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PREFACE 

This volume is dedicated to the memory of Professor Eliza Maria Haseganu 
(f940-2002). Eliza was a highly regarded researcher and a meticulous and 
devoted teacher. She was also a warm and loving friend to many, including 
those whose work appears in these pages. 

Educated in Romania, Professor Haseganu obtained her Diploma in 
Mechanical Engineering at the Polytechnic Institute of Brasov and had 
nearly finished her doctoral work when the political situation forced her to 
emigrate. She made a new start at the University of Alberta in Edmonton, 
Canada, and finally, in 1994, earned her doctorate under the supervision 
of D. Steigmann. Her thesis is entitled: Analytical Investigation of Tension 
Fields in Lightweight Membrane Structures. 

In August of 1994 Eliza joined the Department of Mechanical and In­
dustrial Engineering at Concordia University in Montreal, where she earned 
a tenured position shortly before her passing. Over the course of this brief 
period she published about 30 research papers in internationally recognized 
journals and conference proceedings. She also supervised one Ph.D. student 
and five MSc students. 

Eliza's research and teaching activities were focused in the areas of 
Solid Mechanics, Structural Mechanics, Dynamics, Computational Mechan­
ics and Biomechanics. She made her main research contributions to the field 
of Finite Elasticity, specializing in the nonlinear mechanics of thin shells 
and membranes. She made particularly important contributions to the de­
velopment of robust numerical methods for ill-conditioned problems with 
emphasis on structural fabrics and stressed biological tissues. 

Professor Haseganu had intended to publish additional results from her 
dissertation research on the deformations of highly elastic wrinkled mem­
branes under pressure. These are very striking and reproduce a number of 
unusual and unexpected effects observed in experiments. Unfortunately, she 
delayed publication in the expectation that she would find sufficient time 

vii 
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to refine some of her more important analyses. A number of these results 
are presented on her behalf in Chapter 1 of this volume. 

In her final years Eliza worked on the development of asymptotic tech­
niques for the vibration and buckling analysis of thin-walled structural ele­
ments composed of composite materials. This body of work is described in 
three papers of the present collection. 

Eliza's great warmth and extraordinary personal dedication permeated 
all aspects of her life and work. She is remembered as a most caring and 
devoted teacher with a genuine regard for the success and welfare of her stu­
dents. In recognition of her great distinction in teaching, she was awarded 
the Department of Mechanical and Industrial Engineering Certificate of 
Recognition for Outstanding Teaching Excellence in 1997, The Concordia 
Council on Student Life Teaching Excellence Award in 1998, and the Fac­
ulty of Engineering and Computer Science award in 2000. For several years 
Professor Haseganu served as the Faculty Advisor to the Concordia Student 
Branch of the Canadian Society for Mechanical Engineers (CSME). With 
great pride she awarded the CSME Gold Medal to the most outstanding 
graduates in Mechanical Engineering. In addition, Eliza was often invited to 
speak on the subject of Women in Science and actively encouraged women 
to pursue engineering careers. 

At the time of her passing, Eliza was planning a sabbatical leave to be 
spent in Russia. Tragically, she succumbed to cancer at the age of 62. She 
is warmly remembered and dearly missed by her colleagues, students and 
friends. 

The Editors 
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Structures 





C H A P T E R 1 

E L I Z A H A S E G A N U ' S A N A L Y S I S O F W R I N K L I N G I N 
P R E S S U R I Z E D M E M B R A N E S 

David J. Steigmann 

Department of Mechanical Engineering, University of California Berkeley, CA 
94720 USA 

E-mail: steigman@me. berkeley. edu 

Eliza Haseganu intended to publish results from her dissertation research 
on the numerical solution of highly elastic wrinkled membranes under 
pressure. These are quite striking and reproduce unusual and unexpected 
features observed in experiments. Her numerical analysis was sufficiently 
robust to achieve this without the need for any special measures. How­
ever, she delayed publication in the expectation that she would find the 
time to refine some of her more important analyses to take the effect of 
self contact of the membrane into account. Eliza's results are presented 
here on her behalf. 

1.1. I n t r o d u c t i o n 

This brief t r ibute to Dr. Eliza Haseganu collects some results contained in 

her thesis which would certainly have formed the basis of a substantial and 

influential paper, had she lived to prepare it. As her thesis adviser, I am bo th 

honoured and saddened to have the opportunity to summarize this body of 

work here on her behalf. Most of the essential details regarding the formu­

lation and solution of mixed traction/displacement membrane boundary-

value problems are summarized in her paper which appeared some years 

ago [Haseganu and Steigmann (1994)]1 and which has been cited quite fre­

quently in the interim. In it she set a s tandard for the numerical analysis 

of wrinkling in finitely deformed membranes which has not been surpassed. 

Eliza's achievement was the development and implementation of a nu­

merical scheme for solving the ill-conditioned equilibrium equations gener­

ated by Pipkin's relaxed strain-energy function [Pipkin (1986)]2. The re-

3 



4 D. J. Steigmann 

laxed formulation is motivated by the fact that the conventional theory 
admits compressive stresses in equilibrium. Although admissible in conven­
tional two- and three-dimensional elasticity, in the setting of membrane 
theory such a state violates strong ellipticity, a well-known necessary con­
dition for the existence of stable (energy-minimizing) equilibria. To rectify 
this Pipkin showed how to construct energy-minimizing sequences of defor­
mations from the conventional strain energy which contain ever-more finely 
spaced wrinkles. The limit of such a sequence is a smooth deformation with­
out compressive stress, and the strain energy function attributed to such 
a state, the so-called relaxed energy, may be used in place of the original 
when formulating equations of equilibrium. The relaxed energy also pos­
sesses certain convexity properties which are central to existence theorems 
based on the direct methods of the calculus of variations. In this way the 
problematic existence issue associated with membrane theory is addressed 
while the merits of its relatively simplicity are retained. 

The obvious alternative to relaxation is to regularize the equations by 
including higher-order gradient (curvature) terms in the strain-energy func­
tion. This is tantamount to using a kind of shell theory in place of membrane 
theory. The advantage is that a length scale is built directly into the differ­
ential equations which effectively determines the wavelengths of wrinkles. 
Further, the energetic penalty associated with curvature sets a lower bound 
to the wavelength. This is clearly more realistic than the idealizations in­
herent in relaxed membrane theory; there the absence of bending resistance 
implies the absence of a lower bound and thus that wrinkles are continu­
ously distributed over the surface. Fortunately, the associated equilibrium 
equations are statically determinate; therefore the stress distribution in a 
wrinkled region is insensitive to the details of the deformation and hence 
to the errors incurred in its description by using relaxed membrane the­
ory. However, offsetting the advantages of relaxed membrane theory is the 
fact that the absence of stress in certain connected regions of strain space 
implies an absence of stiffness also, so that conventional stiffness-based 
solution strategies for the computation of equilibria are not effective. To 
overcome this difficulty, Eliza embedded the (relaxed) equilibrium problem 
into an artificial damped dynamical problem, constructed in such a way 
that the desired equilibria are globally and asymptotically stable relative 
to arbitrary initial data. One then discretizes this system in time using a 
simple difference scheme. Temporal accuracy is not an issue since it is only 
the asymptotic states which are of interest. This allows the use of simple ex­
plicit finite difference operators with mass-proportional damping to achieve 
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an efficient vectorized system for computations. 
In this paper I describe the adjustments to Eliza's earlier work 

[Haseganu and Steigmann (1994)]1 needed to accommodate pressure load­
ing. The basic formulation of relaxed membrane theory is described in sec­
tion 2. The numerical method and the Lyapunov function associated with 
conservative pressure loads are discussed in section 3. Section 4 is devoted 
to specific simulations taken from Eliza's thesis. These examples, which are 
quite striking, illustrate her considerable achievement in this challenging 
branch of computational finite elasticity. 

1.2. Relaxed Membrane Theory 

The equilibrium equations for membranes, regarded as two-dimensional 
continua, have a simple structure identical to those for conventional bulk 
continua. For convenience, and with no essential loss of generality, I use a 
plane Q as reference, which is here regarded as an unstressed configuration 
of the membrane. Let ea, a = 1,2, be orthogonal unit vectors spanning 
(the translation space of) il, and let e3 = ei x e2. We use the usual sum­
mation convention with Greek subscripts taking values in {1,2} and Latin 
in {1, 2, 3}. Then the equilibrium equations in vector form are 

d i v T + p J n = 0, (1) 

where 

T = Tiaet ® ea (2) 

is the Piola stress, div is the (two-dimensional) divergence operator on fi, 
p is the net lateral pressure across the membrane surface, 

^ Fei x Fe2 
n ~ Fei x Fe2 

is the unit normal to the membrane surface after deformation, 

F = Fiaei <g> eQ (4) 

is the deformation gradient, where 

F -r = ^ - (5) 
OXa 

in which xa and r-j are the Cartesian coordinates of a material particle 
before and after deformation, respectively, and 

J = ( d e t C ) 1 / 2 (6) 
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where 

C = F ' F (7) 

is the Cauchy-Green strain and the superscript ' is used to denote trans­
position. 

An elastic membrane possesses a strain-energy function W per unit 
area of fi which depends on the deformation gradient and which delivers 
the stress through 

T=WF, (8) 

where the subscript identifies the gradient with respect to F. Thus, 

T • =™- (9) 

These equations are augmented by traction data tj = Tiava or position 
data rj = r° on appropriate parts of the boundary, where va are the compo­
nents of the exterior unit normal to an edge in the reference configuration. 

Isotropy of space requires that W depend on F through C. If the mem­
brane material is isotropic then the latter dependence occurs through the 
principal stretches A and /x, the positive square roots of the eigenvalues of 
the strain C. Thus, 

T = w\l <g> L + wMm <g> M, (10) 

where w\tll are the partial derivatives of the symmetric function 

w{\,n)=w{ii,\)=W(¥), (11) 

and {1, m} , {L,M} are the orthonormal principal strain axes on the de­
formed surface and on fl, respectively [Haseganu and Steigmann (1994)]1. 
The latter generate a useful formula for the deformation gradient which is 
identical in form to (10): 

F = Al ® L + /xm ® M. (12) 

Relaxed membrane theory is based on the composite strain-energy func­
tion 

w(\,fi) 

w(X,v(X)) 

0 

A > v((i) and \i > v(X) 

A > 1 and \x < v(X) 

[i > 1 and A < v(fi) 

A < 1 and fj, < 1, (13) 
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where v(x) is the (normally unique) solution of the implicit equation 

wy(x,y) = 0. (14) 

Thus the second and third branches of (13) correspond to states of uniaxial 
tension along the principal strain axes. These are valid even when A or /i are 
less than the corresponding value of V(/J,) or v(X), respectively, the difference 
being due to fine-scale wrinkling without further change of energy and with 
no compressive stress. The first branch corresponds to biaxial tension and 
the original strain-energy function is operative in the corresponding region 
of the plane of principal stretches. The fourth branch corresponds to double 
wrinkling without stress, this branch being operative in slack regions of the 
membrane. In general, the determination of the regions on the material 
surface f2 which correspond to the various branches of (13) constitutes 
a difficult free-boundary problem. In Eliza's work, such difficulties were 
avoided altogether by simply computing the stretches at any given stage of 
deformation and then selecting the appropriate branch for the subsequent 
calculation. 

In the examples discussed here the specific strain-energy function used in 
the first branch of (13) is the specialization to membrane theory of Ogden's 
function [Ogden (1997)]3 for rubberlike solids that are incompressible in 
bulk, namely 

W(X> ri = ~yi9r [Xar + Mar + (A/i)"a- - 3] , (15) 

where 

9 i 

G 

OL\ •-

3 

J29r 
r=l 

= 1.3, 

1.491, ff2 

[Xar + nar 

a?2 = 5.0, 

= 0.003, 

+ (AM)" 

, « 3 = 

-ar 

-2.0; 

5 3 = -0.0237 
(16) 

and the constant G(> 0) may be regarded as the ground-state shear modu­
lus multiplied by the initial membrane thickness. The associated functions 
v(x) and w(x)[= w(x,v(x)) = w(v(x),x)] are 

r 3 / \ 
v(x) = x~1/2 and w(x) = — ^ gr (x°"~ + 2x~a-/2 - 3J . (17) 

1.3. Numerical Scheme 

The numerical method Eliza used is based on the Green's theorem finite 
difference technique [Haseganu and Steigmann (1994)]l for the spatial dis­
cretization of the domain Q,. In this method the x±, x^—plane is sub-divided 
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into small quadrilateral cells that are arranged so as to cover the domain 
completely. Since the cells need not be rectangular, it is possible to approx­
imate a domain with curved or irregular boundaries with high precision by 
using a sufficient number of cells. In contrast, conventional finite differences 
require computationally expensive boundary interpolation or grid-mapping 
to accommodate irregular domains. The procedure is known to be most ef­
fective when used in conjunction with spatial finite differences [Underwood 
(1983)]4. It is for this reason that finite differences are used rather than the 
more widespread finite element method. 

In the present method the divergence operator Tka,a appearing in (1) is 
approximated at node (i,j) by applying Green's theorem to a quadrilateral 
region enclosed by a contour described by node points in the material region 
of interest. The area integral in the theorem is estimated as the nodal value 
of the integrand multiplied by the enclosed area, while the contour integral 
is approximated by setting its integrand equal to the values it assumes at 
the midpoints on each of the four edges that make up the boundary. This 
yields the approximate divergence of stress at node (i,j) [Haseganu and 
Steigmann (1994)]1: 

/ ^ = ^ ( T f e Q , a ) ^ 

ea/3 Tifc 

I, 

i+l/2,j+l/2 (i,j+l _ i+l,] 
JP VP 

+ T, i-l/2,j+l/2 fi-l,j _ i,j + l 
kct -p bp 

T, i-l/2,j-l/2 (i,j-l _ i-l,j 
ka -P 

i + l / 2 j - l / 2 i+l,j _ i, 
' ) (18) 

where eap is the unit alternator (ei2 = — e2i = 1, en = e22 = 0) and Al,:> 
is the area of the quadrilateral. 

The stresses on the right hand side in (18) are evaluated at the midpoints 
between nodes. These depend via the constitutive relations on the corre­
sponding values of the deformation gradient, which are in turn computed 
using a second application of Green's theorem. As before, the associated 
area integral is estimated as the value of the integrand at the midpoints 
multiplied by the enclosed area. However, the four edge contributions to 
the boundary integral are now approximated by replacing the integrand 
in each with the average of their values at the node points. The resulting 
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difference formula is [Haseganu and Steigmann (1994)]1 

i+l,j+l _ i,j\ (J.,j+l _ J+l,j 
x / 3 xi (19) 

where J 4 1 + 1 / 2 . J + I / 2 is the area of the associated quadrilateral. 
Given the expression for the deformation gradient, the pressure term 

pJn in the equilibrium equations integrates to yield the force 

i+l/2,j + l/2 _ p i+ l /2 , j+ l /2p i+ l /2 , j+ l /2 4 i+ l /2 , j + l/2 ,9flN 

where ê -fc is the three-dimensional unit alternator. Eliza [Haseganu (1994)]5 

used this in the formula 

i* = i (p^2^2+Pr1/2,j'+1/2+Pk-
1/2j~1/2+p*+1/2,j-1/2) (2i) 

to generate the effective nodal force due to pressure. The total nodal force 
is then given by 

tij = tij+tij- (22) 
To solve the nonlinear algebraic system generated by the finite difference 

discretization, the equilibrium problem is embedded into an artificial dy­
namical problem with suitably chosen mass and viscosity. Since it is only the 
equilibrium configurations that are of interest, the dynamical system may 
chosen arbitrarily, subject to the requirement that the desired equilibria be 
asymptotically stable within the class of dynamics considered. Further, the 
system should be robust in the sense that its equilibria are not sensitive 
to the detailed features of the system on dynamical solution trajectories. 
This procedure is a variant of the method of velaxationdynamidrelaxation. 
In the present context, a convenient dynamical system, not equivalent to 
the actual equations of motion for the membrane, is 

Tia,a + pJrii = pvi + cpvi, vt = fi, (23) 

subject to the kinematically admissible initial conditions 

ri{xa,0) = Ri{xa), Vi{xa,0) = 0. (24) 

Here p(xa) is the mass per unit area of the reference plane and c is a positive 
damping coefficient. 

Alternative formulations of dynamic relaxation have been based on the 
actual equations of motion for the system at hand. In such formulations 
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damping is introduced via the constitutive relations. The resulting dis­
cretization yields a coupled system for updating the configuration from 
one time step to the next. This is inconvenient in practice, but is gener­
ally necessary in problems for which the equilibria obtained are strongly 
influenced by the details of the dynamics in a given initial value problem. 
However, in the present application to membrane theory, the equations of 
equilibrium are derived from a strain energy that is modified to incorporate 
the effects of wrinkling automatically. In mixed position/traction problems 
without pressure, the resulting energy is often (for some strain-energy func­
tions) a convex function of the deformation gradient in regions where the 
membrane is under stress [Haseganu and Steigmann (1994)]l. Accordingly, 
these regions are uniquely determined if the membrane is in equilibrium, 
and are thus insensitive to the details of a dynamical system that exhibits 
such configurations as equilibria. The non-uniqueness of slack regions of 
the membrane is not a deficiency of the model, but instead reflects the 
fact that membrane equilibria are entirely arbitrary in the absence of stress 
(such states do not occur in equilibrium if pressure is present). The unique­
ness of the stressed regions of equilibrium configurations together with the 
path-independence of the elastic constitutive relations were exploited by 
Eliza to construct a dynamical problem that is computationally efficient. 

