑ)

]
=

mb
[
−g sinϑ+ aω2(1 + b

a cos 2ϑ)
]
.

In the interval −π
2 < ϑ < 0 we know that sinϑ < 0, therefore the first

term is positive. Moreover, we have b
a < 1, and | cos 2ϑ| < 1. Thus,

the second term is also positive, and hence the motion is stable when
ϑ = ϑ1.

Next, we note that

∂2W

∂ϑ2
= mb

[
−g sinϑ− ω2b sin2 ϑ+ ω2(a+ b cosϑ) cosϑ

]
,

so that using equation (3.16), we get

∂2W

∂ϑ2
= mb

[
−g sinϑ− ω2b sin2 ϑ− g

cos2 ϑ

sinϑ

]
.

Now, we have sinϑ > 0 in the interval π
2 < ϑ2 < π. Therefore, for

ϑ = ϑ2
∂2W

∂ϑ2
< 0,

which means that the motion is unstable when ϑ = ϑ2.

3.8. The horizontal tube AB shown in Fig. 3.9 can rotate freely
about the vertical axis CD. Inside the tube there is a spring with
stiffness c. The end of the spring is fixed to the tube wall at A. The
solid M is attached to the free end of the spring. The mass of M is
m. When the system is at rest, the body M is at distance a from
the axis of rotation (a > 0 or a < 0). During the free rotation of the
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Figure 3.9: Problem 3.8.

tube with an angular velocity ω, the system attains a stationary motion
in which body M is at relative rest. Assume M is a mass point and
neglect any frictional forces and the mass of the spring. If the mass
moment of inertia of the tube with respect to the axis of rotation CD
is J , determine the parameters of stationary motion and analyse its
stability.

S o l u t i o n:

The potential energy of the system is Π = 1
2cx

2 (for a > 0 and for
a < 0), while its kinetic energy is

T =
1

2
mẋ2 +

1

2
mω2(a+ x) +

1

2
Jω2.

Hence, T2 = 1
2mẋ

2, and T0 = 1
2mω

2(a+x)+ 1
2Jω

2. Thus, the potential
energy of the generalised system is

W = Π− T0 = 1
2cx

2 − 1
2mω

2(a+ x)2 − 1
2Jω

2,

∂W
∂x = cx−mω2(a+ x),

∂2W
∂x2 = c−mω2.

The state of relative equilibrium is obtained from the equation

∂W

∂x
= cx−mω2(a+ x) = 0,



47

from which
x0 = maω2

c−mω2 ,

∂2W
∂x2 = c−mω2.

If c > mω2, then ∂2W
∂x2 > 0 and the relative equilibrium is stable, if

c < mω2, then ∂2W
∂x2 < 0 and the relative equilibrium is unstable.

(In the book [11], in the following equation

∆ = J

(
1− mω2

c

)
+m (a+ x0)

2

(
1 + 4

mω2

c

)
.

should be replaced by ∂2W
∂x2 = c−mω2.)

3.9. The rotor depicted in Fig. 3.10 is situated in a horizontal
plane and is rigidly mounted at its centre O on a flexible shaft which
is supported as shown. The centre of mass of the rotor is C, the mass
of the rotor is m, e = OC is the eccentricity of the rotor which has
a mass moment of inertia equal to J with respect to the vertical axis.
The bending stiffness of the shaft is C and the shaft is driven at a

Figure 3.10: Problem 3.9.

constant angular velocity ω. The shaft axis is bent due to centrifugal
forces. One can neglect the mass of the shaft and any frictional forces.
In the fixed coordinate system determine the position of point O for
the stationary motion and analyse its stability.
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S o l u t i o n:

The plane of rotor is horizontal. Point O represents the deflected
position of the flexible shaft which has a bending stiffness of c. The
mass centre of the rotor, point C, has an eccentricity e. Points O and
C are attached to the rotor. Let the x-axis of the coordinate system
O1xy be attached to the plane of the rotor and be parallel to OC. It
is required to determine the position of relative equilibrium of point
O and analyse its stability. Next, let x and y be the coordinates of
point O, then x+ e and y are the coordinates of the centre of mass of
the rotor; and ẋ and ẏ are the components of the velocity of point C
relative to O1. The constant velocity vector ω is normal to O1xy-plane.
The relative velocity of C about point O is

ve
c = ω × r =

∣∣∣∣∣∣
i j k
0 0 ω

x+ e y 0

∣∣∣∣∣∣ ,
vecx = −ωy, vecy = ω(x+ e).

The components and the magnitude of the absolute velocity of point
C are

vx = ẋ− ωy, vy = ẏ + ω(x+ e),
v2 = v2x + v2y = ẋ2 + ẏ2 − 2ω(ẋy − xẏ) + ω2

[
(x+ e)2 + y2

]
.

The kinetic energy of the rotor

T =
1

2
Jω2 +

1

2
m{ẋ2 + ẏ2 − 2ω(ẋy − xẏ) + ω2

[
(x+ e)2 + y2

]
},

where J is the moment of inertia of the rotor with respect to the axis
perpendicular to its plane at point O, and m is the mass of the rotor.
The potential energy of the elastic shaft is

Π =
1

2
c(x2 + y2).

Thus, the Lagrange equations become

d

dt

∂T

∂ẋ
− ∂T

∂x
= −∂Π

∂x
,

where
∂T
∂ẋ = mẋ−mωy; d

dt
∂T
∂ẋ = mẍ−mωẏ,

∂T
∂x = mωẏ +mω2(x+ e); ∂Π

∂x = cx.
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Therefore, the equations of motion become

mẍ− 2mωẏ −mω2(x+ e) = −cx,
(3.18)

mÿ + 2mωẋ−mω2y = −cy,

where the second equation is obtained in a manner analogous to the
first one.

For a state of relative equilibrium we should have ẍ = ÿ = 0, ẋ =
ẏ = 0. By substituting these into (3.18), the coordinates x0 and y0 of
point O in relative equilibrium are obtained as

−mω2(x0 + e) = −cx0, −mω2y0 = −cy0.

Hence,

x0 =
mω2e

c−mω2
, y0 = 0 (3.19)

These equations have simple physical interpretation and can be ob-
tained in a more direct way. In the state of relative equilibrium points
O1, O and C should lie on the same line (y0 = 0), and the elastic force
exerted by the flexible shaft, cx0, should be equal to the centrifugal
force mω2(x0 + e). This corresponds to the first equation in (3.19).
(There is an error in the book [11] in the expression for x0.)

To analyse for stability we consider

x = x0 + ε1, y = y0 + ε2 = ε2.

In equations (3.18) we substitute the above expressions for x and y,
respectively, to get

mε̈1 − 2mωε̇2 −mω2(x0 + ε1 + e) = −c(x0 + ε1),
mε̈2 + 2mωε̇1 −mω2ε1 = −cε1

such that in view of (3.19), we get

mε̈1 − 2mωε̇2 + (c−mω2)ε1 = 0,
(3.20)

mε̈2 + 2mωε̇1 + (c−mω2)ε2 = 0.

As a standard approach, we let ε1 = Aeλt, ε2 = Beλt, and substitute
these expressions for ε1 and ε2 into equations (3.20). In the resulting
equation, after rearranging the terms and dividing by eλt we get[

mλ2 + (c−mω2)
]
A− 2mωλB = 0,

2mωλA+
[
mλ2 + (c−mω2)

]
B = 0.
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This is a linear system of homogeneous algebraic equations in A and
B whose determinant should vanish, i.e.,∣∣∣∣mλ2 + (c−mω2) −2mωλ

2mωλ mλ2 + (c−mω2)

∣∣∣∣ = 0.

Expanding this determinant, we have

m2λ4 + 2m(c+mω2)λ2 + (c−mω2)2 = 0.

From where,

λ2 =
1

m2

[
−m(c+mω2)±

√
m2(c+mω2)2 −m2(c−mω2)2

]
or

λ2 = − 1

m

(√
c± ω

√
m
)2
. (3.21)

From (3.21) it follows that all four roots of the characteristic equa-
tions are simple and pure imaginary. This means that the system is
stable for all c and ω and c ̸= mω2 (there is an error in the answer given
in the book [11]). Moreover, for c = mω2 also the system is stable, but
this can not be concluded from (3.21). For this conclusion one has to
consider the matrix

A− λE =

 mλ2 −2mωλ

2mωλ mλ2

 . (3.22)

This matrix is the same as the one in (3.20) for c = mω2. Simple
reductions of (3.22) will lead to(

λ 0
0 λ(λ2 + 4ω2)

)
.

From this matrix we can see that the canonical variables should satisfy
the following:

ż1 = 0, ż2 = 0, ż3 = 2ωi, ż4 = −2ωi; i =
√
−1,

which means that solutions ε1 = ε2 = 0 of equations (3.20) are also
stable for c = mω2.
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We have considered the case when points O1, O and C were not
collinear. Let us now consider the case when these points are collinear
— call this line the x-axis. Then the coordinates of points O and C
are x and x+ e, respectively.

The velocity of the centre of mass, point C, is defined as

v2 = ẋ2 + ω2(x+ e)2.

The kinetic and potential energy of the system are

T =
1

2
Jω2 +

1

2
m
[
ẋ2 + ω2(x+ e)2

]
, Π =

1

2
cx2,

and the equation of motion becomes

mẍ−mω2(x+ e) = −cx. (3.23)

The state of relative equilibrium at which ẍ = 0 is defined by (3.19):

x0 =
mω2e

c−mω2
.

We can obtain the equation of the perturbed motion if we let x =
x0 + ε in (3.23). This will result in

mε̈+ (c−mω2)ε = 0.

From here, if c > mω2, then the unperturbed motion is stable; whereas
if c < mω2, then it is unstable.

So, the answer is the following: for the stationary motion the centre
O has the coordinates

ρo =
mω2e

c−mω2
,

φo = ωt.

If points O1, O and C are not colinear, then the relative state
equilibrium of point O is stable for all c and ω. If these points lie
on the same line, then for c > mω2 the relative equilibrium position of
point O is stable, and for c < mω2 it is unstable.

3.10. For the system given in Problem 1.7 prove that the station-
ary motion is stable with respect to β, β̇, and α̇.
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Hint. For the system under consideration the potential energy of
the generalised system, W = Π−R0, is

W =
1

2
cβ2 +

(n−H sinβ)
2

4A cos2 β
,

where n = 2Aα̇ cos2 β + H sinβ is the integral corresponding to the
cyclic coordinate.

S o l u t i o n:

From the solution of Problem 1.7 we obtain the kinetic and potential
energy of the system as

T = Aβ̇2 +Aα̇ cos2 β + C(φ̇+ α̇ sinβ)2,

(3.24)

Π =
1

2
cβ2,

where α and φ are cyclic coordinates, because T and Π contain only
the velocities α̇ and φ̇. Two cyclic integrals which correspond to these

coordinates are
∂T

∂α̇
= n = const, and

∂T

∂φ̇
= H = const. (Here it

should be noted that in problems dealing with Routh transform it is not

possible for the derivatives
∂T

∂α̇
and

∂T

∂φ̇
to be constant with multipliers.

For example, we can not say ∂T
∂φ̇ = 2H, as we did in Problem 1.7.) Next,

from (3.24) we obtain

∂T
∂α̇ = 2Aα̇ cos2 β +H sinβ = n,

∂T
∂φ̇ = 2C(φ̇+ α̇ sinβ) = H.

Hence,

α̇ =
n−H sinβ

2A cos2 β
,

(3.25)

φ̇ =
H

2C
− α̇ sinβ.

Substitute these into the expression for T to get T ∗ (we neglect the

constant quantity
H2

4C
):

T ∗ = Aβ−2 +
(n−H sinβ)2

4A cos2 β
. (3.26)
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Compose the Routh function R (cf. (3.12) in [11]):

R = T ∗ − nα̇−Hφ̇.

Using equations (3.26) and (3.25) we find

R = Aβ̇2+
(n−H sinβ)2

4A cos2 β
−nn−H sinβ

2A cos2 β
−H

(
H

2C
− n−H sinβ

2A cos2 β
sinβ

)
,

so that after some simple manipulation and neglecting the constant

term
H2

2C
), we get

R = Aβ̇2 − (n−H sinβ)2

4A cos2 β
= Aβ̇2 −R0,

(3.27)

W = Π−R0 =
1

2
cβ2 +

(n−H sinβ)2

4A cos2 β
.

(In the book [11] there is small error, the coefficient 4 in the dominator
is missing.)

