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Abstract. The research concerns behavior of non-homogeneous elastic thin structures weak-
ened with cut-outs, holes and cracks. The purpose of the study is to analyze the effect of shape,
area, position and proportions of the rectangular holes on buckling of rectangular plates and
cylindrical shells, under external loadings of different types (axial compressing force, hydro-
static pressure etc.). Special attention is devoted to perforated plates and shells.

The most important and interesting is the effect of the area of a hole on buckling. The results
obtained with FEM method by ANSYS package are compared with those obtained with the
Rayleigh-Ritz method. The values of the critical buckling loadings appear to be very sensitive
to proportion of the hole and not very sensitive to the shape and position of the hole.

It is well known that the critical loadings for shells of revolutions, in particularly, for circular
cylindrical shells are asymptotically doubled since the buckling modes are the functions of
either sine or cosine of the angle in the circumferential direction. The appearance of a hole
or a crack in the shell leads to bifurcation of the values of the critical loadings. The effect
of the area of the hole and the ratio of its sides on the critical loading and buckling modes
is examined. The most interesting is the effect of the multiple holes (perforation), for which
the existence of so-called ”resonance” modes is revealed. Indeed, if the wave number in the
circumferential direction is divisible by number of holes one of the doubled critical loadings
essentially decreases and the other increases. The influence of the shape of the hole is also
analyzed [4].
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1 INTRODUCTION

The research concerns the buckling of thin-walled isotropic structures, such as plates and
shells, weakened with the holes or cut-outs under the compressive external loadings. The pur-
pose of the study is to analyze the effect of shape, area, position and proportions of the rectan-
gular holes on buckling of rectangular plates and cylindrical shells, under external loadings of
different types (axial compressing force, hydrostatic pressure etc.) for different boundary con-
ditions. The results obtained with FEM method by ANSYS package and those obtained with
the Rayleigh-Ritz method[1] and analytical results for plates without holes [2, 3] are compared.

2 THE STATEMENT OF THE PROBLEM

In this paper we restrict ourselves to analysis of thin isotropic plate under axial compressive
load q directed along the axis OX (see Fig. 1)

Figure 1: Rectangular plate under axial compression.

The lateral faces of the plate are of the length a, the side ends have the length b and a > b,
the sides of the central square hole are parallel to the plate sides and have the length d.

Equation for evaluation of the critical load for the homogeneous plate under axial compres-
sion has the form [2]:

D∇2∇2w + q
d2w

dx2
= 0, D =

Eh3

12(1− ν2)
, (1)

where w is the deflection, D is the bending stiffness, E is the Young modulus, ν is the Poisson
ratio, h is the plate thickness. Here we use the non-dimensional variables, which relate to
dimensional (with ∼) as:

D = D̃/(Eb3), q = q̃/(Eb), {a, d, h, w} = {ã, d̃, h̃, w̃}/b (2)

Later only symmetric boundary conditions of clamped, free and simply supported types are
considered.

For homogeneous (h = const) simply supported long plate equation (1) may be reduced to
more simple equation [2]:

D
d4w

dx4
+ q

d2w

dx2
= 0, w|x=0,a = 0, w′′|x=0,a = 0, (3)

2



Andrei L. Smirnov, Alexandr V. Lebedev

from which the critical load may be evaluated as

qcr =
π2D

a2
, (4)

and the buckling mode has the form of cylindrical bending w = A sin πnx
a

.
For numerical analysis of the problem the FEM package ANSYS was used. As the elements

SHELL63 were chosen. The convergence of the method was examined for buckling of a steel
(E = 2.0 · 1011N/m2, ν = 0.3) homogeneous plate of thickness h = 0.01 with free lateral
sides and simply supported end sides (a = 2, b = 1). For the square elements of the relative
sizes t = 0.025 the relative difference between the numerical results and those obtained by
(4) is about 7%. The problem is in formula (4), which is accurate only for long enough plates
or plates with small Poisson’s ratio. Solution of equation (1) with proper boundary conditions
leads to formula

qcr = 0.928
π2D

a2
, (5)

which gives rather better agreement with the numerical results (error about 0.1%).

3 EFFECT OF THE HOLE AREA

3.1 Buckling of the plate with free lateral edges under axial compression

Now we consider the plate with the central square hole with the sides of the length d parallel
to the sides of the plate. The effect of the hole area may be roughly estimated, if we introduce
the averaged plate thickness as h̄ = h(1 − d2/ab). For such thickness the homogeneous plate
has same volume as the plate with the hole. Substituting in (4) we obtain

qcr =
π2D

a2
(1− d2/ab)3. (6)

In Fig. 2 the effect of the hole area on the critical loading is shown.

Figure 2: The effect of the hole area on the critical loading for the plate with free lateral sides and simply supported
end sides.