It remains to show that equilibria are asymptotically stable in the class 
of dynamics described by (23) and (24). Position/traction problems are dis­
cussed first. In view of the minimizing property of equilibria, it is sufficient 
to show that the total mechanical energy decreases on solution trajectories 
of (23). Asymptotic stability then follows by a theorem of Lyapunov. To 
this end (23) is scalar- multiplied by the velocity and the resulting equation 
is integrated over the reference plane Q, to derive 

K+jW(F)da +c I p\v\2da= [ Tv • vda, (25) 
Jo. J Jn Jon dt 

where 

K=\J^p\v\2da (26) 

is the kinetic energy and the relation W = TiaVita has been used together 
with Green's theorem. In a standard mixed boundary value problem with 
position assigned along a part of the boundary dVt and traction assigned 
on the remainder, (25) reduces to 

^[K + E}^-cJ p\v\2da<0, (27) 
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where 

E = ( W(F)da - f t-rda (28) 

is the total potential energy in which d£lt is the part of the boundary where 
the fixed traction t is assigned, position being assigned on the complemen­
tary part. Thus the total energy K+E decays on the solution trajectories of 
(23) and the asymptotic stability of equilibria follows. Strictly, these state­
ments are valid for the discretized equations. Their proof for the analytical 
model remains open due to certain difficulties associated with Lyapunov's 
theorem for continuous systems. Again, these issues are of no concern in 
the present context since the discrete dynamical problem merely serves to 
expedite the computation of equilibria. 

Equation (27) remains valid for the pure displacement problem with 
prescribed pressure, provided that E is replaced by [Haseganu (1994)]5 

E' = / [ W ( F ) - ( p / 3 ) J n - r ] d a . (29) 
Jn 

The solution of eqs. (23) and (24) is based on the combination of the spa­
tial difference formula (22) with central difference operators in time. This 
yields the explicit decoupled scheme [Haseganu and Steigmann (1994)]1 

( V 1 + | ) m<Jp.J>+l/2 = ( V 1 + | ) m*J>*.i.»-V2 + g*J,n) 

r»,j,n+l = ri,j,n + hti,j,n+l/2} (30) 

which is used to advance the solution in time node by node. In terms of a 
fixed orthonormal basis {efc}, r =rk&k is the nodal position and g =g\^k 
is the nodal force. In addition, m%^ = A1^p{xt

(^) is the nodal mass, tn is 
the time after n cycles and h is the time step. This system is obtained by 
integrating (23) over the quadrilateral region formed by the four nearest 
neighbors of the node and setting the deformation in the interior equal to 
the nodal value. The starting procedure for (30) is derived from (24). Thus 
J.I.J',0 _ R_(x

l 'J) ; fM',0 _ o and the central difference formulas together with 
(30) yield 

2 i,jp,J,l/2 = i,j,0 ( 3 1 ) 

h 

wherein the right hand side is determined by R(x). The system of equations 
is then non-dimensionalized and the solution advanced to the first time tn 

such that maxjj |gI'-''ra| is less than some specified value. 
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Finally, it is noted tha t the convexity of the modified strain energy 

ensures tha t computations based on the foregoing scheme are not mesh-

dependent. This property is fundamental to the convergence of the method 

with respect to mesh refinement. 

For pure position boundary-value problems with assigned pressure, the 

foregoing claims regarding the convexity of the variational problem and 

the conclusions which follow therefrom are not valid, although the problem 

continues to satisfy important existence criteria such as the quasiconvexity 

condition [Dacarogna (1989)]6. The stronger s tatement pertaining to (par­

tial) uniqueness also does not apply, and this fact is reflected in some of 

the simulations to be discussed. 

1.4. E x a m p l e s 

The examples discussed here are described in detail in Eliza's thesis 

[Haseganu (1994)]5 and pertain to the problem of assigned boundary po­

sition and simultaneous inflation by a uniform pressure of fixed intensity. 

Eliza had intended to collect these together into a paper for publication. 

Her previous work [Haseganu and Steigmann (1994)]1 was concerned exclu­

sively with mixed posi t ion/tract ion da ta in the absence of pressure. 

In the first example, a circular membrane of unit radius is subjected 

to a lateral dimensionless pressure p = p/G = 2.0 while the radius of 

the boundary is fixed at one-half its reference value. The meshed reference 

configuration is shown in Figure 1.1. Contraction of the boundary tends to 

promote membrane wrinkling whereas pressure tends to suppress it. The 

competition between these two influences is evident in Figure 1.2, in which 

dashed lines indicate trajectories of the active principal stress in wrinkled 

regions; elsewhere the membrane is under biaxial tension. From the figure 

it is evident that the large circumferential contraction of the boundary and 

the a t tendant wrinkling combine to yield a non-axisymmetric shape despite 

the axisymmetry of the data. 

Figure 1.3 depicts a representative meridian corresponding to the same 

boundary da ta under a succession of pressures. A snap bifurcation from a 

low-volume solution to a shape enclosing a much larger volume was found to 

occur between p = 2.675 and 2.6775, the latter figure representing a 0.93% 

increase over the former. This kind of behaviour is a well-known feature of 

the response of spherical membranes inflated by a controlled pressure un­

dergoing spherically symmetric deformations. In the latter case analytical 

solutions are available which exhibit an unstable branch of equilibria con-
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Fig. 1.1. Circular membrane; meshed reference configuration. 

Fig. 1.2. Circular Ogden membrane subjected to a non dimensional pressure of 2.0 
combined with a 50% reduction in the length of boundary circumference. 

necting the stable branches, the latter requiring an increase in pressure to 
effect an increase in volume. It may be argued on physical grounds that the 
unstable equilibrium branch does not represent a meaningful solution, since 
the membrane is likely to undergo dynamical behaviour instead if subjected 
to even the smallest disturbance. The dynamic relaxation method mirrors 
this expectation as it never generates the unstable branch of equilibria. It 
is also noteworthy that computations using the neo-Hookean strain energy 
in place of (15)--(16) did not yield equilibria for pressures above p = 2.612. 
This is due to the insufficient growth of the latter strain-energy function at 
large stretches. 

In the next class of examples the membrane is subjected to a relatively 
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Fig. 1.3. Cross-sections through meridian of deformed configurations of circular Ogden 
membrane for different numerical values of pressure 

modest pressure of intensity p = 1.0 while the central node of the mesh 
at the center of the membrane is displaced vertically downward by a fixed 
amount. The radius of the outer boundary of the membrane is decreased to 
0.8. The resulting deformation is axisymmetric and exhibits wrinkling in a 
region adjoining the boundary, as depicted in Figure 1.4. 

Fig. 1.4. Cross section through pressurized circular membrane subjected to a central 
vertical point load directed downwards, combined with a 20% reduction in the length of 
boundary circumference 

A further reduction of the boundary radius to 0.5 holding the pressure 
and central displacement fixed generates a remarkable deformation in which 
the membrane exhibits pleats or hinges separating three distinct lobes. 
Oblique and overhead views are shown in Figures 1.5 and 1.6. 

The computed solution is not to be regarded as definitive since the 
predicted deformation entails self penetration of the material. A refined 
solution would penalize self penetration through the introduction of a re­
active contact pressure distribution. Eliza did not have the opportunity to 
incorporate this refinement into the computations. Nevertheless the results 
are remarkable to the extent that they capture the typical three-lobe pat-
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Fig. 1.5. Pressurized circular membrane subjected to a central vertical point load di­
rected downwards, combined with a 50% reduction in the length of boundary circumfer­
ence 

Fig. 1.6. Pressurized circular membrane subjected to a central vertical point load di­
rected downwards, combined with a 50% reduction in the length of boundary circumfer­
ence; top view 

tern observed when a weight is suspended from the apex of a pressurized 
high-altitude balloon [Baginski (2002)]7. 

Solutions possessing the unusual and unexpected features exhibited here 
were made possible by Eliza's pioneering efforts in this rich branch of com­
putational elasticity. It is my hope that they will stimulate further advances 
in the study of the intricate and difficult problem of nonlinear membrane 
behaviour. 
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This paper deals with the asymptotic analysis of linear buckling and free 
vibrations of ring-stiffened thin cylindrical shells. The simple approxi­
mate formulas for the fundamental frequency and the critical external 
pressure are obtained. The critical pressure and fundamental frequency 
of a stiffened shell are compared with the critical pressure and fundamen­
tal frequency of a non-stiffened cylindrical shell of the same mass. The 
optimal parameters for the stiffened shell, for which the fundamental 
frequency or the critical pressure is maximal, are found. 

2 .1 . I n t r o d u c t i o n 

Thin circular cylindrical shells are widely applied in engineering. The im­

portant characteristics of such shells are their critical external pressure and 

their fundamental vibration frequency. To effectively enhance the flexural 

stiffness to avoid premature elastic buckling failure and resonance, stiffening 

rings are frequently used. It is shown in [Filippov (1999)]7 t ha t the critical 

external pressure of a ring-stiffened cylindrical shell can be five times higher 

than the critical pressure of a non-stiffened shell of the same mass. 

The modelling techniques for stiffened shell may be divided into two 

types. Using the methods of the first type one smears the stiffness of the 

rings onto the shell and t reats the stiffened shell as an orthotropic one. Such 

approach has been used in many papers, for example, see [Wang (1970)]16 

and the references therein. 

The orthotropic approximation is fine when the stiffeners are distributed 

evenly and closely spaced. If the stiffener spacing increase or become irreg-

17 
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ular, the orthotropic approximation becomes inaccurate. In this case one 
should consider stiffeners as discrete members, i.e. use the modelling tech­
niques of the second type. In this paper we usually treat rings as discrete 
stiffeners, but sometimes we also apply one of the methods of the first type 
provided its error is small enough. 

Recently, various analytical and numerical methods for stiffened shells 
have been developed: [Wang (1970)]16 and [Amiro and Zarutskii (1980)]2 

used Fourier series for the solution of static and dynamic problems, [Yang 
and Zhou (1995)]17 obtained the natural frequencies and the buckling loads 
of stiffened shells by Fourier expansion with the corresponding transfer 
function formulation. 

In the early studies on vibrations and buckling of stiffened shells, the 
Rayleigh-Ritz method was applied. Nowadays this technique is still pop­
ular, for example, in [Tian et al. (1999)]12 the Ritz method was used for 
buckling analysis of ring-stiffened cylindrical shells under general pressure 
loading. 

It has been shown in [Ross et al. (1995)]10 that the finite element method 
is quite suitable to analyze the vibration characteristics of ring-stiffened 
cylindrical shells under external pressure. 

The semi-momentless theory was applied in [Alfutov (1978)]1 for the 
construction of the buckling modes for stiffened cylindrical shells. The semi-
momentless theory represents the first approximation to the asymptotic 
solution in linear buckling problems. The development of the asymptotic 
methods in the last decades (see [Bauer et al. (1993)]4 and [Tovstik and 
Smirnov (2001)]14) allows one to extend the asymptotic approach to the 
wide range of problems of stiffened shells. Some asymptotic analysis results 
on linear buckling and free vibrations of ring-stiffened cylindrical shells are 
presented below. 

The approximate values of the critical pressure and of the natural fre­
quencies for thin ring-stiffened shells may be obtained by solving bound­
ary value problems for systems of linear partial differential equations. The 
equations describing the vibration or the buckling of thin shells contain the 
dimensionless shell thickness as a small parameter. Therefore, these bound­
ary value problems lend themselves to be solved by asymptotic methods. 

The asymptotic results clarify the problem qualitatively and assist in 
gaining an understanding of the vibration and buckling mechanism. The 
understanding of the qualitative picture helps for further development of 
numerical methods. 

By means of modern asymptotic methods, complex boundary value 
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problems for the stiffened shells theory are transformed into problems which 
have simple analytical solutions. The benefits of the asymptotic approach 
become apparent especially for the optimal design of the stiffened shells, 
since the numerical evaluation of the optimal parameters is time-consuming. 

2.2. Equations of Cylindrical Shells 

We consider the low-frequency free vibrations and buckling of a thin circular 
cylindrical shell presented in Fig. 2.1. 

<(P R 

Fig. 2.1. Cylindrical shell. 

We take the radius R of the cylindrical shell as the characteristic size. 
Then the approximate dimensionless equations of [Donnell (1976)]5 describ­
ing a cylindrical shell are 

£8AAu; 
d 2 $ 
dx2 + \Z = 0, A A $ 

d2w 
dx2 0, (1) 

where 
d2w d2w 
dx2 d(p2' 

h2 

12(1 

x and ip are the coordinates on the shell neutral surface in the longitudinal 
and circumferential directions, e > 0 is a small parameter, h is the dimen­
sionless shell thickness, v is Poisson's ratio, w(x, <p) is the normal deflection 
and <&(x,>p) is the force function. 

In the case of free vibrations 

-w, A = pR'u^/E, (2) 
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where A is the frequency parameter, UJ is the frequency, p is the mass density, 
and E is Young's modulus. 

For buckling of the membrane stress-strain state under a uniform exter­
nal pressure p in Eq. (1) we have 

Four homogeneous boundary conditions are imposed on each edge, x = 0 
and x = I, of the shell. We seek the lowest eigenvalues, A, for which there 
exist non-trivial solutions of Eq. (1) satisfying the boundary conditions. 

After separation of variables in Eq. (1), 

w(x,ip) = w(x) s'mmip, $>(x,tp) = $>(x)smm<p, 

where TO is the circumferential wave number, we obtain the ordinary differ­
ential equations 

e8AAu> - -rj-% + XZ = 0, AA$ + -—- = 0, (4) 

where 
2„ . d • w ., 

Aw = -— — m w. (5) 

2.3. Approximate Equations 

The approximate solutions of the boundary value problems for Eq. (4) 
are obtained in [Bauer et al. (1993)]4. If the shell edges are clamped or 
freely supported, then, for sufficiently small e, the lowest eigenvalue, Ai, 
corresponds to the large circumferential wave number TO ~ e _ 1 . Taking into 
account that A ~ m2 for TO ^ 1, we obtain, in the first approximation, 
from Eq. (4): 

d4w , , „ 

where 

a4 = m4\M - e8m8, M = { " ' , ^ **-«•»-«, ^ 

It follows from Eq. (7) that 

A K n ) = 1 7 ( 3 + e 8 ™ 4 ) - (8) 

Q 

M 

M \ 

4 
• W -

-{ 

m4 

= 0, 

1, 

TO2, 

+ e8 

for vibrations 

for buckling. 

TO I . 
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Here a\ (n = 1,2,...) are the eigenvalues for which the boundary value 
problem for Eq. (6) has non-trivial solutions. 

The problem of extracting two main boundary conditions for Eq. (6) 
out of four boundary conditions on the shell edges is discussed in detail in 
[Tovstik and Smirnov (2001)]14. The boundary conditions for Eq. (6) in the 
case of freely supported shell edges (FS) have the form 

d w 
w = ——r = 0 for x = 0, x = I. (9) 

dxz 

The boundary value problem (6), (9) also describes the flexural vibra­
tions of a simply supported beam. The connection between the boundary 
value problems for a shell and a beam is shown in Fig. 2.2. 

/ 

FS 
Approximate 

• A -A 
approach / * t—i 

Fig. 2.2. Shell and beam. 

Problem (6), (9) has a simple solution, presented for example in [Timo-
shenko (1955)]13: 

wn = Csmanx, an = irn/l, n = l , 2 , . . . , (10) 

where C is an arbitrary constant. 
If the shell edges are clamped, then 

w = - ^ = 0 for x = 0, x = l. (11) 
ax 

Consequently, a clamped shell problem corresponds to a clamped beam 
problem. 

The solutions of problem (6), (11) are well known (see [Timoshenko 

(1955)]13) and have the form 

wn(x) = C[U{anx) - KnV{anx)], (12) 

where 
U(x) = cosh a; - cosx, V(x) = sinha; — sin:r, , , 

c*n = zn/l, Kn = (coshzn — cosz„)/(sinh2:Tl — sinzn). 
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The positive numbers zn {z\ < z-i < • • •) are the roots of the equation 

cosh z cos z = 1. (14) 

To find the lowest eigenvalue 

Ai = minA(m, n) 

we calculate the partial derivative of the function A(m, n) given by (8) 
with respect to TO and set it equal to zero. The solution of the equation 
dX/dm = 0 has the form 

{ ^fct^/e, for vibrations, 

3 ' •y/a^/e, for buckling. 
The function \(m,n) attains its minimum, A*(n), for TO = m*. It follows 
from (8) and (15) that 

{ 2e4a^l, for vibrations, 

A 6 /o3/4 t u n- (16^ 

4eban/3
A/i, for buckling. 

If TO* is an integer, then formula (16) gives the exact result. Replacing m* 
by one of the integers closest to TO* we introduce an error e whose absolute 
value is less than 1. Therefore, the relative error e/m* in (16) decreases as 
TO* increases. 