We assume that the angle β is small so that sinβ ≃ β, cosβ ≃ 1−β2

2 .
Then, we have

1

cos2 β
≃ 1(

1− β2

2

)2 ≃ 1

1− β2
= (1− β2)−1 = 1 + β2

where the terms with order higher than two have been neglected. Then,
(3.27) reads

W =
(2AC +H2)β2 − 2nHβ + n2

4A
(1 + β2)

Once again retaining only up to the second order terms, we get

W =
1

4A

[
(2AC +H2 + n2)β2 − 2nHβ + n2

]
.

From here, we have

∂W
∂β = 1

2A

[
(2AC +H2 + n2)β − nH

]
,

∂2W
∂β2 = 1

2A (2AC +H2 + n2) > 0.
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Setting the first equation equal to zero, we find the expression for
the angle of relative equilibrium as

β0 =
nH

2AC +H2 + n2
. (3.28)

From the second equation we find, that this state is stable with
respect to the angle β. From the stability of motion with respect to β
and from (3.25) the stability with respect to α̇ and φ̇ follows.

Provided equation (3.28) is satisfied, the motion of the system con-
sists of a constant deviation of the axis of gyroscopes by the angle β0
and the uniform rotation of the whole system with an angular velocity
of

α̇0 =
n−H sinβ0
2A cos2 β0

.



Chapter 4

Stability in First
Approximation

4.1. Let the moments of inertia of a rigid body with respect to its
principal axes of inertia x, y, and z, be designated as A, B, and C,
respectively, such that either A < C < B or A > C > B. Prove that
the uniform rotation of the rigid body about the z-axis is unstable.

S o l u t i o n:

From the equations of the perturbed motion obtained in Problem
1.6 obtain the following equations in first approximation:

ẋ1 = B−C
A ω0x2,

ẋ2 = C−A
B ω0x1,

ẋ3 = 0.

Let xk = Dke
λt (k = 1, 2, 3), substitute for xk into these equations and

divide the resulting equations by eλt to obtain

D1Aλ+D2(C −B)ω0 = 0,

D2Bλ+D1(A− C)ω0 = 0,

D3Cλ = 0.
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This is a system of linear homogeneous equations with respect to Dk

the determinant of which must vanish in order to have any nontrivial
solutions, i.e., we must have∣∣∣∣∣∣

Aλ (C −B)ω0 0
(A− C)ω0 Bλ 0

0 0 Cλ

∣∣∣∣∣∣ = 0,

or
Cλ
[
ABλ2 − (C −B)(A− C)ω2

0

]
= 0.

This equation has one root equal to zero, and for A < C < B or
A > C > B it has two real roots:

λ = ±ω0

√
(C −B)(A− C)

AB
.

The existence of one positive root indicates that the uniform rota-
tion of the rigid body about the middle axis of moment ellipsoid, the
z-axis, is unstable.

4.2. Prove that the equilibrium of a point mass located on the end
of a compressed and twisted bar is unstable (see Problem 1.5).

S o l u t i o n:

In Problem 1.5 we obtain the following differential equations of the
perturbed motion:

mẍ = −c1x+ c2y,
mÿ = −c2x− c1y.

Letting x = Aeλt and y = Beλt, the following homogeneous linear
system of algebraic equations in A and B can be obtained:

mAλ2 + c1A− c2B = 0,
c2A+mBλ2 + c1B = 0.

Setting the determinant of this system equal to zero, we have∣∣∣∣mλ2 + c1 −c2
c2 mλ2 + c1

∣∣∣∣ = 0,

or
(mλ2 + c1)

2 + c22 = 0.
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Hence,

mλ2 + c1 = ±ic2, i =
√
−1.

At least one of the roots of this equation have positive real parts
which means that the equilibrium is unstable for x1 = x2 = 0.

4.3. The motion of a control system is described by the following
differential equations:

ψ̇ − Ω(γ1 + γ2) = c2γ2,
γ̇1 + γ̇2 +Ωψ = −c1γ2,

γ̇1 +Ωψ = −k(γ1 − κ),

where γ1, γ2, and ψ are the system coordinates, c1, c2, k, and Ω are
system parameters, and κ(t) is the driving force. Determine the re-
quired condition for system parameters such that the motion caused
by the driving force κ would be asymptotically stable.

S o l u t i o n:

Multiply the first equation by −1 and rewrite all the equations in
the following form:

Ωγ1 + (Ω + c2)γ2 − ψ̇ = 0,
γ̇1 + γ̇2 + c1γ2 +Ωψ = 0,

γ̇1 + kγ1 +Ωψ = kκ.

The stability of this nonhomogeneous linear system can be determined
by considering its system of first approximation (cf. Example 1.4 in
[11]):

Ωγ1 + (Ω + c2)γ2 − ψ̇ = 0,
γ̇1 + γ̇2 + c1γ2 +Ωψ = 0,

γ̇1 + kγ1 +Ωψ = 0.

Let γ1 = Aeλt, γ2 = Beλt, and ψ = Ceλt. Substitute these into the
above and divide the resulting equations by eλt to obtain

ΩA+ (Ω + c2)B − λC = 0,
λA+ (λ+ c1)B +ΩC = 0,

(λ+ k)A+ΩC = 0.
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This homogeneous linear system of algebraic equations in A, B and C
must have nontrivial solutions. So the determinant of the system must
vanish, i.e., ∣∣∣∣∣∣

Ω Ω+ c2 −λ
λ λ+ c1 Ω

λ+ k 0 Ω

∣∣∣∣∣∣ = 0,

or after expansion

3∑
i=0

aiλ
3−i = λ3 + (k+ c1)λ

2 + (Ω2 + kc1)λ+ (Ω2c1 +Ω2k+Ωc2k) = 0,

(4.1)
where Ω, c1, c2, and k which are the parameters of the system, all
are positive. Therefore, for asymptotic stability to prevail it is only
necessary to satisfy inequality (4.30) in [11], i.e.,

∆2 = a1a2 − a0a3 > 0.

For the problem at hand the corresponding values of ak are obtained
from equation (4.1) to give

∆2 = (k + c1)(Ω
2 + kc1)− (Ω2c1 +Ω2k +Ωc2k) > 0,

which can be reduced to

kc1 + c21 > Ωc2.

4.4. The top view schematic of a uniaxial trailer is shown in
Fig. 4.1. Here m is the mass of the trailer; J is the polar inertia mo-
ment of the trailer with respect to the vertical axis which is orthogonal
to the plane of motion at the hitch point of the tractor to the trailer; G
designates the mass centre of the trailer; v is the velocity of the trac-
tor; and the stiffness of the spring is c. If we neglect the nonholonomic
reactive force F at the hitch, then equations of motion of the trailer
can be reduced to the following equations in the first approximation

m(b− a)ẍ+ cbx+ [ma(b− a)− J ] φ̈ = 0,
ẋ+ bφ̇+ vφ = 0,

where the second equation describes the nonholonomic constraint at
the hitch. Determine the stability conditions of the trailer.
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Figure 4.1:

S o l u t i o n:

Determine the differential equations of the motion of the trailer.
Considering the moments with respect to the axis which is orthogonal
to the plane of motion at the mass centre G of the trailer, we have

Jφ̈ = −cax cosφ+ F (b− a).

The equation of the motion of the mass center in the direction parallel
to the displasement of the spring is

m
d2

dt2
(x+ a sinφ) = −cax− F cosφ.

For small angles φ these equations become

Jφ̈ = −cax+ F (b− a),
mẍ+maφ̈ = −cax− F.

Eliminating F from the above set, we get

m(b− a)ẍ+ cbx+ [ma(b− a)− J ]φ̈ = 0. (4.2)

Since the trailer can not have a motion along its axle the following
condition applies:

ẋ cosφ+ bφ̇+ v sinφ = 0
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or for small angles,
ẋ+ bφ̇+ vφ = 0. (4.3)

In order to determine the stability conditions of the trailer the char-
acteristic equations of differential equations (4.2) and (4.3) are consid-
ered: ∣∣∣∣m(b− a)λ2 + cb [ma(b− a)− J ]λ2

λ bλ+ v

∣∣∣∣ = 0,

which expands to[
m(b− a)2 + J

]
λ3 +m(b− a)vλ2 + cb2λ+ cbv = 0.

For asymptotic stability all coefficients must be positive, i.e., we should
have

b > a, v > 0. (4.4)

Besides this condition (4.30) in [11] must also be satisfied,

∆2 = a1a2 − a0a3 = mcb2v(b− a)− cbv
[
m(b− a)2 + J

]
=

= cbv [ma(b− a)− J ] > 0.

From here we obtain the additional condition

J < ma(b− a). (4.5)

If (4.4) and (4.5) are satisfied, then the motion of the trailer will be
asymptotically stable.

4.5. The follower force P is applied to the double pendulum de-
picted in Fig. 4.2. Spiral springs each having a stiffness c are used
at support point O and in joint O1. The length and mass of both
pendulums (mass points) are the same.

Neglecting the mass of the bars, obtain the equations of motion and
determine stability conditions of the motion with respect to φ1, φ̇1, φ2,
and φ̇2.

S o l u t i o n:

In this problem the force P is nonconservative, so for the generalised
forces we get

Q1 = − ∂Π

∂φ1
+Q1p, Q2 = − ∂Π

∂φ2
+Q2p, (4.6)
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Figure 4.2:

where Π is the potential energy due to the springs and gravity, and Q1p

and Q2p are generalised forces due to P . We determine the potential
energy as

Π = 1
2cφ

2
1 +

c(φ2−φ1)
2

2 +mgl(1− cosφ1 + 1− cosφ2).

Assuming that the angles φ1 and φ2 are small, we may consider the
following expansions in which only up to the second order terms are
retained:

1− cosφ1 =
φ2
1

2
, 1− cosφ2 =

φ2
2

2
.

Then the expression for Π can be written as

Π =
1

2
cφ2

1 +
c(φ2 − φ1)

2

2
+mglφ2

12 +mgl
(φ2

2 + φ2
1)

2
,

or

Π = (c+mgl)φ2
1 − cφ1φ2 + (c+mgl)

φ2
2

2
(4.7)

= (c+mgl)

(
φ2
1 +

φ2
2

2

)
− cφ1φ2.
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In order to evaluate Q1p and Q2p we consider the virtual work done
by the force P during a virtual displacement δr, where r is the radial
vector attached to the fixed support at the top that locates the point
of application of the load P . Now, we have

r = r1 + r2,

where r1 and r2 are vectors representing the length and the direction
of the two bars. Therefore, we have

δr = δr1 + δr2.

It is necessary to take note that δr1 and δr2 are orthogonal to the
vectors r1 and r2, respectively. Next, we introduce a coordinate system
in the plane of the bars such that the x-axis is vertically downward and
the y-axis is horizontal and to the right. If we denote the components
of δr by δx and δy, then from the last equation we get

δx = l (− sinφ1δφ1 − sinφ2δφ2) ,
δy = l (cosφ1δφ1 + cosφ2δφ2) .

The components of the force P are −P cosφ2 and −P sinφ2, and
the virtual work is

δW = Pxδx+ Pyδy = −Pl cosφ2(− sinφ1δφ1−
sinφ2δφ2)− Pl sinφ2 (cosφ1δφ1 + cosφ2δφ2)

or, upon rearranging of terms,

δW = −Pl (cosφ2 sinφ1 − sinφ2 cosφ1) δφ1.

From here we have

Q1p = Pl sin (φ2 − φ1) , Q2p = 0.

Using relations (4.6) and (4.7), we find the generalised forces (based on
the assumption that angles φ1 and φ2 are small, i.e., sin (φ2 − φ1) ≃
φ2 − φ1)

Q1 = −2 (c+mgl)φ1 + cφ2 + Pl (φ2 − φ1) ,
(4.8)

Q2 = − (c+mgl)φ2 + cφ1.
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Now we determine the kinetic energy of the system,

x1 = l cosφ1,
ẋ1 = −lφ̇1 sinφ1,
y1 = l sinφ1,
ẏ1 = lφ̇1 cosφ1,
v21 = l2φ̇2

1.

x2 = l cosφ1 + l cosφ2,
ẋ2 = −l (φ̇1 sinφ1 + φ̇2 sinφ2) ,
y2 = l sinφ1 + l sinφ2,
ẏ2 = l (φ̇1 cosφ1 + φ̇2 cosφ2) ,

v22 = ẋ22 + ẏ22 = l2
[
φ̇2
1 + 2 cos (φ2 − φ1) φ̇1φ̇2 + φ̇2

2

]
.