The numerical results are plotted with the dotted line and the solid line corresponds to the
results due to (6). Therefore for the plate with free lateral sides the critical loading decreases
with the hole area.
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3.2 Buckling of the plate with simply supported edges under axial compression

Consider here same plate as in 3.1 with simply supported boundary conditions at each edge.
For the homogeneous plate the critical buckling load and buckling modes may be obtained from
(1). The deflection w has the form

w = A sin
πnx

a
sin

πmy

b
, (7)

and the buckling load is the following [2]

qcr = min
m,n

[
((mr)2 + n2)

π2D

a2n2

]
; r =

a

b
(8)

For homogeneous simply supported plate the results of buckling analysis by means of AN-
SYS well agree with the analytical results with the relative error less than 1%.

For the plate with the central square hole the interaction of the hole and the buckling mode
plays significant role and affects the critical loading. In Fig. 3 the effect of the plate length on
the critical loading is shown for the plate with the hole of constant area (dotted line) and for the
homogeneous plate (solid line). The critical loading is the lower envelope for the curves. For
the homogeneous plate the minimum attains at r = n, where n is the wave number in the axial
direction.

Figure 3: Effect of the relative length of the plate (r) on the critical loading for the plate with the hole (dotted line)
and for the homogeneous plate (solid line)

One can see in Fig. 3 that for buckling modes with odd wave number n the critical loading
decreases as the hole area increases, and for even n the critical loading goes up with the hole
area. This problem was considered in [1] by means of Rayleigh-Ritz method. For odd modes
the results of that work well agrees with our numerical results, but for even modes the results
differ drastically. It seems that the representation of deflection with only one term of the series
selected by the authors of [1] does not sufficiently well describe the shape of the buckling
modes.

In Fig. 4 we compare our results (dotted lines) and results of [1] (solid lines) for the critical
loadings for plates of relative length r = 2 and r = 3.

It seems that support of the lateral sides under some conditions leads to the growth of the
initial stresses in the transverse direction, that in its turn provides the growth of the critical
loadings. The fall of the critical loading for the large hole area in Fig. 4a is explained with the
local buckling of the thin stripes between the hole and the lateral plate edges.
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Figure 4: Effect of the hole area on critical loadings for the plates of relative thickness a) r = 2 and b) r = 3

3.3 Buckling of the plate with clamped lateral edges under axial compression

Let the lateral edges of the plate with the hole be clamped and the end edges be simply
supported. The numerical results for the critical loadings are given in Fig. 5 for different values
of the hole sides (d).

Figure 5: Effect of the parameter r on the critical buckling loading of the laterally clamped plate.

As one can see the critical buckling loading increases with the hole area regardless of the
buckling mode. For the sufficiently long plate (r > 3) the critical buckling loading does not de-
pend on the hole area, if the hole is not too large. At the points where the curves lose smoothness
the wave number of the critical mode changes.

4 EFFECT OF THE RATIO OF THE HOLE SIDE LENGTHS

The next parameter that plays an important role in plate buckling is the ratio of the sides of
the hole. Here we consider the plate with the central rectangular hole and the with lengths of its
sides a1 = d(ξ + 1) and a2 = d/(ξ + 1) respectively. The hole area is constant d2 for any ξ. If
ξ = 0 it is a square hole, if ξ > 0 the hole is extended in axial direction and ξ < 0 it is extended
in the transversal direction.

In Fig. 6 we plot the curves for the buckling critical loading vs. the ratio of the sides of the
hole for different lengths of the plate (r = 1, 2, 3). The horizontal line is the critical buckling
loading for the homogeneous plate.

For all cases the extension of the hole in the axial direction leads to the decreasing of the
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Figure 6: Effect of the hole side ration of the buckling loading for r = 1, 2, 3

critical loading and the extension of the hole in the transversal direction makes the critical
loading to increase. The change of the ratio may also cause the switch of the buckling modes.
The unsmooth behavior of the curve is caused with that fact. For example, it happens when ξ is
close to 1 for r = 2.

5 EFFECT OF THE PERFORATION ON THE CRITICAL BUCKLING LOADING

Finally consider the effect of perforation on buckling. Let the plate be simply supported and
weakened with multiple holes placed regularly along the plate middle lines in the axial or in the
transversal directions. The number of the holes changes whereas the total area of the holes is
constant. As an example, we consider the plate with the ratio of the sides r = 2. The plate has
n holes, the total area of which is equal to 0.04 and 0.09 (see Fig. 7). We plot curves for critical
load vs. hole number (n), for perforation in axial direction (H) and transversal direction (V ).

Figure 7: Effect of perforation of the critical buckling loadings: axial perforation, d = 0.2 (red line), axial
perforation, d = 0.3 (green line), transversal perforation, d = 0.2 (grey line), transversal perforation, d = 0.3
(black line).

One can see that the critical loading converges to the value of the critical loading for the
homogeneous plate as the number of holes increases.
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6 CONCLUSION

The presence of the hole or cut-outs may lead to either increasing or decreasing of the critical
buckling load depending on the boundary conditions and geometric parameters of the plate and
the hole. The more rigid support of the lateral edges produces larger initial stresses that raises
the critical buckling loading.
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