Taking into account the fact that a\ < «2 < • • • we obtain 

i 2e4af, for vibrations, 

« , -a A (17) 
4e 6 a i /3 3 / 4 , for buckling. 

For a freely supported shell ct\ = ir/l ~ 3.14/1 and for a shell with the 
clamped edges a\ ~ 4.73/1. If one of the shell edges is clamped and the 
other is freely supported then a\ ~ 3.927/L 
2.4. Ring-stiffened Shell 
Consider low-frequency free vibrations and buckling of a thin circular 
cylindrical shell stiffened by nr identical rings at the parallels x = Xj, 
j = 1, 2 , . . . , nr (see Fig. 2.3, where nr = 5). 

The dimensionless equations describing the vibrations and buckling of 
the ring-stiffened shell may be written as 

£AAwb) ~ ^ + XZb) = °' A A $ W + - ^ = °' (18) 
j = 1, 2 . . . , n, n = nr + 1, 
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Jl) W (2 ) W (3)
 W

(4) W(5) W^ 

X\ X2 X3 X4 X5 

Fig. 2.3. Ring-stiffened cylindrical shell. 

where the function w^ is the normal deflection of the part of the shell 
situated between the rings or between the ring and the shell edge (Fig. 2.3), 

for vibrations, 
ZU) d2

wU) 

dip2 for buckling. 

The solutions of Eq. (18) have to satisfy eight boundary conditions on the 
shell edges x = 0, x = I and 8nr continuity conditions on the parallels 
Jb — <Li , J L ^ Zi . . . ^ l by . 

Separating variables in Eq. (18) 

VJV' {x, <p) = w^' (x) sin mip, &•*' (x,ip) = &•*' (x) sin rrup 

leads to the following system of ordinary differential equations: 

e8AAw^ 
d2<&^ 

dx2 XZ = 0, A A $ ( i ) + 
d2w^ 

dx2 0, 

where the operator A is introduced in (5). 

(19) 

2.5. First Approximation 

In the first approximation for m ^> 1 Eq. (19) reduces to the following 
equations 

d4w^ 
ds4 

4 (i) 0, j = l , 2 . . . , n . (20) 

It is convenient to introduce the function w(x) = w^3'(x) for Xj-\ < 
x < XJ, j = 1, 2 , . . . , n, XQ = 0, xn = I. Then the boundary conditions for 
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equations (18) corresponding to the freely supported or clamped shell edges 
x = 0 and x = I are represented in the forms (9) or (11). 

To determine the four boundary conditions for Eq. (20) from eight con­
tinuity conditions on the stiffened parallel x = Xj in the general case is 
a difficult problem. This problem was analyzed in [Filippov (1999)]7. We 
assume that the rings and the shell are made of the same material. The 
centers of gravity of the ring cross sections lie on the shell neutral surface 
and the characteristic size of the ring cross sections is a = Oie ). Then the 
boundary conditions for Eq. (20) at the parallels x = Xj are written as (see 
[Alfutov (1978)]1 and [Filippov (1999)]7) 

w 

d2 

U) 

w U) 

,,(i+i) 

cPwU+i) 

dx2 dx2 

dx 
d3w^ 

dx3 

dx 

d3wU+V 
dx3 = ~cw 

(i+i) 

where 
ml 

(21) 

(22) 

/ is the dimensionless moment of inertia of the ring cross-section with re­
spect to the generatrix of the cylinder. 

The boundary value problems (9), (20), (21) and (11), (20), (21) also 
describe the flexural vibrations of the simply supported and clamped beams, 
stiffened by nr identical springs of stiffness c at the points 
Fig. 2.4). 

Approximate 

approach 
Xj X2 X3 

«. = 3 n = 4 

Fig. 2.4. Stiffened shell and stiffened beam 

W 

The solutions of Eq. (20) can be represented in the form 
w = AjS(z) + BjV(z) + C3U{z) + DjT{z), z = a(x-

-1 < X < Xj j -l,2,...,n, x0 = 0, 
C j - l , 

I, 
(23) 
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where 

S(z) = cosh z + cos z, T(z) = sinh z + sin z, 

the functions V and U are given in (13), Aj, Bj, Cj, and Dj are arbitrary 
constants. Substituting (23) into (9) or (11) and (21), we obtain 4n linear 
homogeneous algebraic equations in An unknowns Aj, Bj, Cj, and Dj. 
These equations have nontrivial solutions if the characteristic determinant 
G(a) is equal to zero: 

G{a) = 0. (24) 

In the general case one can find the roots an of Eq. (24) by means 
of numerical methods and then calculate the eigenvalue A by formula (8). 
Unfortunately, in the case of a stiffened shell it is impossible to obtain a 
simple formula for the lowest eigenvalue Ai similar to formula (17), since c 
and, consequently, an depend on m. 

From this point on, we focus our attention upon the evaluation of 

Ai = min 
m.n 

1 (a4
n{m) t __8_4 

M> < + £ m (25) 

The eigenvalue Ai is proportional to the fundamental vibration frequency 
in the case of vibrations and to the critical pressure in the case of buckling 
and, therefore, the first (lowest) eigenvalue is of interest in the industrial 
applications. We will also analyze how to find the values of the parameters 
corresponding to the largest value of Ai. 

2.6. Shell Stiffened with a Ring 

We assume that the edges of a cylindrical shell are freely supported and a 
ring is located at the parallel x = x\. In this case nr = 1, n = 2 and the 
boundary value problem (9), (20), (21) describes the vibrations of a simply 
supported beam, stiffened with spring of stiffness c at the point x = x\. 

lix\ = 1/2, i.e. the spring is situated at the middle of the beam, Eq. (24) 
has the same roots as the following two equations 

tanh;? — tan 2 = 32z3/c, shi2: = 0, z = al/2. 

If we denote by z\ and z-i the minimal positive roots of the first and second 
equations, then 

TT/2 < zx < 3.927, z2 = 7T. 

The roots z\ and z-i are plotted as functions of c in the left part of Fig. 2.5. 
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Xl = I/2 
z I 1 1 1 — 

3.927 = 

3.142 -/— 

2 / 

1 " 

0 c* 500 1000 1500 

Fig. 2.5. Two minimal positive roots vs. the spring stiffness, c. 

The asymmetric arrangement of the string x\ ^ 1/2 have been analyzed 
in [Sharypov (1997)]15. Unlike the case of a symmetric string, when x\ = 
1/2, in the asymmetric case Eq. (24) does not split into two simple equations. 

Let Cfc = 2ctk/l, where 0 < a\ < «2 < • • • are the positive roots of 
Eq. (24). It is shown in [Sharypov (1997)]15 that 

Zl > Cl, *2 < C2 (26) 

for all values of c > 0. The roots £i and £2 are plotted as functions of c for 
x\ = 1/4 in the right part of Fig. 2.5. It follows from (26) that 

max Q!i(c, x\) = ai(c,l/2), 
Xi 

i.e. the minimal positive root a.\ of Eq. (24) attains its maximum at the 
symmetric string position x\ =1/2. Consequently, the first eigenvalue Ai of 
the simply supported cylindrical shell has its maximum at the symmetric 
ring position. 

Usually a root of Eq. (24) increases with the stiffness c. The second 
characteristic property of the symmetric case is the existence of the root 
a.2 = 2Z2/I = 2-K/I which does not depend on c. One can easily understand 
the physical meaning of this fact by looking at Fig. 2.6, where the vibrations 
modes corresponding to a{ = 2z\/l (on the left) and as

2 (on the right) are 
shown. 

The spring is deformed, when the beam vibrates with the first mode 

x, = 1/4 

500 1000 1500 c 
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1/2 I 0 1/2 

Fig. 2.6. Vibration modes of the stiffened beam. 

and it is not deformed by the second mode. Therefore, the string stiffness, 
c, does not affect a^-

We call the root c* of the equation a\ (c) = af the effective stiffness 
of the spring (see Fig. 2.5). The minimal positive root a.\ of Eq. (24) for 
x\ = 1/2 can be found from the relation 

ai(c) 
af(c), 

*2> 

c < c*, 

c > c*. 
(27) 

It follows from this formula that, in case of symmetry, the root a\{c) in­
creases with the stiffness c only if c < c*. Otherwise, a\{c) = 2-K/I and it 
does not change with an increase of c. 

The lowest eigenvalue Ai for a freely supported shell stiffened by a ring 
located at the middle of the shell is 

Alfa) mm -
1 faf(i]m8e8l/n) 

M 
• e m 

m* 

Here 

T] 
nl 

(28) 

(29) 
e8hl m8e8V 

and Qfi may be found by (27). The dimensionless ring stiffness rj is pro­
portional to the ratio Dr/D, where Dr = EIR4 and D = Ehs8R3 are the 
bending stiffness of the ring and the shell. 

Consider first the case of vibration. Then for an unstiffened shell in 
compliance with (17) 

A1(0)~2e47r2/i2 . 

If r\ is not very large, the eigenvalue \\{j]) increases with rj since c and 
«i go up with 77. However, for sufficiently large 77 the inequality c > c* is 
valid and ct\ = 2ir/l. Calculating the derivative of the function A„(m) = 
[27T/(/TO)]4 + £8m4 with respect to m we obtain 

Ai(?7) =minA^(m) ~8e47r2/Z2 = 4Ai(0) for 77 » 1. 
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Consequently, 

Ai(0)<A1(r ?)<4A1(0). 

We call the root 77* of the equation Alfa) = 4Ai(0) the effective stiffness 
of the ring. For 77 < 77*, the eigenvalue Aifa) increases with 77, otherwise 
A1(r?)=4A1(0). 

The plot of the function Aifa)/Ai(0) for I = 2, h = 1/500, v = 0.3 is 
shown in Fig. 2.7. 

AaOl)Ai(0) 

Fig. 2.7. Ratio between the eigenvalues Ai(?;) and Ai(0) vs. the ring stiffness r\. 

The values of the circumferential wave number m for which the eigen­
value Ai attains its minimum are also presented in Fig. 2.7. These values 
depend on the variation interval of n. The effective stiffness 77* = 14.6. The 
spring stiffness c = 71.9 corresponding to rj* is large enough. We will see be­
low that the effective stiffness is optimal from some point of view; therefore 
the case c 3> 1 is of interest in engineering. 

Carrying out a similar calculation for the buckling problem, we obtain 
that 

Ai(0) < Ai(rj) < 2Ai(0), Ai(0) ~ 4£67r/(31/40. 

The effective stiffness 77̂  in the buckling problem is the root of the equation 
A1(77)=2A1(0). 

2.7. Optimal Rings Arrangement 

In the general case, the minimal positive root ct\ of Eq. (24) depends on 
the spring stiffness, c, and the set, X = (x\, X2, • • •, xUr), of coordinates of 
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the springs. The set X is called the arrangement. If 

max«i(c ,X) = ai(c ,X°) , 

we call X°(c) = (x°(c),X2{c),... ,x° (c)) the optimal arrangement. It fol­
lows from (25) that the optimal springs arrangement on the beam corre­
sponds to the optimal rings arrangement on the shell. 

Some optimal arrangements X°(c) of the springs have been found in 
[Sharypov (1997)]15 for simply supported and clamped beams. Eq. (24) 
have been solved numerically for nr < 6 and various values of c. To find the 
optimal spring positions all possible variants of support have been analyzed. 
The conclusions are the following: 

1) The optimal arrangement is symmetric with respect to the middle of 
the beam. 

2) For small values of the stiffness c the optimal positions of the springs 
are located near the middle of the beam. 

3) For c —> oo the optimal arrangement for a simply supported beam 
tends to the uniform one (XJ = jl/n) and to the almost uniform arrange­
ment for the clamped beam. 

In Fig. 2.8 the plots of x\ vs. c in the case of two [nr — 2) symmetrically 
disposed (x2 = l — x\) springs are shown. The beam of length I = 3 is simply 
supported. 

1.5 

1.0 

0.5 
0 100 200 c 

Fig. 2.8. The optimal string coordinate x° vs. the spring stiffness c. 
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If the stiffness c is small, then x° ~ x% ~ 1.5. The distance between 
the strings and the ends of the beam decreases with the increase of c and 
x° —> 1 and x\ —> 2 as c —> oo. 

We will call 

X* = lim X°{c) 
C—>0O 

the ultimate optimal arrangement. For c = oo the last condition (21) takes 
the form IU(SJ) = 0 and conditions (21) describe the joints of the hinges 
and the beam. Therefore, the ultimate optimal arrangement is the optimal 
arrangement of the hinges. If c is large then the optimal ring arrangement 
on the shell, X°(c), differs slightly from X*. 

As it was found in [Sharypov (1997)]15, if nr < 6 then the ultimate opti­
mal arrangement for a simply supported beam is the uniform arrangement, 
i.e. X* = Xu, where Xu = (l/n, 21/n,... ,nrl/n). Table 2.1 contains the 
data from [Sharypov (1997)]15 and shows some ultimate optimal arrange­
ments for a clamped beam of length I = nr + 1. 

Table 2.1. Optimal hinges coordinates. 

nr 

2 
4 
6 

x\ 

1.076 
1.139 
1.161 

x2 

1.934 
2.045 
2.096 

Xg 

_ 
2.955 
3.017 

x̂  

_ 
3.861 
3.983 

x5 

— 
-

4.904 

*6 

— 
-

5.839 

The nodes of oscillations of an unstiffened beam are the roots of the 
equation wn(x) = 0, where wn is the vibrations mode. For a simply sup­
ported beam, wn(x) = Csm(imx/l) (see (10)) and the nodes of oscillations 
Xj = jl/n are uniformly arranged. Consequently, for a simply supported 
beam and nr < 6 

X* = X\ (30) 

where Xr = (x\, xr
2,..., xr

n ) is the roots arrangement for the equation 
wn(x) = 0. 

Comparing the data from Table 2.1 and the roots of the equation wn = 
0, where wn is the vibrations mode of the clamped beam (see (12)), shows 
that for nr = 2,4, 6 equality (30) is valid also for a clamped beam. 

It is proved in [Filippov and Lopatukhin (2001)]8 that equality (30) is 
valid for any homogeneous boundary conditions and any number of springs 
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nr. Indeed, the condition W(XJ) = 0 is the equation of the constraint. Con­
sequently, the beam stiffened by nr hinges is a mechanical system made of 
an unstiffened beam by introducing nr constraints. According to Rayleigh's 
theorem (see [Gould (1966)]9) 

a i ( 0 ) < a i ( o o , A - ) < a n ( 0 ) , (31) 

where a\ (0) and a^(0) are the first and the n-th eigenvalues for an unstiff­
ened beam and af(oo,X) is the first eigenvalue for a beam stiffened by nr 

hinges. If we assume that the coordinates of the hing the nodes 
of the unstiffened beam vibrations mode, i.e. X = Xr, then wn(s) is also 
the first vibration mode of the stiffened beam corresponding to ai(oo) (see 
Fig. 2.9). 

L \ t n/ \ j g» X 

0 x[ xf x% i 

Fig. 2.9. First vibration mode of a beam stiffened by n r hinges for X = Xr. 

Therefore, a i (oo,X r ) = an(0) and it follows from (31) that the eigen­
value ai(oo,X) attains its maximum value for X = Xr, i.e. X* = Xr. 

The root arrangement Xr depends only on the boundary conditions. 
The optimal ring arrangement in case c » 1 depends mainly on the bound­
ary conditions, because X° ~ X* = Xr for the large values of stiffness 
c. 

2.8. Homogenization 

In this section we consider the uniform arrangement Xu of the rings on a 
freely supported cylindrical shell. This arrangement is often used in indus­
trial applications and is the subject of theoretical considerations. On the 
other hand, the uniform arrangement is close to the optimal one if the edges 
of the shell are freely supported and c > 1. 

If the number nr of springs is large and the stiffness of each spring c 
is small, one can use the homogenization method (see [Babushka (1976)]3, 
[Sanchez-Palencia (1980)]n) for the approximate evaluation of the eigen­
values a\. Instead of the problem (9), (20), (21) we consider the equivalent 
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problem for the equation 

J 4 n _ 1 

d w S^ xr \ 4 
-t- nil \ Ainr — i"-- I = rv 

dx4 

— j - + cw > d(x — Xj) = a w 
3 = 1 

with the boundary conditions (9). Here 5(z) is Dirac's delta function, Xj — 
jl/n. In the new variables x = si and w = wl the equations are 

— + cnra ^ <5(£ - j) = KM, (32) 

where c = d3 , K = (a/)4 , and £ = ns. The boundary conditions (9) take 
the form 

d w 
w = -—=0 for s = 0, s = 1. (33) 

Assuming that B > 1 and en ~ 1, we write the solution of Eq. (32) as 

tu(s,£) = WQ(S,£) + n~4u;4(s,£) + • • • , K = K0 + n~4m -\ , (34) 

where Wi(s,£) = Wi(s,£ + 1) and, consequently, 

f)kw C^+l 8kin-

<^>=l ^ = °' i = 0'4"-" fc = 1>2'--- (35) 
The operator < • > is called the homogenization operator. The application 
of this operator to both part of an equation is called the homogenization 
of the equation. 