Again based on the assumption that angles φ1 and φ2 are small, i.e.,
cos (φ2 − φ1) = 1, we get

v22 = l2
(
φ̇2
1 + 2φ̇1φ̇2 + φ̇2

2

)
.

Thus, we have

T =
1

2
mv21 +

1

2
mv22 =

1

2
ml2

(
2φ̇2

1 + 2φ̇1φ̇2 + φ̇2
2

)
.

Now, we can write the Lagrange equations

d

dt

∂T

∂φ̇j
− ∂T

∂φj
= Qj (j = 1, 2)

∂T
∂φ̇1

= ml2 (2φ̇1 + φ̇2)

d
dt

∂T
∂φ̇1

= ml2 (2φ̈1 + φ̈2)

∂T
∂φ1

= ∂T
∂φ2

= 0.

Using Q1 from (4.8), the first equation becomes

ml2 (2φ̈1 + φ̈2) + 2Hφ1 − cφ2 − Pl (φ2 − φ1) = 0, (4.9)

where
H = c+mgl.

In a similar fashion we obtain the second equation for φ2 as:

ml2 (φ̈1 + φ̈2) +Hφ2 − cφ1 = 0. (4.10)

Now, let φ1 = Aeλt, φ2 = Beλt. Substitute these values into (4.9) and
(4.10), divide the resulting equations by eλt to obtain two homogeneous
equations in A and B,(

2ml2λ2 + 2H + Pl
)
A+

(
ml2λ2 − c− Pl

)
B = 0,(

ml2λ2 − c
)
A+

(
ml2λ2 +H

)
B = 0.
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The determinant of this system must be equal to zero:∣∣∣∣2ml2λ2 + 2H + Pl ml2λ2 − c− Pl
ml2λ2 − c ml2λ2 +H

∣∣∣∣ = 0,

or ∣∣∣∣2λ2 + I1 λ
2 − I2

λ2 − I3 λ2 + I4

∣∣∣∣ = 0,

or
λ4 + λ2 (I1 + I2 + I3 + 2I4) + I1I4 − I2I3 = 0,

where

I1 =
2H + Pl

ml2
, I2 =

c+ Pl

ml2
, I3 =

c

ml2
, I4 =

H

ml2

Note that I1 + I2 + I3 + 2I4 > 0 and I1I4 − I2I3 = (c2 + 2cmgl +
m2g2l2+Pmgl2)/(ml2) > 0 always, and (I1+I2+I3+2I4)

2−4(I1I4−
I2I3) > 0, so all four roots will be imaginary. Therefore the system is
stable in the vertical direction.

4.6. A two-rotor Anschútz gyrocompass1 with a viscous damper is
widely used in some countries. If this type of a gyroscope is mounted
in a ship whose northern component of velocity is constant, then the
differential equations of motion of the gyroscope are

ẋ1 −
k2

U cosφ
x2 −

k2

U cosφ
(1− ρ)x3 = X1,

ẋ2 + U cosφx1 = X2,
ẋ3 + Fx2 + Fx3 = X3.

Here x1, x2 and x3 are variations of compass coordinates from its values
at dynamic equilibrium; k is the frequency of free vibrations of the
sensitive element (gyrosphere); U is the angular velocity of Earth’s
rotation; φ is latitude of the ship; F is the factor of fluid flow in the

viscous damper; ρ = 1− c

P l
; c and Pl are the norms of the moments of

the damper fluid and the gyrosphere, respectively; and X1, X2, X3 are
terms of higher orders in x1, x2, x3 and ẋ1, ẋ2, ẋ3.

Determine condition for asymptotic stability.

1 In honour of the German engineer and industrialist who invented this gyro-
compass.
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S o l u t i o n:

Determine the equations of the first approximation. Let X1 = X2 =
X3 = 0. We get the following system of linear differential equations (in

the first equation the parameter ρ is replaced by ρ = 1− c

P l
):

ẋ1 −
k2

U cosφ
x2 −

k2

U cosφ

c

P l
x3 = 0,

U cosφx1 + ẋ2 = 0, (4.11)

Fx2 + ẋ3 + Fx3 = 0.

We assume x1 = Aeλt, x2 = Beλt, and x3 = Ceλt. Substitute
these expressions for xk into equation (4.11) and divide the resulting
equations by eλt to obtain

λA− k2

U cosφB − k2

U cosφ
c
PlC = 0,

U cosφA+ λB = 0,
FB + (λ+ F )C = 0.

A, B and C can not be equal to zero simultaneously, hence, the deter-
minant of this system must vanish, i.e.,∣∣∣∣∣∣

λ − k2

U cosφ − k2

U cosφ
c
Pl

U cosφ λ 0
0 F λ+ F

∣∣∣∣∣∣ = 0,

or
λ3 + Fλ2 + k2λ+ k2F

(
1− c

P l

)
= 0.

The Hurwitz condition requires that all the coefficients and ∆2 =

a1a2 − a0a3 be positive. This means that
c

P l
< 1, or c < P l, so that

∆2 = Fk2 − Fk2
(
1− c

P l

)
= Fk2

c

P l
> 0. Thus the only required

condition is that we should have c < P l.

4.7. A stable platform is a device which is sometimes used in
navigation to determine, simultaneously, the meridian and horizontal
plane for a sailing ship. For an anchored ship, the differential equations
of its perturbed motion can be reduced to two identical equations:

ẍ1 + 2b1ẋ1 + (ν2 − Ω2)x1 − 2Ωẋ2 = X1,
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ẍ2 + 2b2ẋ2 + (ν2 − Ω2)x2 + 2Ωẋ1 = X2.

Here x1 is a quantity proportional to the angle of deviation from the
meridian plane; x2 is the variation of the auxiliary variable, which is
associated with the constructive angle (see [4]); b1 > 0 and b2 > 0
are coefficients that characterise the dissipative forces; ν =

√
g/R =

0.00124 1/sec is Schuler frequency2; Ω = U sinφ; U = 7.29 · 10−5 1/sec
is the angular velocity of Earth’s rotation; φ is the latitude of the ship;
and X1 and X2 are terms of higher orders in x1, x2, ẋ1, and ẋ2.

In two other analogous differential equations of perturbed motion
x3 and x4 determine the angle of deviation from the horizontal plane
and the variation of the other auxiliary variable, which is associated
with the second constructive angle (see [4]).

Determine the condition for asymptotic stability of the device.

S o l u t i o n:

Let X1 = X2 = 0, then we get the system of the first approximation

ẍ1 + 2b1ẋ1 +
(
ν2 − Ω2

)
x1 − 2Ωẋ2 = 0,

(4.12)
2Ωẋ1 + ẍ2 + 2b2ẋ2 +

(
ν2 − Ω2

)
x2 = 0.

As usual, we take x1 = Aeλt and x2 = Beλt; substitute these expres-
sions for x1 and x2 into (4.12) and divide the resulting equations by
eλt to obtain [

λ2 + 2b1λ+
(
ν2 − Ω2

)]
A− 2ΩλB = 0,

2ΩλA+
[
λ2 + 2b2λ+

(
ν2 − Ω2

)]
B = 0.

A and B can not vanish simultaneously, so the determinant of the
system must be equal to zero, i.e.,∣∣∣∣λ2 + 2b1λ+

(
ν2 − Ω2

)
−2Ωλ

2Ωλ λ2 + 2b2λ+
(
ν2 − Ω2

) ∣∣∣∣ = 0,

or,

λ4 + 2 (b1 + b2)λ
3 + 2

[(
ν2 − Ω2

)
+ 2b1b2 + 2Ω2

]
λ2 +

(4.13)
2 (b1 + b2)

(
ν2 − Ω2

)
λ+

(
ν2 − Ω2

)2
= 0.

2 Max Schuler was a German scientist who, in 1912, investigated the period of
unperturbed oscillations of the gyroscopic pendulum in a gyrocompass.
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For asymptotic stability of the system under consideration which is
governed by (4.12), the necessary and sufficient condition is to satisfy
Hurwitz’s criterion (cf. (4.32) in [11]) as follows:

1. All the coefficients in (4.13) must be positive,
2. ∆3 = a1a2a3 − a0a

2
3 − a21a4 > 0. ∆3 is obtained as

∆3 = 8 (b1 + b2)
2 [(

ν2 − Ω2
)
+ 2b1b2 + 2Ω2

] (
ν2 − Ω2

)
−

4 (b1 + b2)
2 (
ν2 − Ω2

)2 − 4 (b1 + b2)
2 (
ν2 − Ω2

)2
=

4 (b1 + b2)
2 (
ν2 − Ω2

) [
2
(
ν2 − Ω2

)
+ 4b1b2 + 4Ω2 − 2

(
ν2 − Ω2

)]
=

16 (b1 + b2)
2 (
ν2 − Ω2

) (
b1b2 +Ω2

)
.

If ν > Ω, then ∆3 and all the coefficients in equation (4.13) are positive
and Hurwitz’s criterion is satisfied. Hence, it follows that the system
(4.2) is asymptotically stable, and therefore, according to Liapunov’s
theorem of stability in the first approximation (cf. Theorem 4.4 in [11])
the system under consideration, where X1 ̸= 0 and X2 ̸= 0, is stable.
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Chapter 5

Stability of Linear
Autonomous Systems

5.1. Given the following equations of a perturbed motion:

ẋ1 = x1 + x2 − x3,
ẋ2 = −x1 + 3x2 − x3 − 2x4,
ẋ3 = 6x2 − 3x3 − 3x4,
ẋ4 = −3x1 + 3x2 − 3x4,

determine the roots of the characteristic equation and the stability of
the motion.

S o l u t i o n:

Determine the A− Eλ matrix for the given problem:

A− λE =


1− λ 1 −1 0
−1 3− λ −1 −2
0 6 −3− λ −3
−3 3 0 −3− λ


The determinant of this matrix has four roots: λ1 = λ2 = 0, λ3 =
λ4 = −1. Executing the following elementary matrix operations: add
the third column to the second; multiply the third column by 1−λ and

69
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add the result to the first column; will result in

A− λE →


0 0 −1 0

−2 + λ 2− λ −1 −2
−3 + 2λ+ λ2 3− λ −3− λ −3

−3 3 0 −3− λ


Interchange the third column with the first one; multiply the first col-
umn by −1; using elementary matrix operations obtain zeros for all
entries in column one except for the first entry:

1 0 0 0
0 2− λ −2 + λ −2
0 3− λ −3 + 2λ+ λ2 −3
0 3 −3 −3− λ


Next, add the second column to the third column;

1 0 0 0
0 2− λ 0 −2
0 3− λ λ (λ+ 1) −3
0 3 0 −3− λ


Follow this by multiplying the second column by -1 and subtracting the
fourth column from the result to obtain

1 0 0 0
0 λ 0 −2
0 λ λ (λ+ 1) −3
0 λ 0 −3− λ


Subtract the second row from the third row; subtract the second row
from the fourth row: 

1 0 0 0
0 λ 0 −2
0 0 λ (λ+ 1) −1
0 0 0 −1− λ


Multiply the second column by 2; multiply the fourth column by λ:
add the fourth column to the second column; change the sign of the
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fourth column: 
1 0 0 0
0 0 0 2
0 −λ λ (λ+ 1) 1
0 −λ (λ+ 1) 0 1 + λ


Divide the second row by 2; subtract the second row from the third
one; multiply the second row by 1 + λ and subtract from the fourth:

1 0 0 0
0 0 0 1
0 −λ λ (λ+ 1) 0
0 −λ (λ+ 1) 0 0


Interchange the second and fourth columns; multiply the third row λ+1
and subtract the result from the fourth row;

1 0 0 0
0 1 0 0
0 0 λ(λ+ 1) −λ
0 0 −λ (λ+ 1)

2
0


Interchange columns three and four; change the sign of the third and
the fourth column; multiply the third column by λ + 1 and add the
result to the fourth column:

1 0 0 0
0 1 0 0
0 0 λ 0

0 0 0 λ (λ+ 1)
2


Thus we get the Smith canonical form of the matrix. The roots are
λ1 = 0, λ2 = 0, λ3 = −1, and λ4 = −1. The following solutions in
normal coordinates corresponds to these roots:

z1 = z01, z2 = z02, z3 = z03e
−t, z4 = z04e

−t, (5.1)

where z01, z02, z03, and z04 are the initial values of the correspond-
ing coordinates. Since solution (5.1) is stable with respect to normal
coordinates, the solution with respect to x-coordinates is also stable.
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5.2. The following equations of a perturbed motion are given:

ẋ1 = x1 − 2x2 + x4,
ẋ2 = −x1 + 3x2 − x3 − 2x4,
ẋ3 = 3x2 − 2x3 − 2x4,
ẋ4 = −3x1 + 6x2 − x3 − 4x4.