If we substitute (34) into (32) and (33), then we obtain the equations 

d4w0 d4Wi d4w0 S^x/C -N ,oR\ 

~der= ' ~dFr + ^r + cnz-^6^~^Wo = K°Wo (m> 
and the boundary conditions 

w0 = ----- = 0 , w4 = ----- = 0 for s = 0, s = 1, (37) 

as a result of equating the coefficients of n4 and n°. From (35) and the first 
equation in (36) it follows that 

d3w0 , . , . , , 93w0 

- ^ -3 -=v 3 ( s ) , w3(s) =<u 3 ( s ) > = < - ^ - 3 - > = 0 . 

A further integration followed by a homogenization gives 

d2wo f \ n dw° f \ n 1 c\ f \ 
-g-f- = v2{s) = 0, —— =v1(s) = 0, two(s,0 =«o(s). 
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After the homogenization of the second equation in (36) we get 

-—- + cnv0 = K0V0. (38) 

Equation (38) describes the vibrations of a simply supported beam on 
an elastic base (see Fig. 2.10). 

„ « Homogenization 

l\i i i i l\ > 
Fig. 2.10. Stiffened beam and beam upon an elastic base. 

The solutions of Eq. (38) which satisfy the first of the boundary condi­
tions (37) are WQU = sinfc7rs, 

«ofc = {kn)4 + en, fc = l , 2 , . . . (39) 

We seek the unknown function W4 in the form 

w4(s,£) =v4{s) +u 4 ( s , f ) , 

where < UA > = 0. 
It follows from (36) and (38) that 

d4u n _ 1 

— - = cnv0[l - J2 5(£ - j)}. 
i= i 

Integrating this equation gives 
(v 77/1 

- 7 p - = cnvQ[£ - j - c3(s)], j < £ < j + 1. 

After the homogenization, the last equation takes the form 
r + i 1 

C3 = j ( f - j R = 2 . 
and, after another integration followed by homogenization, we get 

u4(s,0 = cnv0{(£~j)2(i-j - l ) 2 - 1/720], j < £ < j + 1. 

Substituting (34) into (32) and equating the coefficients of n~4 , we ob­
tain the equation of the next approximation. The homogenization of this 
equation yields 

d4V4 „ c2n2 

' CUV4 ^^Tv0 = ^0^4 + K4V0. dsA 720 
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From the compatibility condition for the above equation we find 

c2n2 

M = "72f7-
Consequently, 

c2 

Kk~(kTr)4 + c n - ^ ^ , fc = l , 2 , . . . (40) 

Table 2.2 lists the values of K\ calculated from the numerical solution of 
Eq. (24) and from the asymptotic formulas of the first and second approx­
imations in (39) and (40). 

Table 2.2. Comparison of numerical and 
asymptotic results. 

n 

2 

3 

6 

c 

1 
10 
102 

10 
102 

103 

102 

103 

104 

Parameter 
(24) 

99.41 
117.0 
278.7 

127.4 
395.3 
2940 

697.0 
6056 
56131 

• K\ calculated by 
(40) 

99.41 
117.4 
293.9 

127.4 
395.8 
2942 

697.0 
6059 

56236 

(39) 

99.41 
117.4 
297.4 

127.4 
397.4 
3097 

697.4 
6097 

60097 

Although formulas (39) and (40) are derived for n ^> 1 and c ~ 1/n <C 1, 
they provide good approximations for the exact values of KI even for n = 2 
(for one ring) and for a sufficiently large stiffness c (for c = 100 and more). 

It follows from (29) and (39) that 

a\ = (n/I)4+ ri(em)8. (41) 

Substituting (41) into (28) and differentiating with respect to m give the 
following approximate formula 

Ai(?7) J (1 +??)1/2, for vibrations, 
(42) Ai(0) [ (1 + r?)3/4, for buckling, 

where, in accordance with (17), 

f 2e47r2 II2, for vibrations, 

1 4e67r/(33/40, for buckling. 
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2.9. Irregular Arrangement 

Homogenization may be used only in the case of a uniform springs arrange­
ment. Instead of the homogenization method for an irregular arrangement 
we apply Rayleigh's method. For example, we consider an irregular springs 
arrangement on a clamped beam. We recall here that the ultimate optimal 
arrangement for a clamped beam is irregular. Rayleigh's formula (see, in 
particular, [Gould (1966)]9) for a stiffened beam may be written in dimen-
sionless form as 

a\ = ( / i + / 2 ) / I o , 

/ \~in*) h=c2_^w {Xj), I0= w dx. 

Substituting the first vibration mode w\ (x) for a non-stiffened clamped 
beam (12) into (43) gives 

Kl(X) = M X ) / ] 4 = z\ + -y(X)cn, c = cl3. (44) 

Here z\ is the minimal positive root of Eq. (14). The function 

1 n— 1 

7 P 0 = - Y,[U(<*&i) - KiV(alXj)}
2 (45) 

71 3=1 

depends on the springs arrangement X = (x\, X2, • • •, xnr). 
In Table 2.3 we can see the values 7 for the optimal ultimate X* and 

uniform Xu springs arrangements. 

Table 2.3. Values of 
the function ~f(X). 

n 7 ( X * ) 7 ( X « ) 

2 1.261 1.261 
3 1.178 1.018 
5 1.102 1.001 

If n = 2, then X* = Xu. In the case n > 2 it follows from (44) that «i, 
for the optimal ultimate arrangement, is greater than for the uniform one 
since -y(X*) > j(Xu). 

Table 2.4 lists the values of the parameter K±, obtained by means of dif­
ferent methods for a stiffened beam with clamped edges. The approximate 
values Ki(X*) have been found by formula (44) for the optimal ultimate 
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arrangement of the strings. The values KI(X*) and Ki(Xu) were calculated 
by means of the numerical solution of Eq. (24) for the optimal ultimate and 
uniform arrangements, respectively. 

Table 2.4. Numerical and asymptotic re­
sults for a clamped stiffened beam. 

n 

2 

3 

5 

c 

1 
10 
100 

10 
100 
1000 

100 
1000 
5000 

Hi(X*) 

503.0 
525.8 
752.7 

533.6 
831.1 
3806 

1057 
6070 
28350 

Kl{X*) 

505.6 
527.9 
747.2 

538.3 
836.7 
3800 

1046 
5973 
26124 

Kl(X») 

505.6 
527.9 
747.2 

532.2 
804.2 
3363 

1001 
5523 
25354 

From Table 2.4 we can see that the relative error of the approximate 
formula (44) remains small when the parameters n and c widely vary. In 
the case n > 2, the values K± for the optimal ultimate springs arrangement 
are larger than for the uniform arrangement. 

Let us apply Rayleigh's method for the uniform springs arrangement 
Xu on a simply supported beam. Substituting the first vibration mode of 
a non-stiffened beam, w\ — sm(irx/l), into (43) we obtain 

K\ = TT + 27C71, 

where 

1 " _ 1 1 
7 = - ^ s i n 2 ( 7 r j / n ) = - . 

Consequently, KI = 7r4 + en. Exactly the same formula for K\ gives the first 
approximation of homogenization (see (39)). 

It follows from (44) that for clamped beams and shells 

a\ = (z1/l)
4 + 1n(em)s. (46) 

Substituting (46) into (28), we have 

AI(T?) _ f (1 + 7V)1/2, for vibrations, 
Ai(0) ~ | ( l + 7 7 7 ) 3 / 4 ; for buckling, ^ ' 

where Ai(0) can be found from (17). 
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2.10. Effective Stiffness 

Usually, formulas (42) and (47) provide an approximation for the first (min­
imal) eigenvalue Ai, but there is an important exception. For example, for a 
freely supported shell stiffened by a symmetrically positioned ring (nr = 1, 
Xj = 1/2) such an exceptional case takes place. 

Then Eq. (24) has root a = 2n/l, which is independent of the stiffness 
c. Hence there is a corresponding eigenvalue 

{ 4Ai (0), for vibrations, W ' (48) 

2Ai(0), for buckling. 
which does not depend on 77 (see Sect. 2.6). To find the first eigenvalue 
for rj > 77*, where 77* is the effective stiffness, one has to use formula (48) 
instead of formula (42), which is valid only for 77 < 77*. 

In the general case, Eq. (24) has a stiffness-independent or c-independent 
root if the arrangement of the rings is the following: X = Xr = X*. The 
ultimate optimal arrangement X* is important for engineering applications 
since, for c 3> 1, it differs only slightly from the optimal ring arrangement 
X°. 

Consider the ultimate optimal rings arrangement X* for a freely sup­
ported shell. It is proved in Section 2.7 that, in this case, the ultimate opti­
mal arrangement is uniform. The minimal c-independent root is a = im/l. 
The corresponding stiffness-independent eigenvalue] can be found as 

{ n2Ai(0), for vibrations, 
(49) 

nAi(O), for buckling. 

In the case of vibrations, the effective stiffness 77* is the root of the 
equation Xi{r}) = n2Ai(0). In the case of buckling, 77̂  satisfies the equa­
tion Ai (77) = nAi(O). Using the approximate expression (42) we obtain the 
following approximate values of 77* and 77̂  

7 7 ; » ~ n 4 - l , 7 ? b * ( n ) ~ n 4 / 3 - l . (50) 

The approximate values T?*(2) ~ 15, 77 (̂2) ~ 1.52, and 77 (̂3) ~ 3.33 found 
by (50) are in good agreement with the exact ones rj*(2) = 14.6,77^(2) = 1.5, 
and 77 (̂3) = 3.2. The two last results are reported in [Alfutov (1978)]1. 

We use formula (42) for 77 < 77* and formula (49) for 77 > 77*. Therefore, 
in the case of vibration of freely supported uniformly stiffened cylindrical 
shell, 

Ai(»j) / ( I+77) 1 / 2 , 0 < 7 ? < n 4 - l , 

Ai(0) I n 2 , 7 7 > n 4 - l . 
(51) 
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In the case of buckling of such shell under external pressure, 

AiOj) {(1+ry) 3 / 4 , 0 < 7 7 < n 4 / 3 - l , 

Ai(0) \ n , r ? > n 4 / 3 - l . l ' 

The plots of the functions (51) and (52) for n = 2 practically coincide 
with the plots in Fig. 2.7 and in [Alfutov (1978)]1, respectively. 

Consider the ultimate optimal arrangement X* on a clamped shell stiff­
ened by nr identical rings. It is shown in Section 2.7 that, in this case, X* 
coincides with the roots arrangement Xr for the equation wn = 0, where 
wn is the vibrations mode of a clamped unstiffened beam (see (12)). At the 
same time, the function wn is the vibrations mode of a clamped stiffened 
beam for X = Xr. Therefore, Eq. (24) has the stiffness-independent root 
a = zn/l, where zn is the root of Eq. (14). We use the following approxi­
mation to calculate zn: 

2 n ~ 7 r ( 2 n + l ) / 2 , n = l , 2 , . . . (53) 

The relative error of this formula is less than 0.1% for all n. 
The frequency parameter corresponding to a = zn/l 

{ ^Ai(0) , for vibrations, n w (54) 

^n^i(O), for buckling. 
does not depend on r\. Here rn = znjz\ ~ (2n + l ) / 3 . 

Using formulas (47) we obtain the following approximate values of the 
effective stiffness for the vibrations and buckling 

^ ( n ) ~ 7 - 1 ( ^ - l ) , % * ( n ) ^ 7 - 1 ( ^ / 3 - l ) . (55) 

In Table 2.5 we can see the values rfv and rf^ of the effective stiffness 
for various n. These values are less than the values of the effective stiffness 

Table 2.5. Values 
of r/* and rj*. 

n 

2 
3 
5 

vl 
5.326 
25.99 
161.4 

nt 
0.774 
1.906 
4.179 

for a shell with simply supported edges. 
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In the case of vibrations of a clamped stiffened cylindrical shell, the first 
eigenvalue is 

Ai(r?) f ( l + 7 ^ ) 1 / 2 , 0<r,<r,», 

Ai(o ) -K , v>v*v-
 [ j 

In the case of buckling of such shell under an external pressure, we can find 
the first eigenvalue 

A i ^ ) _ f ( l+7?? ) 3 / 4 , 0 < 77 < 7?6, ( 5 ? ) 

Ai(0) ~ \rn, r] >rfb. 

It follows from formulas (51), (52), (56), and (57) that Ai(r?) > Ax(0) 
for r\ > 0, i.e. the fundamental vibration frequency and the critical pressure 
of a stiffened shell are higher than of an unstiffened one. All formulas are 
derived under the assumption that 

Ms = M0 + Mr, 

where Ms is the mass of the stiffened shell, MQ is the mass of the unstiffened 
shell, and Mr is the mass of the rings. This means that a stiffened shell 
is heavier than an unstiffened one. In the next sections we compare the 
vibrations frequencies and the critical pressures for stiffened and unstiffened 
shells of equal masses. 

2.11. Optimal Design of Vibrating Stiffened Shells 

We suppose that the mass, Ms, of a ring-stiffened cylindrical shell is given 
and seek the optimal parameters of the rings and the shell, for which the 
fundamental vibrations frequency have the largest value. 

We consider both a freely supported (FS) shell and a clamped (CL) 
shell, assuming the rings arrangement X = X*. From formulas (51) and 
(56) 

°^^> (58) 
V > Vt, 

where 

* ! , 4 ^ . J 1 ' FS' 

^ = r{rt~11 7 =Ux% CL, r 

The function j(X) is given by (45). 
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The fundamental vibration frequency LOQ of an unstiffened cylindrical 
shell of thickness ho and length I can be found by the approximate formula, 
following (2) and (17) 

w
2 - E A l ( 0 ) A1^-Ih 0 7 r 2 / ( V^ : '2 ) ' FS' (59) 

W ° - ^ r ~ ' A l ( 0 ) - \ ^ / ( ^ 2 ) , CL, ( 5 9 ) 

where a = 1 — v2. 
The mass of an unstiffened shell is MQ = Gh0, where G = 2irR3pl. We 

compare too with the fundamental vibration frequency, co\, of an stiffened 
shell of thickness h < ho and mass 

Ms = M + Mr=M0, (60) 

where M = Gh is the mass of the skin (the mass of the shell), Mr is 
the mass of the reinforcement (the mass of the rings). We consider rings 
with rectangular cross-sections of width a and height b = ka. In this case 
Mr = 2irR3pnra

2k. 
Using relations (58) and (59), we obtain 

V "§ \drl r]>i1*v,
 y > 

where 

h BaA „ ank3 , , d = v " = ̂ "' B = w (62) 

It follows from (60) and (62) that 

, -> , 2 A nrk (1 -d)2B . . 

Substituting the expression of rj from (63) into (61) gives 

f2(d) = {drt, 0<d<d*v, 
v [d^l + Pid-l^/d3, d*v<d<l, 

where (3 = 7*£?/A2 and d*v G [0,1] is the root of the cubic equation 

g(d) = d3-q(d-l)2=0, q = (3/(1*r1l)>Q. (64) 

By the inequalities g{\) = 1 > 0 and g(0) = — q < 0, the function g(x) has 
at least one root in the interval (0,1). This root is unique, since 

g = dg/dx = 3x2 - 2q{x - 1) > 0 for x e [0,1]. 
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The values of the parameters d, a, and r/ for which the function /„ attains 
its maximum are called the optimal values. To find the optimal value of d 
we study the behavior of the function y(d) = f*{d). This function increases 
for 0 < d < d*. Therefore, it attains its maximum for d £ [cZ*, 1]. For these 
values of d the function y(d) and its derivatives have the form 

y = d2+[3(d~2 + l/d), y' = 2d + (3 - P/d2, y" = 2 + 2/3/d3 > 0. 

The first derivative y'(d) increases for d £ [d*, 1] since y"(d) > 0. Conse­
quently, the function y{d) has no local maximum in the interval [d*, 1]. This 
is also valid for the function fv = ^fy. It can attain its maximum f* only 
at the ends of the interval [d*, 1], i.e. 

/* =max[/ u (d*) , /„( l ) ] = max (rnV/d*, 1). 

The inequality rn^/d^ > 1 is valid if and only if g(r~2) < 0. The last 
inequality holds if 

ho < ̂ fc W W 
Therefore, for sufficiently thin shells, 

f: = WD = rn^¥v, (65) 

and the optimal value of the parameter d is d*. Substituting d = d*; into 
(63) we obtain the optimal values of a and 77, 

a*v = y/(l-dl)/A, V*v=
{l

{d^2
B-

Hence, the effective stiffness 77* is at the same time the optimal stiffness 
ensuring the maximal value of the fundamental frequency. 

It follows from (64) that, for n > l , 

d : ~ g 1 / 3 ^ n - 5 / 3 ! / : ( n ) ^ M : ) l / 2 ^ n l / 6 . 

Therefore, the fundamental vibration frequency of a stiffened shell increases 
with n for large n. The following approximate expression for d* 

d : ^ g 1 / 3 ( l - ^ 1 / 3 ) , « « 1 (66) 

is derived by means of an asymptotic method (see [Bauer et al. (1993)]4). 
Formula (66) is valid for n ^> 1 since, in this case, q Ĉ 1. 