Determine the roots of the characteristic equation and the stability
of the motion.

S o l u t i o n:

Determine the A− Eλ matrix for the given equations:

A− λE =


1− λ −2 0 1
−1 3− λ −1 −2
0 3 −2− λ −2
−3 6 −1 −4− λ

 .

Multiply the last column by −(1 − λ) and add it to the first column;
then multiply the fourth column by 2 and add it to the second column;
next using elementary operations make all the entries in the fourth
column, except the first one, to vanish:

0 0 0 1
1− 2λ −1− λ −1 0
2− 2λ −1 −2− λ 0

1− 3λ− λ2 −2− 2λ −1 0

 .

Multiply the second and third columns by -1; interchange the first and
the fourth columns:

1 0 0 0
0 1 + λ 1 1− 2λ
0 1 2 + λ 2− 2λ
0 2 + 2λ 1 1− 3λ− λ2

 .

Subtract the second row from the fourth row:
1 0 0 0
0 1 + λ 1 1− 2λ
0 1 2 + λ 2− 2λ
0 1 + λ 0 −λ− λ2

 .
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Subtract the fourth row from the second one:
1 0 0 0
0 0 1 1− λ+ λ2

0 1 2 + λ 2− 2λ
0 1 + λ 0 −λ− λ2

 .

Interchange the second and the third columns:
1 0 0 0
0 1 0 1− λ+ λ2

0 2 + λ 1 2− 2λ
0 0 1 + λ −λ− λ2

 .

Multiply the second column by 1 − λ + λ2 and substruct it from the
fourth column: 

1 0 0 0
0 1 0 0
0 2 + λ 1 −λ− λ2 − λ3

0 0 1 + λ −λ− λ2

 .

Multiply the second row by the −(2 + λ) and add it to the third row;
Multiply the fourth column by -1:

1 0 0 0
0 1 0 0
0 0 1 λ+ λ2 + λ3

0 0 1 + λ λ+ λ2

 .

Multiply the third column by λ + λ2 + λ3 and subtract it from the
fourth column; multiply the fourth column by -1:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 + λ λ2 + 2λ3 + λ4

 .

Multiply the third row by −(1 + λ) and add to the fourth row.
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 λ2(λ+ 1)2

 .
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Now we have the normal form of the matrix A−λE. We note that the
invariant factors are: E1 = 1, E2 = 1, E3 = 1, and E4 = λ2(λ + 1)2.
Therefore, the A−λE matrix has two elementary divisors: λ2, (λ+1)2,
with the corresponding roots: λ1 = λ2 = 0, λ3 = λ4 = −1.

The equation of the perturbed motion (cf.[11]) in canonical variables
consists of two Jordan blocks (cf. normal Jordan form (5.40) in [11]):

ż1 = 0, ż2 = z1, ż3 = −z3, ż4 = z3 − z4.

From these it is easy to get the solution as:

z1 = z01, z2 = z01t+ z02, z3 = z03e
−t, z4 = (z04 + z03t) e

−t.

The canonical variables are unstable (z2 → ∞ as t→ ∞), and therefore
the system is unstable.

5.3. The nonhomogeneous linear differential equations

ẋ1 = −5x1 + 2x3 + 2t3 + 5t2 + 2t,

ẋ2 = 41x1 + 5x2 − 19x3 − 19t3 − 41t2 − 10t+ 2,

ẋ3 = 5x1 + 2x2 − 3x3 − 3t3 − 8t2 − 4t

have the particular solution

x̄1 = t2, x̄2 = 2t, x̄3 = −t3.

Determine the stability of this solution and construct the solution of
the equation of the perturbed motion in terms of canonical variables.

S o l u t i o n:

The stability of the solution

x1 = t2, x2 = 2t, x3 = −t3 (5.2)

could be investigated using the homogeneous parts of the equations,
i.e., the equations (cf. Example 1.4 in [11]):

ẋ1 = −5x1 + 2x3,

ẋ2 = 41x1 + 5x2 − 19x3,

ẋ3 = 5x1 + 2x2 − 3x3.
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The A− λE matrix for this system of equations is

A− λE =

−5− λ 0 2
41 5− λ −19
5 2 −(3 + λ)

 . (5.3)

Divide the third column by 2; interchange the first and the third
columns:  1 0 −(5 + λ)

− 19
2 5− λ 41

−3+λ
2 2 2

 .

Multiply the first column by 5+λ and add to the third column; multiply
the third column by -2. Now, in the first column, except for the first
entry get all zeros: 1 0 0

0 5− λ 13 + 19λ
0 2 5 + 8λ+ λ2

 .

Divide the second column by 2; multiply the second column by −(5 +
8λ+ λ2) and add the result to the third column:1 0 0

0 5−λ
2

(λ+1)3

2
0 1 0

 .

Multiply the third row by (5− λ) /2 and subtract it from the second
row; interchange the second and the third row:1 0 0

0 1 0
0 0 (λ+ 1)3

 .

Matrix (5.3) is in normal diagonal form; it contains three invariant
factors

E1 = 1, E2 = 1, E3 = (λ+ 1)3.

The root λ1 = λ2 = λ3 = −1 is a root with a multiplicity 3 for the
invariant factor E3 as well as the equation. Therefore, the differential
equations or the canonical variables are (cf. equation (5.52) in [11])

ż1 = −z1, ż2 = z1 − z2, ż3 = z2 − z3.
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The solution is

z1 = z01e
−t, z2 = (z02 + z01t) e

−t, z3 =

(
z03 + z02t+ z01

t2

2

)
e−t.

This solution is stable, therefore partial solution (5.2) is asymptotically
stable.



Chapter 6

The Effect of Force Type
on Stability of Motion

6.1. Determine the differential equations which govern the motion in
Problem 3.9 and show that they contain gyroscopic forces. For the
unstable case when points O1, O and C are collinear and mω2 > c,
determine the degree of instability and show that the system may be
stabilised by gyroscopic forces.

S o l u t i o n:

1. In Problem (3.9), we consider the equations corresponding to
equation (3.18). In these equations, those terms that contain the deriva-
tives in the first power, i.e., 2mωẏ and 2mωẋ, lead to matrix of coeffi-
cients (

0 −2mω
2mω 0

)
which is a skew-symmetric matrix, indicating that these terms are gy-
roscopic forces.

2. For the unstable case the degree of instability should be equal
to 2. This follows from the observation that

c1 − c2 =
(
c−mω2

)2
> 0.

for all c and ω (refer to the solution for Problem 3.9).
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6.2. Using the previous problem show the validity of Thomson–
Tait–Chetaev Theorems 6.5 and 6.6.

S o l u t i o n:

If we take into account the resistance forces −bẋ and −bẏ, then
Hurwitz’s criterion is satisfied for mω2 < c, and the stable system
becomes asymptotically stable. For mω2 > c Hurwitz’s criterion is not
satisfied and the stable system becomes unstable.

6.3. Two unstable potential systems are given:

I) q̈1 − q1 +2q2 +3q3 = 0 , II) q̈1 − q1 +2q2 +3q3 = 0 ,
q̈2 + 2q1 + q2 = 0 , q̈2 + 2q1 + q3 = 0 ,
q̈3 + 3q1 + q3 = 0 ; q̈3 + 3q1 + q2 + q3 = 0 .

Why are the systems potential? Why are they unstable? Is it possible
to stabilise them by gyroscopic forces?

Solutions:
1. Both systems are potential because the coordinate matrices are

symmetric.
2. In each case, to determine the stability of the system, Hurwitz’s

criterion is examined.
For the first system, we have−1 + λ2 2 3

2 1 + λ2 0
3 0 1 + λ2

 .

For λ = 0, the determinant of this matrix is evaluated to be -14.
Then, based on Hurwitz’s theorem, we can conclude that the first

system is unstable and could not be stabilised by adding gyroscopic
forces.

For the second system when λ = 0 we have the determinant∣∣∣∣∣∣
−1 2 3
2 0 1
3 1 1

∣∣∣∣∣∣ = 9 > 0.

For all other λ, this determinant becomes∣∣∣∣∣∣
−1 + λ2 2 3

2 λ2 1
3 1 1 + λ2

∣∣∣∣∣∣ =
λ2(λ4 − 1) + 6 + 6− 3λ2 − (λ2 − 1)− 4(1 + λ2) = λ4 − 9λ2 + 9.
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The negative sign in front of λ2 indicates that the system is unstable,
but it could be stabilised by adding gyroscopic forces to the system
(cf. Problem 3.9, where, for c < mω2, in the absence of the gyroscopic
forces −2mωẏ and 2mωẋ the system would be unstable. In fact, the
presence of these gyroscopic forces has made the system stable for all
c and ω.)

6.4. Kinetic and potential energies of a gyroscopic pendulum at
the upper vertical position of its axis of symmetry are, respectively,

T = 1
2 Jx(cos

2α β̇2 + α̇2) + 1
2 Jz(φ̇− β̇ sinα)2,

Π = Pl cosβ cosα,

where α and β are the angles which define the position of the axis of
gyroscope with respect to a vertical axis, φ is the angle of rotation
of the gyroscope, Jx and Jz are principle moments of inertia of the
gyroscope, P is its weight, and l is the distance from its centre of mass
to its point of suspension.

Using the cyclic integral:

∂T

∂φ̇
= Jz(φ̇− β̇ sinα) = H = const,

determine differential equations governing the motion of the gyroscopic
pendulum and find that value of the angular momentum H, for which
the upper position of the pendulum can be stabilised by gyroscopic
forces.

S o l u t i o n:

Assuming small angles α and β, the kinetic and potential energy of
the system are:

T = 1
2Jx

(
α̇2 + β̇2

)
+ 1

2Jz

(
φ̇− β̇α

)
,

Π = Pl
(
1− α2

2

)(
1− β2

2

)
= − 1

2Pl
(
α2 + β2

)
.

where the constant quantity
Pl

2
is ignored. Then, the Lagrange equa-

tions read as
Jxα̈ − Hβ̇ − Plα = 0,

Jxβ̈ + Hα̇− Plβ = 0,
H = ∂T

∂φ̇ = Jz (φ̇− φ̇ sinα)
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with the characteristic equation∣∣∣∣Jxλ2 − Pl −Hλ
Hλ Jxλ

2 − Pl

∣∣∣∣ = 0,

or

J2
xλ

4 +
(
H2 − 2JxPl

)
λ2 + P 2l2 = 0,

λ2 =
−
(
H2 − 2JxPl

)
±
√
(H2 − 2JxPl)

2 − 4J2
xP

2l2

2J2
x

=

=
−
(
H2 − 2JxPl

)
±

√
H4 − 4H2JxPl

2J2
x

.

When H > 2
√
JxPl, the expression under the square root sign will be

positive and both values of λ2 will be real and negative, and therefore
the pendulum will be stable in the first approximation.

6.5. The differential equations of a perturbed motion are:

Aq̈ +HG q̇ + Cq = 0.

Here A, G, and C are square (n× n) matrices of constants. Moreover,

A = A
T

is a positive definite symmetric matrix, composed from inertia
coefficients of the system; G = −GT

is a skew-symmetric matrix of
gyroscopic forces; C = C

T

is a symmetric matrix of potential forces; q
is a column matrix; H is a positive parameter. For H = 0 the system
is unstable.

Prove the following theorem. If gyroscopic forces satisfying the
following conditions:

1) detG ̸= 0,

2) the precession system HG q̇ + Cq = 0 is stable,

3) the roots of the characteristic equation are simple,

are applied to the unstable potential system, then for rather large values
of H, the unstable motion can be stabilised by these gyroscopic forces
[4].

(This is a rather difficult problem, and its solution of requires a
good level of insight.)
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S o l u t i o n:

Recall that for skew-symmetric matrices the determinant of an odd
order matrix vanishes, whereas for an even order matrix the deter-
minant is equal to the square of a rational function of its elements.
Therefore, the determinant of an odd order skew-symmetric matrix
whose elements are real numbers must be nonnegative (cf. Section 5.2
Matrices and Basic Operations, a) General definitions in [11]).