Consider a freely supported shell of length I = 4, thickness ho = 0.01, 
and Poisson's ratio v = 0.3, stiffened by n r = n — 1 rings with square 
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Table 2.6. Approximate 
and exact values of d *. 

n 

6 
7 
8 
9 
10 

Appr. d* 

0.297 
0.245 
0.204 
0.172 
0.147 

Exact d 

0.316 
0.254 
0.209 
0.175 
0.148 

cross-sections k = 1. The approximate values of d* calculated in (66) and 

its exact values for various n are given in Table 2.6 . For n > 6 the error 

of formula (66) is less than 5%. 

In Table 2.7 one can see the values of d*, a*, and f* for the same stiff­

ened shell. The optimal parameter for freely supported (FS) and clamped 

(CL) shells are given in the left and right columns, respectively. 

Table 2.7. Optimal values of the parameters. 

nr 

1 
2 
4 
6 
8 

FS shell 

dv av Jv 

0.881 0.0689 1.88 
0.690 0.0788 2.49 
0.402 0.0773 3.17 
0.254 0.0705 3.53 
0.175 0.0642 3.76 

CL shell 

d* n* f* 

0.924 0.0551 1.60 
0.785 0.0655 2.07 
0.535 0.0682 2.68 
0.370 0.0648 3.04 
0.268 0.0605 3.28 

For the shells under consideration, the ratio f* = LOI/WQ increases with 

nr. The fundamental vibration frequency wjf of an optimal shell stiffened 

by eight optimal rings is about 3.5 times higher than the fundamental 

frequency LJQ for an unstiffened shell of the same mass. 

It follows from (60) tha t d*v = M*/M*3, where M* and M* are the 

optimal masses of the skin and the whole stiffened shell, respectively. If 

the number nr of rings is increased, then the ratio M*/M* decreases. For 

nr = 1 and an FS shell, the optimal mass of the skin makes up 88.1% of 

the whole mass of the stiffened shell and for nr = 8 it makes up only 17.5% 

whereas 82.5% falls at the reinforcement. 

The ratio f* = UJI/LUQ, as a function of nr and k for an FS shell with 

parameters I = 4, ho = 0.01, and v = 0.3, is shown in Fig. 2.11, where the 

points corresponding to the integer nr are joined by line segments. 
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r 

€^ 
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f^ 
k= 1 

0 2 4 6 8 i 

Fig. 2.11. The ratio f* = u*/u>o VS. n r and k for an FS shell. 

The function f*(nr, k) increases with k, but the suggested approximate 
approach is applicable only in the case ka <C 1, since we use the beam 
model of the ring. For large values of k, the ring is wide and it must be 
treated as an annular thin plate. 

2.12. Optimal Design of Buckling Shells 

Consider the static buckling problem for a stiffened cylindrical shell under 
uniform external lateral pressure. Assuming that the shell edges are freely 
supported (FS) or clamped (CL) and the rings arrangement is X = X*, we 
obtain, by means of (52) and (57), the following relation 

AI(T?) ^ f (l+7*?7)3 / 4 , 0<r,<Vb, 

Ai(0) ~ \rn, V>V*b, 

where 

(67) 

1 
Vb (rr -1), 7 (68) 

[ 1 , FS, K FS, 

V" [l(X*), CL, r " [ ^ i , CL. 

The critical pressure po of an unstiffened cylindrical shell of thickness 
ho is found from (3) and (17): 

Po Eho\i(0), Ai(0) 
2/IO /2TT/(3ZV6CT3/4), FS, 

2/io/20i/(3ZV6<T3/4), CL. 
(69) 

We compare po with the critical pressures pi of a stiffened shell of the 
same mass, assuming that the rings cross-sections are rectangles with width 
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a and height b = ka. We find the ratio / t = pi/po from (67) and (69): 

, Pi U 5 / 2 ( l+7*?? ) 3 / 4 , 0<V<V*b, ,__. 
J*> = = 1 7^/2 * ^ ' 

where d and r/ are given by (62). 
Taking (63) into account, we write 

f ^ - J d 5 / 2 r " ' 0<d<d*b, 
JbW - I d 5 / 2 [ 1 + ^ _ 1)2 /d3]3/4) d* < d < 1, 

where /3 = 7*£?/A2, d£ is the root of the cubic equation 

d3-q(d-l)2 = 0, q = (3/(>yWb)-

This equation has a unique root in the interval (0,1). 
The function y = jj increases with d iox d < d\. Consequently, it 

attains its maximum at d € [d*b, I). For d e [d£, 1] the function y takes the 
form 

y = d10/3
 + /3d1/3 (d_1)2, 

If /io •C 1, then /3 ^> 1 and the roots di, efo, and ds of the equation 

y' = [lOd3 + /?(7d2 - 8d + l)]/(3d2 /3) = 0 

have the following asymptotic expansions 

7 / 3 , 1 / 5 \ 5 
dl"-To' d 2 " H + i ^ J ' d 3 " 1 _ 3^-

The function y(d) attains its local maximum and local minimum at 
d = di and d = d%, respectively. For ho sufficiently small, the inequality 
di < dl is valid since d-2 —> 1/7 and d*h —> 1 if ho —> 0. Therefore, for small 
/lo the function j / does not have a local maximum at d € (d£, 1) and attains 
its maximum only if d = dl or d = 1. The same is valid for the function 
fb = y3/4- Hence, for a sufficiently thin stiffened shell the largest value fb* 
of the function fb is 

/b*=maxM4*)5/2,l]. 

For ho sufficiently small, the inequality r„(dj*)5/2 > 1 holds, because rn > 
1.5 and d̂  —> 1 if .̂o —̂  0. Consequently, 

n=rn{dlf'2 

and at the same time the effective stiffness, 77J, is the optimal stiffness. 
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From the asymptotic formulas 

d*~n-7'\ tt~n-l7'l\ n»l (71) 

it follows that the function /£(n) decreases for large n. 
In Table 2.8 the values of dj*, a£, and /£ for freely supported and clamped 

shells with I = 4, ho = 0.01, v = 0.3 and fc = 1 are given. 

Table 2.8. Optimal values of the parameters. 

n r 

1 
2 
4 
6 
8 

FS shell 

dl < f* 

0.957 0.0414 1.79 
0.905 0.0436 2.34 
0.812 0.0434 2.97 
0.736 0.0420 3.25 
0.674 0.0404 3.36 

CL shell 

d*b ^ f*b 

0.969 0.0353 1.54 
0.926 0.0385 1.92 
0.850 0.0387 2.44 
0.786 0.0373 2.73 
0.731 0.0367 2.89 

The ratio /h* = p\/po as a function of nr and k for an FS shell and for 
the same values of the parameters I, ho, and v is shown in Fig. 2.12. 

Fig. 2.12. The ratio /£ = p*/po vs. nr and k for FS shell. 

For a stiffened shell considered here, the ratio f^(nr) increases with 
the number of rings, nr, while nr is not very large. However, this ratio 
decreases for sufficiently large nr by (71). Hence, in contrast to vibrations, 
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the function f£{nr) a t tains its local maximum for the finite number nr = 

n*, i.e. in the case of buckling the optimal number of the rings, n*, exists. 

In the case of I = 4, /i0 = 0.01, v = 0.3, and k = 1 for a freely supported 

shell, the optimal number of rings is n* = 9, because the function f£(nr) 

has the largest value 3.375 at nr = 9 (see Fig. 2.12). 

2.13 . Con c lu s ion 

The asymptotic technique presented in this paper can be used for vari­

ous stiffened thin-walled structures. The buckling and vibrations of a ring-

stiffened cylindrical shell with a slanted edge have been considered in [Fil­

ippov (1997)]6. For such shells, the vibrations and buckling modes are lo­

calized near the longest generatrix of the cylindrical shell. The evaluation 

procedure of the critical external pressure, the fundamental vibration fre­

quency and the optimal parameters is similar to the procedure used for a 

shell with a straight edge. 

Another interesting problem is the analysis of two joint shells with 

slanted edges. Often this type of s tructure is used in pipelines. The problem 

becomes more complicated, but even in this case the asymptotic approach 

allows one to obtain approximate analytical solutions and develop algo­

ri thms to compute the optimal parameters (see [Filippov (1999)]7). 
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Buckling of thread-reinforced elastic thin shells is discussed in this pa­
per. Smirnov's and Tovstik's results on the asymptotic analysis of thin 
isotropic shells are generalized to the case of a shell consisting of a ma­
trix reinforced by fibers. In this work both localized and non localized 
bucklings are considered, Examples of these cases are, respectively, a 
convex shell under hydrostatic pressure and a cylindrical shell under ax­
ial or hydrostatic pressure. Special attention is devoted to the effect of 
anisotropy and boundary conditions on the critical buckling load. 

3 . 1 . I n t r o d u c t i o n 

We consider a thin shell made of composite material, consisting of a matr ix 

which is reinforced with threads si tuated in planes parallel to the mid-

surface. On the shell midsurface we introduce the curvilinear coordinates 

Qfi, CV2 coinciding with the curvature lines. The coordinate z is directed 

along the normal to the midsurface. We assume tha t the shell is reinforced 

with N systems of fibers, inclined at angles 6^, k = 1,2,... ,N, with 

respect to the axis a\. 

The shell stress <nj is a sum of the matr ix stress a\ •' and the averaged 
(k) 

stress a\- , caused by the extensions of the fibers 

^ = ^ ) + E^)- a) 
fc=0 

The elastic energy II of the shell can be expressed as the sum of the 

stretching energy II e and the bending energy 11^ [Tovstik and Smirnov 
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(2001)]1 

n = ne + n* 

where IIe and 11^ are given by 

Ue = \ll(Tl£l + T2£2 + ̂  dE==\ f[ Kii6idS> 
U" = l II ^MlXl + M2^2 + 2H^ dT" 

Here Ti, T2, and 5* are the stress resultants and Mi, M2, and iJ are the mo­
ment resultants. £1, w, and £2 are the stretching-shear strains and x\, r, and 
X2 are the bending-twisting strains of the midsurface. d£ = A1A2 dct\da.2 is 
the area element and the integration in II£ and 11^ is performed on the en­
tire midsurface. K^ are the coefficients in the constitutive relations whose 
expressions have been obtained in [Haseganu et al. (2000)]2. For example, 
Kn = Ei/(1 — V\Vi) for an orthotropic shell with Young's moduli E\ and 
E2, Poisson's ratios v\ and V2 and shear modulus G. 

We simplify the equilibrium equations by the usual assumptions for 
the Donnell equations for shallow shells. We assume that the values of 
the metric coefficients, A\, A2, and radii of curvature, Ri, and R2, are 
approximately constant and dx\ — Aidct\, dx2 = A2da.2- If the reinforcing 
fibers are symmetric with respect to the directions a\ and 0:2, i.e. for each 
fiber system with an angle 6k corresponding to a system with an angle 
61 = -9k, then 

Ki3 = Da = K3i = D3i = 0, i = 1,2, 

where D^ = —K^. As a result we obtain the constructive orthotropic 

shell. 

3.2. Bifurcation Equations 

Under the assumptions which are usually made for the Donnell equations for 
shallow shells [Donnell (1976)]3, the following equilibrium equations have 
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been obtained in [Haseganu et al. (2000)]2 

dT\ dS 
dx\ dx2 

dx2 dx\ 

Tpd2™ | 2So d2w | T ^ w (2) 
1 dx\ dx\dx2

 2 dx\ 

d2M, , 2cPH_ + cPMA + TL+T^=Q 

dx\ dx2 dx\ J Rx R2 

Here we assume that the initial stress-strain state of a shell is determined 
only by the initial stress resultants T°, T$, S°. Such stress-strain state is 
referred to as momentless or membrane-like. Below we analyze the stability 
of such a state. 

Next we study the one-parameter loading by introducing the loading 
parameter A as 

{T?,Tl S°} = -\{t1,t2,t3} 

and seek the displacements under bifurcation in the form 

Ui=u1smz, u2 = u2s'mz, w = if;0 cos z, z = k\X\ + k2x2, (3) 

where the amplitudes u j , u^, and w° and the wave numbers k\ and k2 must 
be determined. 

The critical loading parameter A is determined by the formula 

X = f(kltk2) = ^ ± ^ , (4) 
Of, 

Afc / k\ k2 

where 

BE = rK(it2
+itJ ' &k = KuAn + K12A12 + K13A13, 

B„ = Dukf + U)13klk2 + 2 {D12 + 2D33) kjk2 + 4£>23feifc| + D22k\, 

A = A22k\ - 2A23k\k2 + {2A12 + A33)k\kl - 2A13klkl + Aufc2
4, 

Bt =t1k
2 + 2t3k1k2 + t2kl, 

and Aij are the coefficients whose relations have been obtained in [Haseganu 

et al. (2000)]2, for example, for an orthotropic shell An = . Here 
1 — 1/11/2 

we denote by Afc the determinant of the matrix {Kij}. The variables B£, 
B^ and Bt are proportional to the bending-twisting shell energy H^, the 
tensile-shear shell energy for additional displacements n £ , and the work of 
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the initial momentless stress resultants on the additional rotations of the 
normal, respectively. 

Relation (4) is rather general. It may be used for estimating the value 
of a critical loading and expected buckling modein many problems. We 
obtain the critical value Ao for the parameter A by minimizing the function 
/(fci, £2) over all real k\ and £2, such that Bt > 0. 

Let 

fci = rcosip, ki = r sin if. 

Taking into account the fact that the functions are homogeneous in k\ and 
ki, we introduce 

Be = B*e(<p), Bx = r*B*x{<p), Bt=r2B*(f), A = r4A*(<p). 

Minimizing function (4) with respect to r, we obtain 

A0 = mm{/ (if)} = f (f0), f (if) = 2+ ——- , 
v B*(f) 

A = B*£(f0) 
0 Bx(<p0y 

Due to the above formulas, the pits are significantly elongated at angle 
—fa with respect to the axis X2- This relation may be used to study the 
buckling of convex shells under compression, stretching, torsion, bending 
or combined loading. In the case of shells of zero Gaussian curvature, this 
relation provides a nontrivial result only for axial compression of cylindrical 
and conical shells. 

In fact, the above algorithm may be applied only to shells of positive 
Gaussian curvature (R1R2 > 0). For shells of negative Gaussian curvature 
(R1R2 < 0), according to (4) we get 

A0 = min{/* (</?)} = 0, r0 = 0 for tan<p0 = J-—-. (5) 
f V it2 

Similarly, for shells of zero Gaussian curvature (i?J~ = 0), i.e. cylindrical 
and conical, we obtain from (4) 

A0 = min{/*(<p)} = 0, r0 = 0 for if0 = 0. (6) 
f 

Relations (5) and (6) imply that, for shells of zero or negative Gaussian 
curvature, the order of the critical loading (Ao = 0) decreases and the 
buckling mode is not localized (TQ = 0). To obtain the critical loading and 
buckling modes for such shells one should apply the method of asymptotic 
integration described below, for example, for a circular cylindrical shell. 
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The case of the axially compressed cylindrical shell ti = £3 = 0, t\ > 0, is 
the only one for which the application of relations (4) provides a nontrivial 
result. 

3.3. Orthotropic Ellipsoid Under External Pressure 

As an example, we consider an elliptical shell of revolution with semi-axes 
(a,a,b). The angle between the axis of symmetry and the normal to the 
surface is denoted by 6. We select the parameter R = a as characteristic 
length. Then for the principal curvatures 

p2 = ^ = ( s i n ^ + d2cos20)1 /2 , pi = JL = &, d=b-. (7) 

Here d is the coefficient of ellipsoid compression (if d > 1 the ellipsoid is 
prolate and if d < 1 it is oblate). 

The elliptical shell consists of the matrix made of uniform material of 
thickness h, with Young's modulus E and Poisson's ratio v. The shell is 
reinforced with two similar systems of threads. The angles between the 
threads and the meridional direction are equal to ± a . The volume of the 
threads is (1 — 5Q)V, where V is the total volume of the structure; Young's 
modulus of the thread material is e times larger than E. 

The elliptical shell is under uniform normal (hydrostatic) pressure A. 
The relations for the initial stresses are well known [Tovstik and Smirnov 
(2001)]1 

1 2p2 — Pi 
ti = —- sign A, £2 = —7T2— s l S n A ' ts = °' 

For the external pressure sign A > 0, and for the internal pressure 
sign A < 0. Since Bt should be positive, buckling may occur under external 
pressure for elliptical shells of arbitrary form and under internal pressure 
only for shells for which 2p2 < Pi, i-e. 

p\ > 2d2. (8) 

It follows from (7) that for pi the following relations hold 

1 < p2 < d, for d > 1, d < p2 < 1, for d < 1. (9) 

Both inequalities (8) and (9) are satisfied only for 2d2 < 1. 
For the system of threads described above, the shell is orthotropic and 

the relation for A has the following form 

^o = mm{/ {<p,0)} = f (<po,9o), f {<P,8) = 2 g . , 

(10) 
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where 

Afc , __ 2 , • 2 A2 

B* = — j — • (p2 cos <p + p i s i n </?) , A& = X n ^ n + i f 1 2 A i 2 , 

B ^ = Dn cos4 y> + 2 (£>i2 + 2D 3 3 ) cos2 </? sin2 cp + D22 sin ip, 

B*t — t\ cos2 <p + t2 sin y>, 

A = A22 cos4 </> + (2A12 + A33) cos2 <p sin2 p + An sin4 </J, 

An = ^22-^33 - ^ 2 3 ' ^12 = -^13^23 — -^12^33, 

^22 = ^11-^33 - K13, A33 = K11K22 - K23-

We first consider an isotropic elliptical shell under external pressure 

(So = 1). In this case, 

An = A22 = K2-^^, A12 = -vAn, 

A33 = K2(l-v2), K=-^-2 

1 — vz 

Afe = l-^K\l - v% A = K 2 ^ (cos2 <p + sin2 pf , 

B* = K— — 2 (cos2 ipp2 + sin2 ppx) , 
R2 (cos2 p + sin ip) 

h2 2 
Bl = —K (cos2 p + sin2 ip) 

and relation (4) may be writ ten as 

Eh2 (cos2 ipp2 + sin </?Pi) 
An = = mm 5 — . 