First, let us consider the equation

Aq̈ +HGq̇ + Cq = 0, (6.1)

and show that its characteristic equation

|Aλ2 +HGλ+ C| = 0, (6.2)

contains only the even powers of the unknown parameter λ. To this
end, denote the determinant in (6.2) as ∆(λ). Then, replacing λ by
−λ, we have

∆(−λ) =
∣∣Aλ2 −HGλ+ C

∣∣ .
Since interchanging the columns and rows will not change the determi-
nant, we have:

∆(−λ) =
∣∣ATλ2 −HGTλ+ CT

∣∣ .
Matrices A and C are symmetric, therefore, AT = A and CT = C.
Matrix G is skew-symmetric, so that GT = −G (cf. equation (5.16) in
[11]). Therefore, we can write

∆(−λ) =
∣∣Aλ2 +HGλ+ C

∣∣ = ∆(λ).

This expression proves that in the determinant given by (6.2) λ appears
only in the even powers.

From the condition that |G| ≠ 0 it follows that n, the order of
this matrix, is an even number. Now, let n = 2s. Now, based on
the condition stated in the problem, the system (6.1) is unstable when
H = 0. To prove that for large H this system becomes stable, it is
necessary and sufficient to show that for large H all roots of equation
(6.2) are pure imaginary, and all λ2 are real negative numbers.

To this end, for a large H, we introduce the small parameter µ =
H−1, and let

λ =
ν

H
= νµ.
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Then equation (6.2) becomes

∆(ν, µ) =
∣∣µ2Aν2 +Gν + C

∣∣ = 0, (6.3)

so that for µ = 0, we get

∆(ν, 0) = |Gν + C| = 0. (6.4)

Expanding the determinant (6.3) in powers of ν2, the coefficients of
the resulting equation will depend on the small parameter µ. Recalling
the theorem that asserts the continuous dependence of the roots of an
equation on its coefficients, we observe that for sufficiently small values
of µ, i.e., for large H, each of the n roots of the characteristic equation
(6.2) that corresponds to differential equation (6.1), is in the neighbour-
hood of the corresponding roots of equation (6.4). The roots of this
latter equation are pure imaginary since this equation contains only
the even powers of ν (this can be shown by using the same approach as
was used for equation (6.2)). Thus, under the stated conditions system
(6.2) is stable.

Denoting these roots by νki, each will correspond to a λk. Then, for
large H the n roots of equation (6.2) are in the vicinity of the following
roots

λ
(1)
k = ±νk

H
i (k = 1, . . . , n) . (6.5)

Next, let
λ = Hγ = µ−1γ. (6.6)

Substitute this expression for λ into equation (6.2), and divide the
resulting equation by µ−2n. As the result the characteristic equation
becomes

∆(γ, µ) =
∣∣Aγ2 +Gγ + µ2C

∣∣ = 0.

Upon dividing by γn, for µ = 0, we get

∆(γ, 0) = |Aγ +G| = 0. (6.7)

In a similar manner we can show that the n roots of equation (6.2)
are in the neighbourhood of the pure imaginary roots of (6.7). It should
be noted that equation (6.7) is not very different from equation (6.4),
and unlike matrix C, matrix A is positive definite. Denoting the roots
of (6.7) as γki, they are related to λk by means of (6.6). Thus, the n
roots of equation (6.2) will be in the vicinity of the following roots

λ
(2)
k = ±Hγki (k = 1, . . . , n). (6.8)
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Expressions (6.5) and (6.8) prove that for large H the unstable system
(6.1) may be stabilised by gyroscopic forces.

The following two remarks are in order:
1. The roots must be simple because in moving from equation (6.3)

to (6.4) if the roots of the characteristic equations (6.3) are not simple
then the roots of equation (6.4) can have small real parts.

2. The quantities
νk
H

in (6.5) and Hγk in (6.8) are the frequencies

of harmonic vibrations. The parameter H in a gyroscopic system is
proportional to the angular velocity of the gyroscope, which is very
large (150000-200000 rev./min). The equations obtained for frequencies
show that the frequencies

(
νk

H

)
are very small, with very large periods.

These represent the system precessions which can be damped slowly
in the presence of dissipative forces. The remaining frequencies (Hγk),
are very large with small periods. These represent the nutations of the
system which are damped very quickly in the presence of dissipative
forces. In practical application of theory of gyroscopes, as a rule, the
nutations are ignored.
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Chapter 7

The Stability of
Nonautonomous Systems

7.1. The differential equation of a perturbed motion is

ẍ+ aẋ+
(
2−

√
1− x2 sin3 t

)
x = 0,

where a = const.

What condition has to be satisfied by a, to ensure asymptotic sta-
bility of the system with respect to x and ẋ?

S o l u t i o n:

This equation is similar to equation (7.23) in [11]. For α(t, x, ẋ) =
const, this system is stable provided condition (7.43) in [11] is satisfied,
whereB and b are the maximum and minimum of the function β(t, x, ẋ).
In Problem 7.1 this function is

β = 2−
√
1− x2 sin3 t.

Obviously, B = 3 (for x = 0 and t = π), and b = 1 (for x = 0 and
t = π

2 ). Thus, in view of (7.43) in [11], the system is asymptotically

stable for a >
√
3− 1.
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7.2. A perturbed motion is defined by the following set of homo-
geneous linear differential equations with periodic coefficients

ẋ1 = −x1 +sin t · x2,
ẋ2 = cos t · x1 −x2 − sin t · x3
ẋ3 = cos t · x2 −x3.

Develop a computer program to integrate these equations over the time
interval [0, 2π] with initial conditions

xkj =

{
1, k = j
0, k ̸= 0

Obtain the fundamental matrix A. Find the roots of the characteristic
equation. Check your results for these roots and analyze the stability
of the system.

S o l u t i o n:

This system of linear differential equations with periodic coefficients
(the period is equal to 2π) should be integrated numerically using any
appropriate computer code. The interval of integration is [0, 2π] with
the given initial conditions. Then we can get the matrix corresponding
to (7.61) and an equation similar to (7.64) in [11]. Solving this equation
we obtain the roots of the characteristic equation:

ρ1 = 2.566519 · 10−5, ρ2,3 = 0.008405± 0.013532 i.

Since the moduli of these roots are less than one then the system is
asymptotically stable.

Using

p1p2p3 = exp

∫ 2π

0

(−3)dt

the accuracy or correctness of the results can be checked. The check
gives good agreement

ρ1ρ2ρ3 = 6.512428 · 10−9, exp−6π = 6.512412 · 10−9.

7.3. The equations of a perturbed motion are

ẋ1 = −x31 + cos 2t · x1x32,

ẋ2 =
(
1 + sin2 t

)
x21x

2
2 − 2x52.
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It is required to investigate the stability of the unperturbed motion
x1 = x2 = 0. (In the book [11], there is an error in the second equation.
The last term in this equation must have a coefficient of 2.)

S o l u t i o n:

We consider the following Liapunov function for this system:

V =
1

2

(
x21 + x22

)
.

This is a positive definite function and it is an implicit function of
time. Its derivative with respect to time is

V̇ = x1ẋ1 + x2ẋ2.

Substitute the expressions for ẋ1 and ẋ2 from (7.1) to get

V̇ = −x41 + cos 2tx21x
3
2 +

(
1 + sin2 t

)
x21x

3
2 − 2x62

in which after replacing cos 2t by cos2 t− sin2 t we can obtain

V̇ = −x41 +
(
1 + cos2 t

)
x21x

3
2 − 2x62. (7.1)

The expression in (7.1) is a quadratic function in terms of x21 and
x32. Let us prove that V̇ is a negative definite function. To this end we
use Sylvester’s criterion. The matrix of coefficients for the variables x21
and x32 is

A(x, t) =

(
−1 1

2

(
1 + cos2 t

)
1
2

(
1 + cos2 t

)
−2

)
.

From which we have

∆1 = a11 = −1, ∆2 = a11a22 − a12a21 = 2− 1

4

(
1 + cos2 t

)2
.

Thus,

∆1 ≤ δ1 = −1 < 0, ∆ ≥ δ2 = 1 > 0 ( for t = πn, n = 0, 1, 2, . . .).

These inequalities show that conditions (7.7) in [11] are satisfied,
and therefore, V̇ is a negative definite function with respect to x21 and
x32, and hence with respect to x1 and x2. Thus, V is positive definite,
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whereas its derivative with respect to time is negative definite. There-
fore, for the system given in (7.1) all conditions of Liapunov’s theorem
of asymptotic stability are satisfied.

7.4. Investigate the stability of a perturbed motion which is gov-
erned by the following equations:

ẋ1 =
cos2 t√
1 + sin2 t

x21 −
x1x

2
2√

1 + cos2 t

ẋ2 =
x21x2√

1 + cos2 t
− x22

S o l u t i o n:

Let us consider the positive definite function V = 1
2

(
x21 + x22

)
. By

virtue of the given expressions, the time derivative of this function is

V̇ =
cos2 t√
1 + sin2 t

x31 − x32.

The function V is positive definite in the whole x1, x2-plane, while
its derivative is positive, in the sense of Chetaev, in the domain x1 > 0,
x2 < 0. Thus, the equilibrium positions x1 = 0 and x2 = 0 are unstable
(Chetaev Theorem).

7.5. The equation of a perturbed motion is

ẍ+
(
k − 2 cos2 0.05 t

)
x = 0. (7.2)

Determine for what values of k parametric resonance occurs.

S o l u t i o n:

This equation could be easily transformed into Mathieu’s equation
(7.89) in [11]. To this end, we use

2 cos2 α = 1 + cos 2α.

Then (7.3) can be written as

d2x

dt2
+ (k − 1− cos 0.1t)x = 0. (7.3)
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Now, let us introduce the nondimensional time, τ = 0.1t, so that

dτ
dt = 0.1,

ẋ = dx
dt = dx

dτ
dτ
dt = 0.1dx

dτ ,

ẍ = 0.01d2x
dτ2 .

Then equation (7.4) can be written as

d2x

dτ2
+ (δ + ε cos τ)x = 0,

where

δ =
(k − 1)

0.01
; ε = −0.01.

For small ε parametric resonance occurs at the points δ =
n2

4
. These

points correspond to k = 1 +
n2

4
0.01 (n = 0, 1, 2, 3, . . .).
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Chapter 8

Structural Stability

Buckling analysis is an important consideration in the design of elastic
structures in various branches of engineering such as naval architecture,
missile and rocket manufacturing, and civil and mechanical structures.
In this Chapter the stability of elastic structures under static loading
is investigated. Three main methods used in such an investigation
are discussed briefly1. Using these approaches stability of equilibrium
states under conservative and non-conservative loads can be analyzed
by considering the corresponding critical loads.

Equilibrium method of stability analysis. Euler approach
In classical problems of linear elasticity where infinitely small de-

formations are assumed, the equilibrium conditions are assumed to be
satisfied by the forces acting on the undeformed elastic system. This as-
sumption which is essential for Kirchhoff’s general uniqueness theorem
[9, 12]leads to unique solutions for such linear problems. On the other
hand, in formulating buckling problems this assumption is dropped
and the equilibrium conditions are satisfied by the forces acting on the
deformed elastic system. This leads to an essentially nonlinear formu-
lation of such problems in the sense that displacements are not linearly
proportional to the externally applied loads, and, in fact, often the de-
formation of a structure will not be uniquely determined by the applied
loading.

1 In some literature a fourth method, called ”imperfection method” is also con-
sidered [14].
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According to Kirchhoff’s theorem there is only one set of solutions of
stresses, strains, and displacements for an elastic body in equilibrium,
satisfying all basic equations of linear elasticity for a given body force
and boundary conditions. In fact, any two sets of solution for the same
body force and boundary conditions, at most may differ only by the
rigid body displacement of the system, i.e., the difference in any two sets
of solution describes the rigid body motion of the system. Therefore,
the solution of the such a linearly formulated problem is always stable.
The sufficient condition required for satisfying Kirchhoff’s theorem is
that the potential energy of the elastic system should be a positive
definite function.

Buckling equations are obtained by considering variations of the
nonlinear equations. To this end, each unknown x in these equations
is replaced by x0 + δx. Here, the x0 describe the ”initial equilibrium”
state. The stability of this initial state which satisfies the nonlinear sys-
tem of equations is to be investigated. The δx describe adjacent equi-
librium states that are infinitesimally close to the initial state. They
satisfy the linear homogeneous equations (the buckling equations) and
the homogeneous boundary conditions, that are obtained as the result
of linearizing the initial nonlinear equations by δx (see Section 1.1 in
[11]). Then, considering the non-trivial solutions of the buckling equa-
tion the critical load(s) may be determined. In dealing with buckling
problems it is convenient to assume that the load varies proportion-
ally to a loading parameter λ > 0. Then, the variables x0 describing
the initial equilibrium state and the coefficients of the buckling equa-
tion depend on λ. In this way, the buckling problem is reduced to an
eigenvalue problem. The least (positive) eigenvalue is taken as the first
critical value λ = λ∗ leading to the corresponding buckling mode. Such
an approach is called equilibrium or Euler analysis of stability due to
L. Euler who in 1744 used this approach to study the stability of axially
compressed bars. His paper [7] is considered to be the first work on
structural stability.

Example 8.1

Apply Euler analysis to obtain the critical buckling load for a simply
supported bar under axial compression (Fig. 8.1).

Here E is Young’s modulus, I is the moment of inertia of the cross-
section of the bar with respect to the axis about which the buckling is
being considered, l is the bar length, and P is the axial force.
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Figure 8.1: Example 8.1

S o l u t i o n:

The equilibrium of the bar is governed by the equation

EI
d4w

dx4
+ P

d2w

dx2
= 0, (8.1)

where w is the lateral displacement of the bar. The boundary conditions
for a simply supported bar are

w (0) = 0,
d2w

dx2

∣∣∣∣
x=0

= 0, w (l) = 0,
d2w

dx2

∣∣∣∣
x=l

= 0.

We seek those values of P for which the system admits nontrivial
equilibrium states. To this end, we consider the solution of (8.1) in the
form

w (x) = A sin kx+B cos kx+ Cx+D (8.2)

where

k2 =
P

EI
or P = EIk2.

Substituting (8.2) into the boundary conditions we get

B = C = D = 0, sin kl = 0. (8.3)

The lowest non-zero value of kl satisfying (8.3) is π. Therefore,

Pcr =
π2EI

l2
.
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This approach suffers from a few shortcomings that need to be
pointed out. Firstly, this approach does not address the question of
stability of a structure directly. It deals with this question in a rather
indirect manner by seeking the loading(s) at which there exist infinites-
imally close adjacent equilibrium states. Secondly, the Euler approach
can not consider the mass distribution in the system. Finally, under
some circumstances it may provide the wrong results. Examples of such
cases are either

1) when the initial equilibrium state becomes unstable without any
infinitesimally close equilibrium states appearing, and the system starts
to experience flutter (see second part of solution of Problem 8.1);

2) when the equilibrium state under investigation is stable and the
close equilibrium states exist, yet they are unstable (see [14]). More-
over, for many non-conservative systems the results obtained by means
of equilibrium approach are not correct (for example, stability analysis
of a bar under an axial compressive follower force). Nevertheless, for a
large number of conservative systems this approach provides correct re-
sults. Unfortunately, to date no reliable criteria have been established
that can be used to classify the type of problems or the conditions for
which equilibrium method will yield the correct results.

Energy method of stability analysis. Lagrange–Dirichlet
approach.

In the stability analyses of an equilibrium state it is convenient
to make use of energy principles. These are based on the Lagrange–
Dirichlet theorem that states: If for a mechanical system under static
conservative forces with ideal holonomic constraints2 the potential en-
ergy at an equilibrium state attains a strict minimum (i.e., is positive
definite), then this state is stable. For example, to prove that a system
with one degree of freedom has a stable equilibrium state, we should
evaluate the potential energy of the system Π, and prove that Π′ = 0
and Π′′ > 0 at this state.

Example 8.2

Investigate the stability of the buckled bar given in Example 8.1.
Such a buckled form represents the post-buckling state of the bar.

2 The work done by ideal constraints during any virtual displacements is zero.
Holonomic constraints do not depend on velocities and accelerations.
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S o l u t i o n:

When one end of the bar is allowed to be displaced only in the
axial direction, then the main post-buckling deformation is of bending
form. We assume that the bar is inextensible along its longitudinal axis
(elastic axis). Then, the axial displacement u(s) is

u (s) = −
∫ s

0

(1− cos θ) ds,

where s is the length along the elastic axis (Fig. 8.1), and θ =
dw

ds
is

the slope of the buckled bar.
The bending moment is

M = EI
dθ

ds
,

so that the potential energy of the bar becomes

Π =

∫ l

0

[1
2
EI

(
dθ

ds

)2

− P (1− cos θ)
]
ds

For small, yet finite deformations the deformed elastic curve may be

approximated by the first mode, i.e., w1 = sin
πs

l
. Then, the solution

for the buckled bar in the first approximation can be given as

θ (s) = cθ1 (s) , where θ1 (s) = cos
πs

l

Since θ is small we have

cos θ = 1− 1
2θ

2 + 1
24θ

4 − · · · ,

1− cos θ = 1
2θ

2 − 1
24θ

4 − · · ·

Then,

Π ≃ EIπ2c2

4l
−Pc

2l

4
+
Pc4l

64
=
EI

4l

[
c2− P

Pcr
c2+

P

16Pcr
c4
]
, Pcr =

π2EI

l2

and

Π′
c ≃

EI

4l

[
2c

(
1− P

Pcr

)
+

P

4Pcr
c3
]
, (8.4)
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Π′′
c ≃ EI

4l

[
2

(
1− P

Pcr

)
+

3P

4Pcr
c2
]

Equation (8.4) has two roots: c1 = 0 which corresponds to the unde-

formed bar, and c2 = ±2
√
2

√
(P − Pcr)

P
which exists only for P > Pcr,

and corresponds to the buckled form represented by the first mode.
For c = 0

Π′′
c =

EI

2l

(
1− P

Pcr

)
is positive only when P < Pcr, i.e., the undeformed bar is stable for all
P less than the critical load while it is unstable for all P > Pcr. For

c2 =
8 (P − Pcr)

P

Π′′
c =

EI

4l

[
2

(
1− P

Pcr

)
+

3P

4Pcr

8 (P − Pcr)

Pcr

]
≃ 4EI

l

(P − Pcr)

Pcr

is positive when P > Pcr, i.e, the buckled bar is stable for all P >
Pcr. For a more detailed treatment of this problem one may refer to
[1, 14, 5, 3].

Kinetic method of stability analysis. Lagrange–Liapunov
approach

The most general approach to stability analysis is to consider the
free vibration of the elastic system about its equilibrium state and in-
vestigate the perturbation of this motion. This method, referred to as
the kinetic method of stability analysis, was initially proposed by La-
grange for conservative mechanical systems. Later on, A.M. Liapunov
developed a rigorous mathematical theory of stability of motion. To
this end, he proposed that the equilibrium state (or equilibrium motion)
of a mechanical system is considered stable if the deviation from this
state is as small as desired for any sufficiently small perturbation. The
kinetic analysis can be applied to determine the stability of equilibrium
state in any structural problem, but it should be noted that the stability
analysis of a perturbed motion is a much more difficult problem than
that considered in the Euler approach in which one determines those
loading conditions for which the system admits nontrivial equilibrium
states.

Therefore, unless absolutely necessary, the kinetic analysis is rarely
used in the stability analysis of equilibrium states. It is important to
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note, however, that for certain stability problems this method is the
only viable and reliable approach. Examples of such problems are the
stability analysis of motion under dynamic and or non-conservative
loads, such as the motion of an elastic body in a gas flux, and analysis
of problems due to parametric instability.

A load is considered to be conservative, if the work done by it during
a deformation depends only on the two initial and final states of defor-
mation and is independent of its path. In particular, a load that does
not change in magnitude and direction is conservative. However, these
loads do not comprise the entire class of conservative loads. Hydrostatic
pressure forces, the direction of which depend on the deformation state,
are also conservative. Note that only the dynamic analysis will yield
correct results when non-conservative forces are involved3.

Example 8.3

Using kinetic analysis investigate the stability of the equilibrium
state w = 0 for the simply supported bar under axial compression
(Fig. 8.1). The bar has a material density of ρ. (Note that, unlike in
equilibrium method, using the kinetic approach one needs to know the
mass distribution of the system.)

S o l u t i o n:

The small free vibrations of the bar near the equilibrium state w = 0
are given by

EI
∂4w

∂x4
+ P

∂2w

∂x2
+ ρ

∂2w

∂t2
= 0, (8.5)

where t is time. The general solution of (8.5) has the form

w (x, t) = A sin (ωt+ α)W (x) ,

where A and α may be found from the initial conditions. The equilib-
rium state is stable if the frequency ω is real. Otherwise we have two
complex conjugate frequencies that correspond to two solutions one of

3 According to [11] (see Section 6.2) a force R = −Pq whose components are
linear functions of the generalized coordinates q with a skew-symmetric matrix of
coefficients P = (pkj) is called a non-conservative force.
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which increases unbounded with time. To determineW (x) we consider
the equation

EI
d4W

dx4
+ P

d2W

dx2
− ρω2W = 0, (8.6)

with the boundary conditions

W (0) = 0,
d2W

dx2

∣∣∣∣
x=0

= 0, W (l) = 0,
d2W

dx2

∣∣∣∣
x=l

= 0.

The characteristic equation of (8.6) is

k4 + λk2 − Ω2 = 0, λ =
P

EI
, Ω2 = ω2 ρ

EI

and its solution has the general form

W (x) = A sinh k2x+B cosh k2x+ C sin k1x+D cos k1x, (8.7)

where k21 = 1
2

(√
λ2 + 4Ω2 + λ

)
, and k22 = 1

2

(√
λ2 + 4Ω2 − λ

)
. Substi-

tuting (8.7) into the boundary conditions we get B = D = 0, and∣∣∣∣ sinh k2l, sin k1l
k22 sinh k2l, −k21 sin k1l

∣∣∣∣ = 0.

The lowest non-zero solution of this equation is k1l = π. We note

that Ω is real if Ω2 = k21
(
k21 − λ

)
≥ 0, i.e., if λ ≤ k21 =

π2

l2
. Then the

critical load corresponds to the largest λ for which the last inequality

holds, i.e., Pcr =
π2EI

l2
. The equilibrium state is stable if P < Pcr.

Problems

8.1. The horizontal pipe AB carries a fluid as shown in Fig. 8.2.
The pipe has a length L, modulus of elasticity of E, and the moment
of inertia I. The velocity of the flow is V with a mass of m per second
flowing through the pipe. Determine the stability of the tube if:

1) both ends of the pipe are simply supported;
2) one end of the pipe is fixed with the other end being free.

S o l u t i o n:

The equilibrium equation of the pipe is

EI
d4y

dx4
+mV

d2y

dx2
= 0 (8.8)



99

Figure 8.2: Problem 8.1.

or
d4y

dx4
+K2 d

2y

dx2
= 0,

where K2 = mV
EI .

The solution of this equation has the form

y = A sinKx+B cosKx+ Cx+D.

1) If both ends of the pipe are simply supported then the boundary
conditions are:

y (0) = 0,
d2y

dx2
|x=0 = 0, y (L) = 0,

d2y

dx2
|x=L = 0.

From these conditions it follows that

B = 0, C = 0, D = 0

and sinKL = 0. This means that the critical value of the flow param-
eter is

(mV ) |cr =
π2EI

L2
.

2) If one end of the pipe is fixed with the other end being free, then
the boundary conditions become:

y (0) = 0,
dy

dx
|x=0 = 0,

d2y

dx2
|x=L = 0

d3y

dx3
|x=L = 0. (8.9)
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In this case, no non-trivial solution to equation (8.8) is available that
can satisfy the boundary conditions (8.9). Hence, in this case we should
consider the equation of perturbed motion:

m

V

∂2y

∂t2
+mV

∂2y

∂x2
+ EI

∂4y

∂x4
= 0

or
∂4y

∂x4
+
mV

EI

∂2y

∂x2
+

m

EIV

∂2y

∂t2
= 0.

Using separation of variables y (x, t) = X (x)T (t) , we get

1

X

(
d4X

dx4
+K2 d

2X

dx2

)
= − m

EIV

1

T

d2T

dt2
= Λ2.

From these two equalities we conclude that

d2T

dt2
+

ΛEIV

m
T = 0, T = A sin (ωt+ α) , ω2 =

ΛEIV

m

and
d4X

dx4
+K2 d

2X

dx2
− ΛX = 0. (8.10)

The characteristic equation of (8.10) is

s4 +K2s2 − Λ = 0

with the roots

s21 =

√
K4 + 4Λ−K2

2
, s22 = −s̃22 =

√
K4 + 4Λ +K2

2
, (8.11)

so that the solution of equation (8.10) can be given as

X (x) = A sin s̃2x+B cos s̃2x+ C sinh s1x+D cosh s1x.