R2y/3(l-v2) vfi ticos2p + t2sm p 

Minimizing the above expression with respect to p, we obtain 

Eh2 

pi/t2, for p = IT/2 if t2p2 > hpi, 
P2A1, for p = 0 if i2p2 < t i p i , 

i?2V3(l-^2) 

Eh2 

#V3(l~i;2) 

£ / i 2 , £/ i : 

P2A1 = „„ , .„ ==Pi/t2, if *2P2 = t ip i -

In the last case, the angle y> is undefined. This means tha t there exist 

multiple buckling modes. At the same time the value of the buckling loading 

is unique. 
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In the case under consideration, the condition £2P2 = t\P\ may be rewrit­
ten as 

P\ _ 2p2 ~ Pi 
2/92 ~ 2p2 ' 

or p\ = p2, which corresponds to d = 1, i.e. a spherical shell. For d > 1, 
t2P2 > hpi, and for d < 1, t2p2 < hpi-

Therefore the relation for critical loading is given as 

AQ = min < 

Eh2 

-M, R2 y/Z(l -IS2) 

Eh2 2pip\ 

R2^3(l-v2)2p2-pi' 

Now minimizing with respect to 9 we obtain 

Eh2 

A0 = < 
R2^/Z{l-v2 

Eh2 

-.2d' 

VR2^{l-v2)2d2-V 

for d<l, 

for d > 1. 

for d<l, 

for d>l. 

For d > 1, the weakest parallel is on the equator (9Q = 7r/2), and the 
pits are elongated in the direction of the meridian (ipg = ir/2). For d < 1, 
the weakest parallel is the pole (6 = 0). Note that, in the last case, the value 
of Ao does not depend on the angle ip which is, therefore, undetermined. 

Now we consider an orthotopic shell. For such shell 

Au = 

A, 

E2h
2 

1 — V\V2 

vxE2h2G 
1 - vxv2 ' 

-G, An 
Exh

2 

\ — V\V2 

E1E2h
?'G 

1 - V\V2 

G, A 33 
ExE2h

2 

1 - t-izV 

Here E\ and E2 are Young's moduli, v\ and V2 are Poisson's ratios in the 
x\ and X2 directions, respectively, and G is the shear modulus. 

In the case of orthotropic shell, relation (4) cannot be simplified and 
one should numerically seek the minimum of function (10). For that, we fix 
the parameters a and 5Q and find the different values of the parameter d 
which minimize the function 
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\o = min{r(tp,6)} 
tp,6 

min f*(f,0), 
<^e[0,7r/2] 

pi 6 [ M 

min f*(<fi,0), 

<^e[o,7r/2] 

Pi G [d, 1] 
min 

Arctan <pe <p 
pl-2d2' 

Pi e [d, 1] 

TT/2 

/*(v,0), 

for d > 1, 

for ^ < d < 1, 

f o r d < ^ , 

(11) 

where 

r(v,e) 
B*Ak p\d2 cos2 <p + p\ sin2 </? 

A d2 cos2 (p + (2d2 - p2,) sin2 </? 

Numerical calculations revealed that this function attains its minimum at 
90 = 0 for d < 1 and at 90 = TT/2 for d > 1. This result does not depend on 
the values of the other parameters. 

The effect of the shell compression parameter, d, on the relative critical 
loading is shown in Fig. 3.1. The values of the critical loading for an isotropic 
sphere is taken as 1. Poisson's coefficient is v — 0.3. Line 1 correspond to 
the isotropic case SQ = 1, line 2 to the case SQ = 0.9, a = 0, line 3 to the 
case So = 0.9, a = 7r/8, line 4 to the case SQ = 0.9, a = 7r/4, and line 5 to 
the case SQ = 0.9, a = w/'2. 

As expected, increasing the thread stiffness and the threads relative 
volume leads to an increase in the critical loading. For very small values of 
the parameter SQ (the threads occupy almost the whole volume) the critical 
pressure comes down drastically since the shell, in this case, behaves like a 
system of threads. 

The angle ipo depends on the values of the parameters d, a and SQ. For 
large values of d, the pits are elongated in the direction of the meridian, so 
that the angle ipo converges to TT/2, and, for highly elongated orthotropic 
elliptical shells, the buckling modes are similar to those of isotropic shells. 
Increasing the thread stiffness leads to a smaller angle ipo. 

The dependence of the critical loading and buckling modes on the angle 
between the system of threads is more complicated. For angles a larger 
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0.5 

Fig. 3.1. Critical loading for an elliptical shell under external pressure 

than 7r/4, the critical loading and buckling modes are equal to the critical 
loading and modes for an isotropic elliptical shell. For a slightly elongated 
ellipsoid, the critical loading attains its maximum for angles close to 7r/8. 

For an oblate orthotopic elliptical shell (d < 1), the value of /o may be 
uniquely determined from the conditions: 

r>* 

ip0: A(<p0,0) = min—^, 

from which it follows that 

tpo = ±Arctan — 
1/4 

For small and large values of d, the following approximate formulas may 
be used to obtain the critical loadings: 

A0 = < 

WW* 
i ? V 3 ( l - i / i ^ ) 

k i ? V 3 ( l - ^ i ^ ) 2 d 2 - ! ' 

for d < 1, 

for d > 1. 
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3.4. Orthotropic Elliptical Shell Under Internal Pressure 

As in the previous section, we start by considering the case of an isotropic 
shell (SQ=1). Since, for the shell under internal normal pressure, t\ < 0 and 
ti > 0, then the inequality t2p2 > hpi holds for any values of the parameter 
d and relation (4) has the form 

\ • Eh2 Pi r 10 
A0 = mm . —, for w = ir 2, 

or 

. Eh2 2plPl J2 
An = — mm = , tor a < ——. 

0 R2
v
/3(l-v2)Pi-2p2 ~ 2 

2p\p?, 2p\ 
We seek the minimum of the function = -^ —-̂  under the 

Pi ~ 2/92 ri, - 2d2 

condition 2d2 < r\ < 1. For d < 1/2, the function attains its minimum at 
/ 3^2 

p2 — 2d, i.e. on the parallel 6 = arcsinW -r and this minimum is equal 
V 1-f l 

to 16d2. For 1/2 < d < ^ , the minimum is attained at P2 = 1, i.e. on the 
2 

equator and it is equal to •=;. 
I-2d2 

Hence, the pits are elongated in the direction of the meridian and they 
move from the equator to the pole as d decreases. 

Consider the orthotropic elliptical shell described in the previous sec­
tion. Then the relation for the critical loading may be written as 

A0 = m i n { , f ( ^ ) } = min ^ f*(<p,6), (12) 
y e ( A r c t a n . / , d 2

0 „ , T T / 2 

p2e(\/2<i,l] 

where 

,* / e-)_A. lB*xAk Pld2 cos2 <p + p% sin2 <p 
A -d2 cos2 ip- (2d2 -pl)sm2ip 

As before, we seek the minimum for all positive Ao. We remind that 
buckling of an elliptical shell under internal pressure may occur only if 
d < v/2/2. 

In Fig. 3.2 the dependence of the critical loading on the parameter d is 
plotted for the same set of parameters as in Fig. 3.1. 

For a shell reinforced with the threads, the critical loading is higher 
than for an isotropic shell and the weakest parallel is closer to the equator 
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Fig. 3.2. Critical loading for an elliptical shell under internal pressure 

for 1/2 < d < v2 /2 . At the same time, the orientation of the pit axis, ipo, 
changes significantly. 

The critical loading decreases as the angle a increases. For a > 7r/4, the 
buckling modes of isotropic and orthotropic shells practically coincide. 

3.5. Buckling of Cylindrical Shells 

We analyze the governing equations for buckling of the initial momentless 
(membrane) stress-strain state of thin anisotropic cylindrical shells obtained 
in [Haseganu et al. (2000)]2 for different cases of loading. The linearized 
system of the non-dimensional Donnell equations [Donnell (1976)]3 which 
describe buckling of such an orthotropic thin circular cylindrical shell of 
radius R has the form 

„ d4w „ . „ ^ . d4w ^ d4w 
D l lM+ 2 P l 2 + D 3 3 )^PI+ D 2 2^f 

/ d^w d2w ^ A ^!£_n 

\ dx\ dx\dx2 dx\ J dx\ 

1 / „ d4® , . „ x d4$ „ d4<S>\ d2w n 

^AA22^+[2AI2+M3)^M+AIIM)+M="-
Here the two unknown functions, w and $, are the shell deflection and stress 
function, respectively; X\ and xi are the axial and circumferential coordi-
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nates, respectively; D^, A^, and Afc are the constants given in [Haseganu 
et al. (2000)]2; t\, t2 and £3 are the initial membrane stress-resultants, \i is 
a small parameter and A is a parameter of the buckling load. The analysis 
is made under the assumption that the remaining parameters have orders 
not larger than 1, in particular for the shell length / = L/R ~ 1. We study 
the one-parameter loading by introducing the loading parameter A as 

{T°,T°,S°} = -(i4X{t1,t2,t3}. 

From now on, we use non-dimensional variables that are related to the 
dimensional ones (with~) as 

{x, x2,ui7wh} = R{x,x2,Ui,w,h}, {fi,S,ii} = Eh{Ti,S,ti}, 
(14) 

Kij = EhKij, Di:j = R2fj,8EhDij = Eh2DtJ, 

$ = R2fi4Eh<S>, /x4 = - i , Ei= EE,,G = EG. (15) 
R 

As in the case of an isotropic shell, the buckling mode is formed as a 
system of pits strongly elongated in the axial direction from one shell edge 
to the other, covering the entire shell surface. The only exclusion is the case 
of an axially compressed shell. 

As an example, we consider several problems: (i) anisotropic cylindrical 
shell under hydrostatic pressure, (ii) axially compressed orthotropic cylin­
drical shell, and (iii) torsion of orthotropic cylindrical shell. 

The initial stresses may be sorted out in the order of intensity of their 
effects on the critical loading: t2, £3, and t\. If £2 = 0 or t2 < 0, and £3 7̂  0, 
then the order of the critical loading increases. 

For case (i), i.e. for t2 > 0 and t\ = £3 = 0, we have A = 0(fi2), for case 
(ii), i.e. for t2 = £3 = 0 and t\ > 0, we have A = O(l), and finally for case 
(iii), i.e. for £3 > 0 and t\=t2 — 0, we have A = O(^JL). 

The order of the system of equations (13) does not permit to satisfy all 
boundary conditions, because, by using the proposed method of asymptotic 
integration, we, in fact, reduce the order of the initial system from 8 to 4 
ignoring the edge effect integrals localized near the shell edges. Here the so 
called regular degeneracy (first studied in [Vishik and Lyusternik (1957)]4) 
occurs. In the case of regular degeneracy, one should neglect the boundary 
condition containing the higher derivatives when studying the unperturbed 
problem. The neglected boundary conditions may be satisfied later while 
constructing the edge effect integrals. 

For orthotropic shells, if £3 = 0, we may avoid the complexity of 
the above consideration. For the simply supported shell (or if we ne-
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gleet the boundary conditions) the solution for the shell has the form 
w = sin kx cos mx2, and the critical loading may be determined by min­
imizing the expression for A with respect to the integer m while assuming 
that k = TT/1 is given. 

In this way the well-known formulas for the critical buckling loads for 
isotropic shells have been generalized to the case of anisotropic shells. 

3.6. Buckling of Orthotropic Cylindrical Shell Under 
Hydrostatic Pressure 

We start with the buckling of an orthotropic cylindrical shell under hy­
drostatic pressure (t2 = 1, *i = 3̂ = 0) for the case of simply supported 
edges 

w = w" = 0 $ = $ " = 0 &tx = 0,l. (16) 

Assuming a solution in the form 
8 8 

w = 2^ Cj evp(pjXi + imx2), $ = T J CjSj exp(pjXi + imx2), (17) 
3=1 i = i 

where 

&i = ~^T- iA^Pj ~ (2Ai2 + A^)PW* + Anmt) , (18) 
A* 

we obtain the characteristic equation for A, 

[/i4(Dup4 - 2(Di2 + D33)p
2m2 + D22m

4) + X(hp2 + 2it3mp - t2 m 
+ [fiA(A22p

4 - (2A12 + A33)p
2m2 + Anm4)] + AfcP

4 = 0, (19) 

and, hence, an expression for A, 

Afep
4 

Aio = min 
,P fi4(A22p* - {2A12 + A 3 3 > 2 m 2 + Anm*) 

, M 4 ( ^ W - 2(£>i2 + D33)p
2m2 + D22m4) 

(20) 

where p = kiri/l for a simply supported cylindrical shell. After minimization 
with respect to m we get the following expression for the critical pressure 

At2 = Ao/i2 + Ai/i4 + 0(M6), (21) 

/here 

[YnE2 ( E,IE2 A1/4 

Xo = VT7-r l ( i - ^ 2 )3 ) (22) 
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and 

^.wMfw^js&r,, 1 
I II. 

E2 
In the case of an isotropic shell {E\ = E\ and V\ = 1/2) the first term in 
relation (21) transforms to Southwell-Papkovich's formula ([Tovstik and 
Smirnov (2001)]1). Indeed, for dimensional variables, according to (14) 

3/2 

f2 = Eh^Xon2 = Eh-
(1 - l/J)3/4 

The next term in the expression for the critical pressure, Ai, depends 
on both the shell anisotropy and the boundary conditions. To consider the 
effect of the boundary conditions we represent the solution in the form (17) 
and assume that m ~ m*p~l and A ~ A»/i2. The roots of (19) splits into 
two groups: 

4 ,^ (Kt2ml)Anmi - AllD22ml 4 _ 1 Ak 
Pl,2,3,4\A) ~ A ' ^5,6,7,8 — 9 7> A -

Afe Hz D11A22 
Substituting solutions in the form (17) into the four boundary condi­

tions, on each edge we obtain a system of eight equations. This system has 
a nontrivial solution if its determinant is equal to zero. In the case of a 
freely supported shell (16) the determinant D(\) consists of the following 
rows 

{l ,p 2 , 5j,tf, eW,p2 ePjl, 83 e*\5jp) e?*1} , j = 1 , . . . , 8. (23) 

After transformations, the frequency equation D(X) = 0 reduces to 
sin(piZ) = 0 or p\l = irk. The parameter of the critical loading may be 
obtained from the relation 

A = mm m*D22 + 

which agrees with (20). 
For boundary conditions which differ from (16), for example, for 

w = w' = 0, $ = $' = 0, at xi = 0,1, (24) 

the frequency equation will be more complicated. Denote p\_2 34 = a4, 

(a, b > 0). Note also that 

Si = S2, S3 = 8A, 5$ = 8S, Se = 87. (25) 

b4 

pi,6,7,8 = § (a,b> 0). Note also that 
A* 
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Taking into account the fact that 5ft(p5) and 5ft (p6) are positive and 
5ft(p7) and Jft(ps) are negative, replacing Cjexp(j>jXi) by C'iexp(pi(xi — I)) 
(C[ = Ciexp(pil)) for i = 6,5, and neglecting the terms containing the 
infinitely small multiplier e~hl'IJl , we obtain the frequency equation for 
D(\) = 0, where 

D(X) = 

1 1 1 1 0 0 1 1 
a —a ia —ia 0 0 (-l+i)b (-l-i)fe 

fi2 fj? 

Si (5i S3 S3 0 0 65 56 

a51 -(a<Ji) ia5z -iaS3 0 0 (-w)6fe (-1-06ft, 

eaZ e ^ a i ) e i a ! e~ i a ' 1 1 0 0 

ae"< - ( j f r ) i ae*" ' ^ &$± ^ 0 0 

e a % £ r eio'<$3 J b <J5 (J6 0 0 
g a % ~(^ f f ) iaelalS3 =*&$* {1+%b fc t 1 - ^ 0 0 

(26) 

After expanding the above equation in a power series in fj, we get 

D{\) = D0(Xo) + l? £>i(A0) Ai) + • • • = 0, 

and, therefore, 

JDo(Ao)=0, Di(Ao,Ai)=0. 