From boundary conditions (8.9) we have

X (0) = 0,
dX (0)

dx
= 0,

d3X (L)

dx3
= 0

d2X (L)

dx2
= 0.

Using these we get

B = −D, As̃2 = −Cs1
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and

Cs1 (s̃2 sin (s̃2L) + s1 sinh (s1L))+D
(
s̃22 cos (s̃2L) + s21 cosh (s1L)

)
= 0

Cs1
(
s̃22 cos (s̃2L) + s21 cosh (s1L)

)
+D

(
s31 sinh (s1L)− s̃32 sin (s̃2L)

)
= 0.

The last two equations constitute a system of linear homogeneous
equations in C and D, the determinant of which must vanish in order
to provide a non-trivial solution, i.e., characteristic equation of the
perturbation becomes:

s41+s̃
4
2+2s21s̃

2
2 cos (s̃2L) cosh (s1L)−s1s̃2

(
s21 − s̃22

)
sinh (s1L) sin (s̃2L) = 0.

Now from relations (8.11) we get

s41 + s̃42 = K4 + 2Λ, s21s̃
2
2 = Λ, s̃22 − s21 = K2.

Using these expressions the characteristic equation reduces to

F (K,Λ) = K4+2Λ+2Λ cos s̃2L cosh s1L+
√
ΛK2 sinh s1L sin s̃2L = 0,

or in dimensionless form to

F
(
K̄, Λ̄

)
= K̄2 + 2Λ̄ + 2Λ̄ cos s̄2 cosh s̄1 +

√
Λ̄K̄ sinh s̄1 sin s̄2 = 0.

Here
s̄2 = s̃2L, s̄1 = s1L,

with the nondimensional frequency parameter Λ̄, and the nondimen-
sional parameter K̄ that characterizes the flow, defined as

Λ̄ = ΛL4 = ω2mL
4

EIV
, K̄ = K2L2 =

mV L2

EI
.

The dependence of K̄ on the frequency parameter Λ̄ is shown in
Fig. 8.3.

At the limit point N (K̄cr ≃ 20.19) the first and the second fre-
quencies of the system coalesce and for K̄ > K̄cr the system becomes
unstable. Hence, the critical parameter of the flow is

(mV ) |cr ≃ 20.19EI

L2
.

8.2. Use the kinetic approach to investigate the stability of the
equilibrium state w = 0 of a massless bar when subjected to the axial
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Figure 8.3: The dependence of K̄ on the frequency parameter Λ̄

Figure 8.4: Problem 8.2.

follower force. The bar is clamped at the bottom but it carries a mass
m at its top (Fig. 8.4).

S o l u t i o n:

The governing differential equation of the beam is

EI
d4w

dx4
+ P

d2w

dx2
= 0 (8.12)

with the boundary conditions

w = w′ = 0 at x = 0; and w′′ = 0, EIw′′′ = m
∂2w

∂t2
at x = l.

We consider the solution in the form

w(x, t) = f(x) sin(λt+ ε), (8.13)
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where λ is the frequency, and f(x) and ε are unknowns. Substituting
(8.13) into (8.12) we get

f IV + k2f ′′ = 0, k2 =
P

EI
.

Hence, the solution has the form

f(x) = A+Bx+ C cos kx+D sin kx

Substituting this into the boundary conditions we get the characteristic
equation from which we get

λ2 =
k3EI

ml3
1

sin kl − kl cos kl
.

Then the displacement of the bar is given by

w(x, t) = C(tan kl − kx+ sin kx− tan kl cos kx) sin(λt+ ε).

When λ is real the beam oscillates about the equilibrium state w =
0, otherwise it will diverge from this state. Therefore, the system is
stable if

k3EI

ml3
1

sin kl − kl cos kl
≥ 0.

Letting z = kl, the following inequality will be satisfied

sin z ≥ z cos z

when 0 ≤ z ≤ 4.493. The critical load corresponds to the largest value
of z for which the above inequality holds, i.e.,

Pcr =
20.19EI

l2
.

For P ≤ Pcr the system is stable.

8.3. The equilibrium equation for a cylindrical shell spinning with
a constant angular velocity around its axis of symmetry is:

L0U + 2ωΩLcU +Ω2LΩU + ω2U = 0,
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where

Lc =

0 0 0
0 0 1
0 1 0

 LΩ =

−m2 0 0
0 −m2 2m
0 2m −m2

 .

Here m is the circumferential wave number, Ω is the angular veloc-
ity of the spin , ω is the natural frequency of shell vibrations, and
U = (u, v, w) is the displacement vector with (u, v, w) being the dis-
placement components in the local coordinate system along the axial,
circumferential and normal directions, respectively. L0 is a linear dif-
ferential operator describing the non-spinning shell. Investigate the
stability of the shell.

S o l u t i o n:

We will use the static analysis, i.e., we will try to determine if there
exist any angular velocities (critical speeds) for which the frequency
ω would vanish. Consider the non-spinning shell, the equilibrium of
which is described by

L0U0 + ω2
0U0 = 0,

where U0 and ω0 denote, respectively, the mode shape and the natu-
ral frequency of the non-spinning shell. Assuming that the displace-
ments of the spinning shell are approximately equal to those of the
non-spinning shell, we have

2ωΩLcU +Ω2LΩU + ω2U − ω2
0U = 0.

The characteristic equation of this is

|2ωΩLc +Ω2LΩ + ω2I − ω2
0I| = 0,

where I is the identity matrix. This equation has six roots:

ω = −
√
Ω2m2 + ω2

0 ,

ω =
√
Ω2m2 + ω2

0 ,

ω = −Ω−
√
Ω2 (1−m)

2
+ ω2

0 ,

ω = −Ω+
√
Ω2 (1−m)

2
+ ω2

0 ,

ω = Ω−
√

Ω2 (1 +m)
2
+ ω2

0 ,

ω = Ω+
√

Ω2 (1 +m)
2
+ ω2

0 .
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When Ω ̸= 0, and ω ̸= 0, only the fourth root will vanish provided
m = 1. Thus, the critical speed is equal to ω0. A similar result can be
obtained for spinning shafts.

8.4. The critical axial compressive load for a cylindrical shell of
medium height, i.e., when

√
h/R < L/R <

√
R/h, where h is the shell

thickness, L is the shell height and R is the shell radius, can be deter-
mined by using the equations of shallow shells. Using non-dimensional
variables the governing differential equations of a cylindrical shell with
an initial imperfection w̃ are ([6]):

∆2w − ∂2Φ

∂x2
− L (w̃ + w,Φ) = 0,

(8.14)

∆2Φ+
∂2w

∂x2
+

1

2
L (w,w) + L (w̃, w) = 0,

where w is the deflection function, Φ is the force function and,

∆ =
∂2

∂x2
+

∂2

∂y2
, L (u, v) =

∂2u

∂x2
∂2v

∂y2
+
∂2v

∂x2
∂2u

∂y2
− 2

∂2u

∂x∂y

∂2v

∂x∂y
.

Here x and y represent the coordinates in the axial and circumfer-
ential directions, respectively. Moreover, the non-dimensional variables
are related to their corresponding physical variables (*) as follows:

w =
w∗c

h
, w̃ =

w̃∗c

h
, (x, y) =

(x∗, y∗)
√
c√

hR
, Φ =

Φ∗c2

Eh3
,

where E is Young’s modulus, ν is Poisson’s ratio, and c2 = 12
(
1− ν2

)
.

The resultant force T , representing the load parameter, is

T =
∂2Φ

∂y2
, T =

T ∗Rc

Eh2
.

1) Determine the stability of a simply supported shell. (Ignore the
boundary conditions in the circumferential direction.)

2) For a cylindrical shell with an axisymmetric imperfection w̃ =
ξ cosx, investigate its bifurcation into a non-axisymmetric form with
equal wavelengths in the axial and circumferential directions.

S o l u t i o n:

1) We represent the stress function as Φ =
Ty2

2
+ Φa, where Φa is

some additional stress function. Next, linearizing system (8.14) gives
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the governing differential equations for a shell without the initial im-
perfections, i.e., for a shell with w̃ = 0,

∆2w − ∂2Φa

∂x2
− T

∂2w

∂x2
= 0, ∆2Φa +

∂2w

∂x2
= 0,

or

∆4w −∆2 ∂
2Φa

∂x2
− T∆2 ∂

2w

∂x2
= 0, ∆2Φa = −∂

2w

∂x2
;

and finally as

∆4w − T∆2 ∂
2w

∂x2
+
∂4w

∂4x
= 0. (8.15)

First, we assume that the buckling mode of the shell is axisymmet-
ric. Then equation (8.15) becomes

d8w

dx8
− T

d6w

dx6
+
d4w

dx4
= 0, (8.16)

and we seek the solution of this equation as

w =W sin
πnx∗

L
=W sinλx, with λ =

πn
√
hR

L
√
c
,

where n is wave number in the axial direction, and

w (0) = w (L) =
d2w (0)

dx2
=
d2w (L)

dx2
.

Substituting the assumed solution into equation (8.16) we get

W
[
λ8 + Tλ6 + λ4

]
= 0, or T = −

(
λ2 + λ−2

)
,

so that the critical load (min |T |) is equal to −2 for λ = 1. In terms of

dimensional variables Tcr =
Eh2√

3(1− ν2)R
.

Next, we assume that the buckling mode is non-axisymmetric, i.e.,
w =W sin(px+α) sin(qy+ β), where α and β can be equal to either 0
or π. Then, after substitution into equation (8.15), we obtain

W
[(
p2 + q2

)4
+ T

(
p2 + q2

)2
p2 + p4

]
= 0, or

−T = f (p, q) =
(p2+q2)

2

p2 + p2

(p2+q2)2

.
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In our investigation of buckling, we are interested only in the lowest
eigenvalue. Therefore,

Tcr = −2 when p2 + q2 = p. (8.17)

Thus, according to the classical shell theory there exist an infinite
number of buckling modes that are characterised by the wave length
parameters p and q in the axial and circumferential directions, respec-
tively. These parameters must satisfy the relation p2 + q2 = p. For
example, a pair (p, q)=(1, 0) determines an axisymmetric mode.

Experimental results have indicated that for buckling of shells the
wavelength parameters in the axial and circumferential directions are
close to each other [13]. The ”squares” form with p ≈ q is the most
sensitive to the imperfections ( [10, 8]).

2) Here we consider a cylindrical shell with an initial axisymmetric
imperfection w̃ = ξ cosx that buckles into a non-axisymmetric form
with equal wavelengths in the axial and circumferential directions. In
this case, the pre-buckling axisymmetric deformation w0 of the shell
may be obtained from the equations

d4w0

dx4
− T

d2 (w0 + w̃)

dx2
− d2Φ0

d2x2
= 0,

d4Φ0

dx4
+
d2w0

dx2
= 0,

or
d4w0

dx4
− T

d2w0

dx2
+ w0 = −T d

2w̃

dx2
, w0 =

−Tξ
T + 2

cosx.

For the non-axisymmetric component of the deflection function, w1,
and the load function, Φ1, we get from (8.14)

∆2w1 − T
∂2w1

∂x2
− ∂2Φ1

∂x2
+
∂2Φ1

∂y2

(
2ξ

2 + T

)
cosx− Tξ

2 + T

∂2w1

∂y2
= 0,

(8.18)

∆2Φ1 +
∂2w1

∂x2
− ∂2w1

∂y2

(
2ξ

2 + T

)
cosx = 0. (8.19)

According to (8.17), if the non-axisymmetric form has equal wave-
lengths in the axial and circumferential directions, then p = q = 1/2,
and we should seek the buckling mode in the form w =W1 cos

x
2 cos y

2 .
In [10, 8] it is shown that the lowest buckling load corresponds to this
mode. Equation (8.19) gives

Φ1 = F1 cos
x

2
cos

y

2
+ F3 cos

3x

2
cos

y

2
+ · · · , F1 ≃W1

(
1− ξ

2 + T

)
.
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Substitution into equation (8.18) results in

1

4
W1

[
1 + T + 1− 2ξ

2 + T
+

Tξ

2 (2 + T )

]
= 0,

or, considering that T is close to the classical load −2, for ξ ≪ 1

2 + T − 3ξ

2 + T
= 0, or T = −2 +

√
3ξ.

Hence, if the amplitude of the initial axisymmetric imperfection is
equal to ξ, then the absolute value of the critical load (bifurcation load)
decreases by

√
3ξ, or, in dimensional variables,

Tcr =
Eh2√

3(1− ν2)R

(
1− 33/4(1− ν2)1/4ξ∗

1/2

2h1/2

)
,

where ξ =
ξ∗c

h
.



Chapter 9

Frequency Method of
Stability Analysis

9.1. The governing differential equations of a gyroscope are

dϑ

dt
= −ϑ− σ,

dσ

dt
= ϑ+ σ − φ(σ),

where ϑ is the roll angle of the plant, σ is a parameter which is propor-
tional to the angle of rotation of the inner gimbals of the gyroscope,
φ(σ) is the function that describes the change of the control moment,
i. e., and satisfies the following conditions:

φ(0) = 0, φ(σ)σ > 0 for σ ̸= 0,

∫ ∞

0

φ(σ)dσ = ∞.

Investigate the stability of the system.

S o l u t i o n:

Find the transfer function (from the input −φ to the output σ):

pϑ = −ϑ− σ,
pσ = ϑ+ σ − φ.
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To eliminate ϑ, from the first equation we have

(p+ 1)ϑ = −σ, ϑ = − σ

p+ 1
,

which upon substitution into the second equation gives

pσ = − σ

p+ 1
+ σ − φ,

or, (
p2 + p

)
σ = −σ + pσ + σ − (p+ 1)φ.

Therefore,

σ = −p+ 1

p2
φ, W (p) =

p+ 1

p2
.

We have the critical case with two zero poles. Using Theorem 9.3
of the book [11], we get

α = lim
p→0

p2
p+ 1

p2
= 1 > 0,

ρ = lim
p→0

d

dp

[
p2
p+ 1

p2

]
= 1 > 0,

W (iω) =
iω + 1

−ω2
, ℑW (iω) = − 1

ω
, π (ω) = ω

(
− 1

ω

)
= −1 < 0

Thus the given system is absolutely stable.

9.2. The behaviour of a gyroscopic system that controls the ori-
entation of a spaceship in the pitch plane is described by the following
equations:

au̇ + Hv = 0,

bv̇ − Hu+ εv = φ(σ),

σ̇ = u.

Here H is the angular momentum of the gyroscope about its axis of
rotation, σ is the pitch angle, v = β, is the precession angle of the gy-
roscope, ε is the coefficient of viscous friction, a and b are the principal
moments of inertia, φ(σ) is the nonlinear characteristic of the control
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moment that satisfies the following conditions (see Fig. 9.1 and (9.13)
of the book [11]):

φ(0) = 0, 0 <
φ(σ)

σ
< k ≤ +∞, σ ̸= 0.

Determine the conditions for absolute stability.

S o l u t i o n:

Find the transfer function (from the input −φ to the output σ):

apu + Hv = 0,
bpv − Hu+ εv = φ,
pσ = u.

To eliminate u and v, from the first and the third equations we have

u = pσ, v = −ap
H
u = −ap

2

H
σ,

which after substituting into the second equation we get

−abp
3

H
σ −Hpσ − aεp2

H
σ = φ

σ = − H

abp3 + aεp2 +H2p
φ,

W (p) =
H

abp3 + aεp2 +H2p
.

We have the critical case with a single zero pole. Using Theorem 9.2,
we get

ρ = lim
p→0

pW (p) =
1

H
> 0

W (iω) =
H

−aεω2 + iω (H2 − abω2)
= H

−aεω2 + iω
(
abω2 −H2

)
a2ε2ω4 + ω2 (H2 − abω2)

2 .

Now, we check frequency condition (9.14) in [11]:

1

k
+ ℜ [(1 + iωϑ)W (iω)] ≥ 0.
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Letting 1
Hk = µ, this condition becomes

µ
[
a2ε2ω4 + ω2

(
H2 − abω2

)2]
+

ℜ
[
(1 + iωϑ)

(
−aεω2 + iω

(
abω2 −H2

))]
≥ 0

,

or

µa2ε2ω4+µa2b2ω6−2µH2abω4+µH4ω2−aεω2+ϑH2ω2−ϑabω4 ≥ 0.

Dividing by ω2, and denoting ω2 = t, we have

µa2b2t2 +
(
µa2ε2 − 2µH2ab− ϑab

)
t+ µH4 + ϑH2 − aε ≥ 0.

Next, we obtain the determinant

D =
(
µa2ε2 − 2µH2ab− ϑab

)2 − 4µa2b2
(
µH4 + ϑH2 − aε

)
=

µ2a4ε4 + 4µ2H4a2b2 + ϑ2a2b2 − 4µ2H2a3bε2 − 2µϑa3bε2

+4µH2ϑa2b2 − 4µ2H4a2b2 − 4H2µϑa2b2 + 4µa3b2ε =

a2b2ϑ2 − 2µa3bε2ϑ+ µa3ε(µaε3 + 4b2 − 4µH2bε) < 0.

It is necessary to find a ϑ such that D < 0. Here D is a quadratic
polynomial in terms of ϑ, so that D → ∞ as |ϑ| → ∞. If ∆ > 0, we
need to find a real ϑ such that D < 0:

∆ = 4µ2a6b2ε4 − 4a2b2
(
µ2a4ε4 + 4µa3b2ε− 4µ2H2a3bε2

)
> 0,

or
4µ2H2a3bε2 − 4µa3b2ε > 0,

or

µH2ε > b, or
1

kH
H2ε > b.

Thus, for a nonlinear system, we obtained the following sufficient con-
dition for absolute stability

Hε > kb

which satisfies condition (9.13) in [11], i. e., 0 <
φ(σ)

σ
< k for σ ̸= 0,

φ(0) = 0.
It’s easy to check, that the condition

Hε ≥ kb (9.1)
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is necessary for absolute stability under condition (9.13) in [11]. In
fact, if we consider φ(σ) = λσ, then we have a linear system whose
characteristic polynomial,

abp3 + aεp2 +H2p+Hλ

satisfies Hurwitz’s condition for aεH2 > abHλ, i. e., Hε > bλ. If
condition (9.1) does not hold, then there exists a λ ∈ (0, k) such that
Hε < bλ, and the linear system is not asymptotically stable.

9.3. Consider the control system of a steam turbine with a hy-
draulic amplifier. The feedback is by means of a slider with friction.
Under some simplifying assumptions the control system is described by
following equations:

ζ̇ = η2,

η = ζ + φ(η2),

τ1η̇1 + η1 = −η,
τ2η̇2 + η2 = η1.

The second equation describes the behaviour of the intermediate
amplifier; ζ, η1, η2, and η are variable parameters that describe the
state of the system; τ1 and τ2 are the relative time constants; φ(η2) is
the characteristic of the frictional force that satisfies the conditions

φ(0) = 0, φ(η2)η2 > 0 for η2 ̸= 0.

Determine under what conditions absolute stability prevails.

S o l u t i o n:

Find the transfer function (from the input −φ to the output η2):

pζ = η2, (τ1p+ 1) η1 = −ζ − φ(η2), (τ2p+ 1) η2 = η1.

Eliminate ζ and η1 to get

(τ1p+ 1) (τ2p+ 1) η2 = −η2
p

− φ.

η2 = − p

τ1τ2p3 + (τ1 + τ2) p2 + p+ 1
φ.
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W (p) =
p

αp3 + βp2 + p+ 1
,

where α = τ1τ2, β = τ1+τ2. In Example 9.4 in [11] it is shown that this
transfer function satisfies the frequency condition (9.14) of Theorem 9.1
for τ1 + τ2 > τ1τ2.

9.4. Consider a control system of a steam turbine with two am-
plifiers connected in series and the steam boiler. The piston of the
system actuator is subjected to a nonlinear friction. The equations of
the system are

ζ̇ = −π,
ψη η̇ = ζ − η,

ξ̇ = φ(σ), σ = η − ξ,

ψππ̇ + π = ξ.

In these equations, ϑ, η, ξ, and π are relative coordinates of the ma-
chine, the preliminary amplifier, the actuator and steam pressure, re-
spectively, ψη and ψπ are the relative positive time constants of the
preliminary amplifier and the steam boiler. The nonlinear friction sat-
isfies the conditions

φ(0) = 0, for σ ̸= 0 φ(σ)σ > 0,

∫ ∞

0

φ(σ)dσ = +∞.

Determine the domain of absolute stability.

S o l u t i o n:

Find the transfer function (from the input −φ to the output σ):

pζ = −π, ψηpη = ζ − η, pξ = φ,

(ψπp+ 1)π = ξ, σ = η − ξ.

Eliminate all variables except σ and φ:

ξ =
φ

p
, π =

ξ

ψπp+ 1
=

φ

p (ψπp+ 1)
,

η =
ζ

ψηp+ 1
= − π

p (ψηφ+ 1)
= − φ

p2 (ψπp+ 1) (ψηp+ 1)
,
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σ = η − ξ = −
[

1

p2 (νp2 + µp+ 1)
+

1

p

]
φ,

where ν = ψηψπ, and µ = ψη + ψπ.
Therefore

W (p) =
νp3 + µp2 + p+ 1

p2 (νp2 + µp+ 1)
.

We have the critical case with two zero poles. Using Theorem 9.3, we
have

α = lim
p→0

p2W (p) = 1 > 0.

ρ = lim
p→0

d

dp

(
p2W (p)

)
=

1− µ

(1)2
= 1− µ > 0.

Now, the following conditions should be satisfied:

µ < 1 ( or ψπ + ψν < 1); (9.2)

W (iω) = −1− µω2 + iω(1− νω2)

ω2(1− νω2 + iωµ)
;

ℑW (iω) = − 1
ω2

(1−µω2)(−µω)+ω(1−νω2)2

(1−νω2)2+ω2µ2

= 1
ω

µ(1−µω2)−(1−νω2)2

(1−νω2)2+ω2µ2 ;

π(ω) = ωℑW (iω) =
µ(1− µω2)− (1− νω2)2

(1− νω2)2 + ω2µ2
;

π(ω) < 0, ω2 = t,

µ− µ2t− (1− νt)2 < 0,

ν2t2 +
(
µ2 − 2ν

)
t+ 1− µ > 0. (9.3)

Since µ2 − 2ν = (ψπ + ψη)
2 − 2ψπψη = ψ2

π + ψ2
η > 0, it follows from

condition (9.2) that condition (9.3) is satisfied for all t ≥ 0. Also due
to (9.2) we have

lim
ω→0

π(ω) =
µ− (1)2

(1)2
= µ− 1 < 0.

Thus, according to Theorem 9.2 in [11], (9.1) is a sufficient condition
for absolute stability of the system.
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9.5. Consider a gyrostabiliser with forced rotation of its gimbals.
Assume friction in the precession axis. The behaviour of this gyrosta-
biliser is described by the following equations:

σ̇1 = −νσ1 + µv + σ2,

σ̇2 = −σ1 − φ(σ2),

v̇ = σ2.

Here, σ1, σ2, and v are relative coordinates of the gyrostabiliser, ν and
µ are constant positive parameters, and the nonlinear function φ(σ2)
satisfies the conditions

φ(0) = 0, for σ2 ̸= 0 φ(σ2)σ2 > 0,

Determine under what conditions the gyrostabiliser is absolutely
stable.

S o l u t i o n:

Find the transfer function (from the input −φ to the output σ2):

(p+ ν)σ1 = µv + σ2,
pσ2 = −σ1 − φ(σ2),
pv = σ2.

Eliminate v and σ1:

v =
σ2
p
, σ1 =

µσ2
(p+ ν)p

+
σ2
p+ ν

=
p+ µ

p(p+ ν)
σ2,

pσ2 = − p+ µ

p(p+ ν)
σ2 − φ(σ2),

σ2 = − p(p+ ν)

p3 + p2ν + p+ µ
φ,

W (p) =
p(p+ ν)

p3 + p2ν + p+ µ
.

Let ν > µ, then we have a non-critical case. Using Theorem 9.1
when k = ∞, ϑ = 0, we have

ℜW (iω) = ℜ νωi− ω2

µ− νω2 + iω(1− ω2)
=
νω4 − µω2 + νω2(1− ω2)

(µ− νω2)2 + ω2(1− ω2)2
≥ 0,

where (ν − µ)ω2 ≥ 0 is satisfied for ν > µ. Thus, the condition for
absolute stability is ν > µ.
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