From the first equation we obtain Ao that coincides with (22). Solving the 
second equation we get an expression for Ai: 

— - - ^ r \KEX (-E2 + Wv2) 
36Z2G(1 - v\v2) L 
+ AG ( v ^ 1 / 4 {ExElf1* + 3GTT(1 - * ^ 2 ) ) ] . (27) 

Ai 

3.7. Buckling of Axially Compressed Orthotropic 
Cylindrical Shell 

Now we examine the case of an axially compressed orthotropic cylindrical 
shell for which t2 = £3 — 0, t\ = — 1. Consider the boundary condition of a 
simply support type 

w = w" = 0, $ = $ " = 0, at xi = 0,1. (28) 

We seek a solution in the form (17) where p\ = —p2 = ink /I, C\ = —C2, 
and Cj = 0 for j = 3 , . . . , 8, i.e. 

w = Cs'm(irkxi/l)s'm(mx2) ® = C6sm(irkxi/l)sin(mx2). (29) 
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Then the parameter of the critical loading may be obtained from relation 

Ak(irk/l)2 

m,k jl [A22(7rfc/Z)4 + {'ZA12 + A33)[^Kjiym^ + Jinin^l 

[ / / p n ^ f c / Q 4 + 2(£>12 + D33)(Trk/l)2m2 + £ 2 2 m 4 ] 
+ (irk/I)2 (M) 

Assuming irk jl = r cos 03, m = rsimp, after minimization in r, we get 

_2 . ( Ak y / 4 / A ^ ) \ 1 / 2
 ( ^ 

r0 = /i am/; and A = 2 — , (31) 

where 

4(p) = [A22 sin
4(o3) + (2Aia + A33) sin2(o3) cos2(V) + An cos4(o3)] , (32) 

Z%) = [(D11 sin4(^) + (2Dia + £33) sin2(o3) cos2(<^) + D2 2 cosmos)] . 
(33) 

With dimensional variables, 

where 

_ . /.Ei cos4 09 + 2(2G(1 — z/iz/2) + E1V2) cos2 ossin2 03 + E2sin os^ 
C = mm ' v> \ Ei cos4 03 + {E1E2/G - 2E1V2) cos2 03 sin2 03 + E2 sin4 tp 

(35) 
Denote E i / E 2 = £, 01 = 2(2G/E 2 ( l - ivu / 2 )+^2) , and a2 = ( E i / G - 2 ^ 2 ) . 

If ai = 0,2, which is valid for isotropic shells since, in this case, G = 
E / 2 / ( l + v), then C does not depend on the angle 03 and C = 1 (Lorenz-
Timoshenko's formula). The buckling mode is not unique and the number 
of waves m is in the range from 0 (axisymmetric mode) to G(/i~2). 

If ai > a,2, the minimum is attained at 03 = 0 or ip = ir/2 and C = 1. 
This seems to be impossible for real elastic constants. 

If <zi < a,2, then 

t a n , 0 = f f V / 4 a n d C = ( V ^ ^ G j l - ^ 2 ) + E ^ . ( 3 6 ) 
\Ej V VE^ + ElE2/{2G)-ElV2 J V 7 

These relations coincides with those given in [Hayashi (1949)]5. 
A similar result may be obtained directly from formula (4). The incli­

nation angle of the pits depend neither on Poisson's ratio nor on the shear 
modulus. If the material is almost isotropic, i.e. Ei « E2 , v\ « ZAJ, and 
G « 2(h+v)' then tan 09* RS 1. The last relation means that the "averaged" 
inclination angle of the set of pits for isotropic shell is equal to 7r/4. 
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3.8. Buckling of an Orthotropic Cylindrical Shell Under 
Torsion 

For an orthotropic cylindrical shell under torsion t3 = 1 and t\ = t2 = 0. 
Instead of (17) we represent the solution in the form 

8 8 

w = >J Cj exp(ipjXi + imx2), $ = T J Cj6j exp(ipjX\ + imx2), (37) 

and suppose that m = m^/ft, (m* ~ 1) and A = Ao/x. The characteristic 
equation, in this case, is 

[/x4(Dnp4 + 2(D12 + D33)p
2m2 + £>22m

4) - 2At3mp] 

+ [^{A22p
4 - {2A12 + A33)p

2m2 + Alim
4)} + Akp

4 = 0. (38) 

Solving this equation, we get two groups of roots pj. Four roots correspond­
ing to the main integrals satisfy the equation 

Afcp
4 + (-2App + p4D22) Au = 0. (39) 

Four other roots correspond to the edge effect integrals. 
Consider the case where the same boundary conditions are introduced 

on both edges x\ = 0 and x\—l. Substituting a linear combination of the 
main integrals into the boundary conditions we get the frequency equation, 
from which, after simplifications (see [Tovstik and Smirnov (2001)]1), we 
obtain 

X0=KS^/E1E2 
1 \ 5 / 8 / l x 1 / 2 

I-U1V2J \ l 

where Ks is a constant given in [Tovstik and Smirnov (2001)]1). The last 
formula is the generalization for orthotropic shells of the formula proposed 
in [Grigolyuk and Kabanov (1978)]6. Indeed, in the isotropic case 

( 1 \ 5 / 8 (B\1/2(hxhli 

S0 = EhfiAX0fJ. = EhKa 
l-v2 \L \R 

3.9. Effect of Anisotropy on the Critical Loading 

Last, we study the effect of anisotropy on the critical buckling loading. 
Consider an orthotropic cylinder under external hydrostatic pressure. We 
seek a solution in the form (29). We represent the functions $ and w in 
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power series in /i. Then the governing equation for the term of the first 
approximation, 3>i and u>i, are the following (see [Haseganu et al. (2000)]2): 

, » + c*? — a cos kx\ = U, 
dx{ 

, 9 H til! — bcoskxi = 0, 

2 A l 3 f c 3 ,, o n 3, 4 4 
a = — b = -3D23pk c=-—pi, 

pAii &k 
where with c and s denote the terms in sine and cosine, respectively. The 
terms a and b reflect the anisotropic properties of the shell. We cannot 
satisfy all boundary conditions and ignore the integrals of the boundary 
effect. Again here we have a case of regular singular perturbed system. So, 
we satisfy only the main boundary conditions 

Then 

0, $ = 0, a t x i = 0 , Z . 

ak2 + bc ak2 — be f sinh kX 
1 2k3 4fc4 V sinh/W/2 

, , ak2 + be ̂ r ak2 — be ( , sinh kX 
<!>! = —— ACOSKSI — I sinfexi 2kc Akc V sinhfcZ/2, 

2A13k
3

 3 An 4 v * 
a = — , 6=-3£»23pfc, c=—-p, X=xi--. 

pAu Afc 2 

For the second approximation, 

<72cE>c fr4 

d * 2 < +p 2 t 2 A 4 ^ + / 2 = 0 , 

where 

dx\ 

h=^k{
2PAll^+p{2Al2+A^ 

7T4 sin ^ EX(E2 - 2Gv2 - (Ei - 2Gvl)v
2) 

= Glip2E2{-l + ulu2) ' 

h = 2(D12 + 2D33)p
2^ + 4D23p

2^ 
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L3^2„2 , - ™ / — . E^2 h3ir2p2 sin — 2G + 
1 - V]V<2. 

6i2 

From the compatibility condition 

ri / A.u2 
/ ( h ~A 1 sin[fexi] + (/02i2A4 sin[fcxi] + M sin[fc x{\ dx\ = 0, 

Jo V Anp* J 

we finally obtain the second te rm 

7T2 h3 (2G + {El-2Gv1) u2) 
A4 6 P (1 - vi vz) 

in the expression for the critical loading 

A = ^ 2 A 2 + M 4 A 4 + 0 ( / x 6 ) . 

The orders of the terms due to the anisotropy and due to the boundary 

effect appear to be equal (see Section 3.6). 
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In this paper, one considers the bending of structures made of specific 
materials with different resistance to tensile and compressive loadings. 
Two types of structures are analyzed, and for each a non-linear bound­
ary problem is formulated. The first problem is the bending of a vertical 
steel-reinforced concrete beam loaded on the upper end. The second 
problem is the deformation of a fiber-reinforced cylindrical shell under 
internal pressure. In the first problem, steel-reinforced concrete offers less 
resistance to tensile than to compressive loadings. In the second prob­
lem, fibers hardly resist compression. The results obtained by Haseganu, 
Smirnov and Tovstik are generalized to the case where the compressive 
stiffness of the fibers is less than their tensile stiffness or is equal to zero. 

4 . 1 . I n t r o d u c t i o n 

One of the best elaborated problems of elasticity theory is the analysis of 

bending of thin-wall structures. In numerous papers and books start ing 

in the 18th Century the bending of thin-wall structures such as beams, 

plates and shells made of either isotropic or anisotropic materials has been 

examined. 

In this paper we consider bending of structures made of specific mate-
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rials with different resistance to tensile and compressive loadings; thus, the 
elastic coefficients for the stress-strain states under tension and compres­
sion are different. The general properties of the structures made of mate­
rials with different elastic moduli have been considered in [Ambartsumian 
(1982)]1. In this paper we analyze two specific problems both of which may 
be modelled as non-linear boundary value problems. 

The first problem is the bending of a vertical steel-reinforced concrete 
beam loaded on the upper end. Such a model may be used to describe the 
bending of an off-shore oil platform. In the unperturbed state, the beam is 
compressed along the axial direction under the weight of the platform. For 
small deviations from the equilibrium position, the material of the beam is 
also entirely under compressive loading, but for large deflections there exist 
areas where the beam resists to tensile deformations. As a result, the total 
beam bending stiffness decreases. The beam bending stiffness depends on 
the amplitude of the deviation and on the ratio of tensile to compressive 
stiffness for the beam material. The relation for the beam bending stiffness 
is obtained in this paper. 

The second problem is the deformation of a fiber-reinforced cylindrical 
shell under internal pressure. In the first problem, the resistance of steel-
reinforced concrete to tensile loading is less than to compressive loading, but 
in the second problem the fibers have almost no resistance to compression. 
In [Haseganu et al. (2000)]2 the two-dimensional equations for thin shells, 
reinforced with elastic fibers, have been obtained under the Kirchhoff-Love 
hypotheses and have been used for the analysis of shell buckling. However 
the approach used in that paper does not permit the analysis of structures 
made of materials with variable elastic moduli because the fiber tensile and 
compressive stiffnesses were assumed to be equal. Here we use a more gen­
eral approach assuming that the compressive stiffness of the fibers is less 
than their tensile stiffness or the compressive stiffness of the fibers is equal 
to zero. The detailed formulation of these assumptions and their discus­
sion is given below. Under these assumptions the non-linear elasticity rela­
tions for the stress-resultants/bending couples and tensile-shear/bending-
twisting deformations of the neutral surface have been obtained. Then these 
relations are used in the analysis of the bending of cylindrical shell under 
uniform internal pressure. The shell is reinforced with loop fibers that resist 
internal pressure. In the neighborhood of the clamped edges there appear 
areas with large bending deformations, where some parts of the fibers are 
under compressive loading. The purpose of this research is to study the 
effect of this compression on the stress-strain state of the shell. 
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The idea of analyzing thin-wall fiber-reinforced structures with variable 
elastic moduli was discussed with Prof. E. Haseganu while we were working 
on the paper [Smirnov and Tovstik (2002)]3. During the Summer 2001, we 
were planning future joint research in this area. Unfortunately, the tragic 
death of Prof. E. Haseganu put an end to these plans. 

4.2. Relations Between the Curvature of the Beam Neutral 
Line and the Bending Moment 

Consider a beam under compressive force P < 0. We intend to calculate 
the bending stiffness of the steel-reinforced concrete beam with rectangular 
cross-sectional area h x b, h < b bent in the plane with the smallest stiffness 
by the moment M. 

Let e and K be the tensile and bending deformations of the beam axis 
(under compression e < 0). Assuming the plane cross-section hypothesis, 
we find that the tensile deformation e(z) in a fiber parallel to the beam axis 
at distance z is 

e(z) = £ + KZ. 

The corresponding stress a{z) is equal to 

Ei_e(z) for e(z) > 0, 
a{z) 

E2e(z) for e(z) < 0, 
0 < Ex < E2, 

(1) 

(2) 

where E\ and E2 are the elastic moduli under tension and compression, 
respectively (see Fig. 4.1). 

a(z)=E2e(zl, a(z)=E]s(z) 

Fig. 4.1. Elasticity relation a vs. e 
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The axial force, P, and bending moment, M, with respect to the center 
of the cross-sectional area of the beam are 

/

h/2 rh/2 

a{z)dz, M = b a{z)zdz. (3) 
-h/2 J-h/2 

We introduce the parameter 77 as 

, = - f , emJ-f. (4) 
£m ^ 

If 77 > 1, then the fibers are compressed throughout the entire cross-
sectional area and to calculate the moment M the following well-known 
relation may be applied: 

h3b 
M = E2JK, J=~&- (5) 

If 77 < 1 in the domain z* < z < h/2, 2* = —E/K of the cross-sectional 
area, the fibers are under tension and to calculate the force P and the 
moment M due to (3) one should use the relations of the variable elastic 
modulus theory (2). Substituting (2) into (3) we obtain 

P = Ss(E2(l + v)2-E1(l--r])
2) = + {E2-E1){l~r}fSe 

4r> 2 £ 4r, ' ( 6 ) 

Here the force P is assumed to be given; therefore the first formula in (6) 
is the relation between the parameters e and 77 or, by (4), it is the relation 
between the parameters K and 77. Now (4) may be represented in the form 
of a quadratic equation in 77: 

l _ 7 _ 4 r i + 2 ( l + 7)r / + ( l - 7 ) 7 7 2 = 0, (7) 

where 

Ei em K P 2e0 , . . 
E2 £0 K0 E2S h 

Here £0 in the initial compressive deformation, em is the bending deforma­
tion of a fiber on the boundary. 

Now the second relation in (6) may be represented as 

M = E,jK = E2JKoZf{Z), (9) 

where E* is the reduced elastic modulus and 

R = ft/«.7)./K,7)^{;_(r,_,)(2 + , ( ) ^ HI'; (10) 
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By equation (7) 

7] 
-(i+7) + 2ye-1 + 7 ( i -e - 1 ) 

1 - 7 (11) 

The dependence of the ratio E*/'E2 on the parameter £ for different 
values of the ratio 7 = E\/ E2 is plotted in Fig. 4.2. In particular, for the 

Fig. 4.2. Bending stiffness of a beam made of material with variable moduli 

lower curve E\ = 0 in the left side of the plot, the axial compression is 
equal to 0 (eo = 0, £ = 00). 

Let the lower end of the beam, x = 0, be clamped and, at the upper end, 
x = I, let the applied vertical compressive force be P and the transverse 
force be Q as shown in Fig. 4.3. 

If the bending stiffness is assumed to be constant and equal to E^J then 
the deflection w(s) is well known: 

Q 
w(x) 

PXcos(Xl) 
[sin(AZ) - sin(A(7 — x)) - Axcos(AZ)], 

A 
E2 J 

(12) 

In particular, the beam stiffness under the transverse force Q is 

cl _ _Q_ _ PAcos(Al) 
w(l) sin(AZ) — AZcos(AZ) 

and the stiffness converges to c = 3E2J/l3 as P -> 0. 

(13) 



74 A. L. Smirnov and P. E. Tovstik 

Fig. 4.3. Bending of a vertical beam loaded at the upper end 

For cos(AZ) = 0 or 

P = Po 
•K2E2J 

M2 (14) 

the beam buckles under axial compression, and its stiffness becomes equal 
toO. 

Solutions (12)-(14) are later compared with similar solutions for variable 
modulus material. Those solutions depend non-linearly on the force Q. 

4.3. Stiffness of a Beam Made of Variable Modulus 
Material 

By relation (9), the bending moment in the cross-section x is equal to 

1 d2w 
M(x) = P{w(l) - w[x)) + Q(l - x) = E2jKQZf(£), i 

K0 dx2 , (15) 

where w(x) is the deflection of the beam. 
Reduce equation (15) to dimensionless form (the dimensionless variables 

are marked with *) and assume the following relations: 

x = lx*, w — w*h/2, wo = w^h/2, 

P = P0P*, Q = QoQ*, Q0 = E2JKO/1, 
(16) 

where the force PQ is defined in (3) and the force Qo is the threshold force. 
For forces larger than Qo tensile stresses develop. Now equation (15) may 
be written as 

£f(0 = 3(w*(l) -w*(x*) +w*0) + Q*(l- x*), 
_ 12 d2w* 

^ ~ P*7T2{dx*)2' ( ' 
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Equation (17) is a nonlinear differential equation for w*(x*), which we 
integrate using the boundary conditions of the clamped edge 

w* = 0, ^ = 0 for x* = 0. (18) 
ax* 

After the equation is solved, the beam stiffness may be obtained in the form 

Co: 
P*Q* 

Co = 
w(l) ^ 3 w * ( l ) ' ~u I 

By relations (16), formula (2) may be written in the form 

cd = Q 
co-

P*ycosy 

(19) 

(20) 
w(l) u sin y — y cosy' " 2 

Let us compare the results for variable modulus material obtained by 
formula (19) and the results for material with a constant modulus of elas­
ticity obtained by formula (20). The stiffness ratio for the beams made of 
materials with variable and constant moduli is denoted with £, 

Q* (sin y-y cosy) 
c (21) 

'l 3w*(l)ycosy ' 2 

In Figs. 4.4(a) and 4.4(b), the stiffness, £, of a beam made of variable 
modulus material is plotted against the dimensionless horizontal deflection 
of the upper beam end, w*(l) = 2w(l)/h. 

0J „.*(/; !0 0 (1.5 '•" **{!) 

Fig. 4.4. Relation C vs. w*(l) for 7 = 0 (a) and 7 = 0.2 (b) 

The curves are plotted for five values of the dimensionless axial com­
pressive force P* and two values of the parameter 7 which is the ratio of 
elastic moduli under tension and compression. The decrease in stiffness is 
clearly shown. Note that, in the case 7 = 0, the material does not resist 
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tension at all. A value of £ equal to zero means that the beam buckles 
under axial compression. Numerical experiments show that for 7 = 0.2 the 
beam buckling may also occur for large values of w*{l). For example, for 
P* — 0.5 beam buckling occurs if w*(l) = 1.99. The horizontal parts of 
the curves £(u>*(l)) = 1 correspond to the case where there are no fibers in 
tension in the beam cross-sections. 

4.4. Fiber-reinforced Shell 

Consider a thin elastic shell made of composite material. The shell consists 
of an elastic isotropic matrix and N systems of elastic fibers placed parallel 
to the neutral surface of the shell. In [Haseganu et al. (2000)]2, the equations 
describing the stress state of such shell have been obtained for a 2D shell 
model satisfying Kirchhoff-Love's hypotheses. The fibers were assumed to 
be linear elastic and resistant to both compressive and tensile stresses. 

In this paper we consider fibers with essentially non-lineal properties 
under compression. Indeed, we assume that the fiber stiffness is negligibly 
small under sufficiently large compressive stresses. Under these assump­
tions, the relations for internal stresses and moments and deformations of 
the neutral surface of the shell are significantly nonlinear. Both stresses 
and moments depend on both types of deformations of the neutral surface, 
i.e. tangential and bending. As an example, we consider a cylindrical shell 
reinforced with fibers under internal pressure. 

4.5. Strains and Stresses in a Shell Made of Composite 
Material 

We introduce the curvilinear coordinates a.\ and a.2 on the neutral surface, 
which coincide with the lines of curvature. The third coordinate z is directed 
normal to the surface. It is assumed that the shell is reinforced with N 
systems of fibers inclined at angles 6k with respect to the axis a\, k = 
1,2,... ,N. The stresses in the shell, crij, are the sum of the stresses in the 
matrix crj • and the average stresses cr> • due to tension/compression of the 
fibers 

N 

^ = 4 ? ) + E4 f c ) - (22) 
fc=i 

According to Kirchhoff's hypothesis, 033 = 0 and the stresses 0̂ 3 may be 
found from the equilibrium equations. We write the relations for the stresses 
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Oij and deformations e^ for i,j = 1, 2. For the matrix 

CTii = ^b(eu + fo£22), crj° = —x-^-Fo£i2, ^ = i7b(£22 + ^o£ii), (23) 

where Fo = EoSo/{l — ẑ o), £Q is Young's modulus and VQ is the matrix 
of Poisson coefficient. The coefficient 5Q < 1 defines the relative volume 
occupied by the matrix. The case So = 1 corresponds to the non-stiffened 
shell. In accordance with Kirchhoff's hypothesis [Haseganu et al. (2000)]2, 
the deformations e^ are a linear functions of the coordinate z, 

eii—si+Kiz, £12 = OJ + 2TZ, e22 = e2 + K2Z. (24) 

Here £i, ui, and e2 are the tensile-shear deformations and K\, T, and K2 

are the bending-twisting deformations of the neutral surface of the shell. 
Consider one system of fibers inclined at angle 0k to the axis ot\. The 
deformations e^ in the fibers are found to be 

£{k) = £iicl+ei2ckSk + £22sl, ck=cos6k, sk = sin0fe, (25) 

where the deformations e^ are as in relations (23) and (24). If a fiber is 
under tension then, by Hooke's law, the axial force in the fiber is equal to 

P^=EkSks
{k\ (26) 

where Ek is Young's modulus and Sk is the fiber cross-section area. If a 
fiber is under compression, then we use more general relations than (26). 
For this purpose we introduce the following fiber model: if e^k> > — so then 
relation (26) holds, otherwise, i.e. if e ^ < — So, then P^ = 0. The meaning 
and value of the threshold constant £Q is discussed in Section 6. According 
to the above model, the average stresses in the direction 8^ for the fc-th 
system of fibers are determined by the formulas 

(fc) JFkeW f o r e W > - £ 0 , 
<rK ' = < ,., £o > 0, Fk = Ek6k, (27) 

[0 for ew < -£o, 

where 5k is the relative volume filled with the fibers of the fc-th system. 
Naturally, J2k=o ̂ k = 1- Here and below we neglect Poisson's effect, which 
states that the cross-section of a fiber changes under tension. The stresses 
<T\A in relation (22) are the following: 

^ » = 4 / » , ^ = c i S l / ) , ^ = s l a ^ . (28) 
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4.6. The Threshold Constant s0 

If £o = 0, then the fiber stiffness under tension is equal to zero. The in­
equality £o > 0 may be justified in the following way. Firstly, the fibers 
may be initially stressed. Secondly, if we consider a fiber as a beam on an 
elastic foundation under compressive load, then the beam deflection, w(s), 
may be obtained from the equation 

d4w ^d2w 
1 h P 
ds4 ds2 

where s is the axial coordinate, D is the bending stiffness, P is the com­
pressive force and c is the foundation (matrix) stiffness. 

Equation (29) has the nontrivial bounded solution w(s) = WQ sin(As) if 
P(X) = DX2 + ^ . (30) 

Then the minimal value of P and the corresponding value of the threshold 
stress £Q are 

D-j* + pir*+™ = o> (29) 

Pmin = minP(A) = 2/D^, £o = ^f^. (31) 
A -E/fcOfc 

4.7. Elasticity Relations for a Shell Made of a Composite 
Material 

Neglecting the small terms hjR\ and h/R2 compared to 1, where h is the 
shell thickness and Ri are the principal radii of curvature of the neutral 
surface, we get an expression for the stress-resultants T\, T^ and S and the 
stress-couples Mi, M2 and H in the form 

/

h/2 ,h/2 ph/2 

e n dz, T2= 0-22 dz, S = / CT12 dz, 
-h/2 J-h/2 J-h/2 , , 

(32) 
eh/2 j-h/2 ph/2 v ' 

M\ = I <j\\zdz, M2 = / o~22zdz, H = I o^zdz, 
J~h/2 J-h/2 J-h/2 

where the stresses Oij are calculated by formulas (23) and (27)-(28). If, 
for all z S [-h/2, h/2] and for all k = 1, 2 , . . . , N, the inequality e^ > 
£0 holds, then the stress resultants and couples depend linearly on the 
deformations of the neutral surface £1, £2, to, K\, k?, and T. Assuming that 
the shell is symmetric with respect to the neutral surface we obtain elasticity 
relations similar to those found in [Ambartsumian (1982)]1, 

3 3 

Ti = J2KiJ£^ Mi = Y/DijKj, j = 1,2,3, (33) 
3=1 j=i 
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where, for short, we denote £3 = 10, K3 = 2r, T3 = S, and M3 = H. The 
coefficients Kij and Dij are determined in [Haseganu et al. (2000)]2 and, 
for example, K\\ and D\\ are given by formulas 

K1X 
rh/2 ( N 

/ *b + I > 
1 

dz. (34) 

If the inequality e^k' < —£Q is valid only for some specific values of k 
and/or z, then relations (34) do not hold any more since the dependence of 
the stress resultants and couples on the deformations of the neutral surface 
becomes nonlinear. In this case, it is more convenient to analyze the effect 
of each of the fiber systems separately. For that we represent the stress 
resultants and couples in the form 

N N 

T% - i f* + £ i f >, M% = M f + £ M, r(fc) 1,2,3. (35) 
fc=i fe=i 

Here the variables T± and M> depend linearly on the deformations of 
the neutral surface and may be calculated by formulas (33)-(34) for Fk = 0 
(fc ^ 0). The remaining variables in (35) are 

y(fc)_(^(fc)(! 
h/2 

-h/2 
oM{eW)dz, M\h) = c\k)> 

rh/2 

Sk a{k\e{k))zdz. 
J-h/2 

(k) (k) 
Cj. , G< 

(36) 
s | , and C3 = CkSk, and, by relations (24)-(25), 

(fc) 
Here C\ 
the deformations e'fc^(z) are linear functions of z e^ = Em + K^Z, where 

r(fc) 

i=\ 

, « 
3 

£ 
i = l 

G,- K i , (37) 

and the functions a^k\e^) are given by relation (28). Here £m' are the 
tensile-compressive deformations in the directions 9k- Below the subscript 
k is omitted. 

Let Eb — \n\h/2 be the maximal value of the second term in the expres­
sion for e(fc) corresponding to the bending deformations. We should consider 
the following three cases. 

Case 1. If £m > Et — £0, then the fibers of the fc-th system are under 
tension for all values of z and one should use relations (34) obtained in 
[Smirnov and Tovstik (2002)]3. In this case, the deformations E3 and 
independent, i. e. i f ] = Tj(fc)(£i) and Afjfe) = Mj(fc)(Ki). 
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Case 2. If em < —eb — £o, then, by relations (36), T- = M- = 0. So, 
in this case, the fibers of the fc-th system do not resist compression. 

Case 3. In the intermediate case |eo + £m| < £b, the fibers resist com­
pression only in a part of the shell volume and relations (36) for the shells 
for symmetric cross-section lead to the formulas, according to which the 

(k) (k) 

stress resultants, T} , and couples, M • , depend on both the tensile-shear 
deformations Ej and the bending-twisting deformations Kj. If the fibers are 
uniformly distributed along the shell thickness, then, after calculating the 
integrals in (36), we obtain 

jf = CjFkSk
 £m +

2 j % + £o (£ m + eb - so), 

Mjk) = CjFkSk
£m+

6^
£o(2el -el + e2

0+ smeb + eme0 - 2ebe0). 

(38) 
These relations are valid for K > 0 and At < 0. Formulas (38) are not used 
for K = 0 since, for small \K\, either case 1 or case 2 may occur. 

4.8. Cylindrical Shell Under Internal Pressure 

As an example, we consider the axisymmetric deformation of a circular 
cylindrical shell of radius R under uniform internal pressure q. The shell is 
reinforced by two systems of fibers inclined at angles B\^ = ±~K/A from the 
generatrix (this means that, for all coefficients, C- = 1/2) and uniformly 
distributed along the shell thickness. 

Let 5 be the relative volume of each fiber system and 1 — 25 be the 
relative volume of the matrix. The moduli of elasticity for the matrix and 
fibers are EQ and E\, respectively. 

Far away from the shell ends, the fibers are under tension resisting 
internal pressure. It could be obtained from the equilibrium equations that 

T1 = f =Jf„ ( e i + W j ) + r W K0=
Eoh^~2

2S), 
2 l~V° (39) 

T2=qR = K0(e2 + Vo£l) + TW, T ^ = ^ ( e i + e2), 

where the variable T ^ is the term in the stress resultants Xi and T2 due 
to stresses in the fibers. This term appears to be equal for both stress 
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resultants since 9\^ = ±7r/4. From relations (39) one can find 

_ £g ~ Wo + 7)s2 _ qR __ Eih5 
£l- iT^ ' £q~w~o' 7 ~ " W 

v ( l - ^ ) ( l + 1 ^ + 27) ( ^ + 7 ) g i ? 
J 2 = A ° r~i £ 2 + on i—T~-

1 + 7 2(1 + 7) 
Consider a shell with clamped edge s = 0. First, it is assumed that the 

parameter £Q is such that there does not exist such part of the shell volume 
where the fibers do not resist the stress. In the neighborhood of the edge, 
the shell deformations are described by the equations 

where 

M i 

d2Mi T2 

d* + R=q> 

Koh2 

1 2 (1 + 7 W , 

w(0) = u)'(0) = 

d2w 

= 0, 

£2 = 
w 

= R~ 

(41) 

Transforming equation (41) to the dimensionless variables s\ = s/R and 
w\ = w/R we have 

4d
4w1 _ 4__ a^h1 

where 

" 4*T+ «*=«*. ^ ^ ^ 

(1 + 7)2 (2 + 7 - ^o)<7# 
wo — 

" (l-p0){l + v0 + 2y), 2(1 - m ) ( l + ^ + 27)Xo' 

Here Wo is the normal dimensionless deflection far from the shell edge and 
(j, is a small parameter. The solution of equation (42) that we are interested 
in is 

w = wo (l - e_S2(coss2 + sins2)) , s2 = — p - (43) 
Mv2 

The minimal value £m;n of the expression em — £\, is attained at s = 0 
and is equal to 

g f l ( l - f l (2 + 7 - ^ 0 ) ^ , . 
£ m m 4 ^ 0 ( l + 7 ) ' * v / ( l - ^ o ) ( l + ^o + 27)' ^ j 

It is easy to show that, for all values 7 > 0 and VQ < 0.5, the inequality 
£ > 1 holds, from which it follows that Emm < 0, i. e. in the neighborhood of 
the shell edge some fibers are compressed. For emin + £0 > 0, solution (43) 
is valid, otherwise (case 3) some of the fibers do not resist tension and, to 
calculate the stress resultants and couple, one should use formulas (38). In 
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the following consideration, it is assumed that £o = 0 for the fibers which 
do not resist tension. 

Under the above assumptions 

T\ = K0 ( £ l + ^£2 + 1 ^ 7 " ^ 2 ) = K0eq, 

T2 = K0 (e2 + uo£l + 7 ( £ m
2 ^ £ b ) 2 ) , (45) 

2^. / Ic- _L c-,\2 K0h
2Ki ( (em + £b) (2eb~em) 

M± = " 1 + 7 

where 

12 V ' 4£f 

£ l + £2 W Kl d W 

2 ' £2 = R = WI>
 K = y K 1 - ^ 

l/d/i d2wi 
ds\ 

h V3 (46) 

8Rfi2 4 ^ ' 

From the first equation in (45) we obtain 

£i = - U8eb(2£b(l + 7) + 7(£2 + £,) - ^o£2) - 2e6(2 + 7) - 7£2 

Now all variables in relations (45) for T2 and Mi are expressed through the 
deflection w and its derivatives and equation (41) may be written as the 
following system of two equations 

1 d2y aM / (em + eb 

2 asl 1 + 7 \ /£{, 

1 d2wx ( (em +£b)2(2£6 - e. -1 (47) 

For £m > £;,, system (47) reduces to equation (42), 

1 d4wi 1 d2wi 
l-d4+Wl = w^ y=2lt4-

One of the obstacles for the numerical solution of system (47) is the fact 
that the second equation in (47) is not resolved with respect to d2wi/ds2, 
whereas the right side of the equation implicitly depends on this value 
through eb. We solve system (47) by the shooting method. The initial con­
ditions are imposed at the point s2 = s2, which is located far enough from 
the edge s2 = 0, to satisfy the condition em > eb. Under such conditions 
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all fibers in the cross-section s2 are in tension. The initial condition are 

imposed on the solution 

W! = w0 ( l - e~32 (B1 cos s2 + B2 sin s2)) , (48) 

and then one evaluates the constants J3i and £?2 to satisfy the clamped 

conditions at the other end s = 0, w\(0) = w[(0) = 0. 

Numerical results are obtained for VQ = 0.45 and several values of the 

relative stiffness parameter 7. Table 4.1 lists the dimensionless coordinate 

of the generatrix s2 which bounds the domain where the compressed fibers 

exist (0 < S2 < Sg), and the curvature of the generatrix s 2 = 0. 

Table 4.1. Relative stiffness 7, dimensionless co­
ordinate $2 and curvature of the generatrix. 

7 = 
si = 

< ( 0 ) = 

0.00 
0.00 
2.00 

0.30 
0.22 
1.94 

1.00 
0.29 
1.81 

3.00 
0.42 
1.61 

10.00 
0.60 
1.35 
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This paper presents an algorithm for the solution of boundary value 
problems for the vibrations of thin cylindrical shells by means of symbolic 
computation. The equations describing the vibrations of a shell contain 
several parameters, the main of which being the small parameter of the 
shell thickness. The construction of the convex hull of point set allows 
one to build formal asymptotic solutions in different domains of the space 
of parameters. The constructed solutions are used for studying the free 
vibration spectra of the shells. 

5 .1 . I n t r o d u c t i o n 

In this paper we consider the vibrations of thin circular cylindrical shells by 

applying the method of asymptotic integration developed by Goldenveizer, 

Lidsky and Tovstik [Goldenveizer et al. (1978)]4. A detailed review of their 

work as well as a reference list may be found in [Bauer et al. (1997)]1, 
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[Bauer et al. (1995)]2, [Bauer et al. (1993)]3, [Goldenveizer et al. (1978)]4. 
The aim of this study is to develop an algorithm permitting symbolic inte­
gration of the governing equations for any range of values of the parameters 
appearing in these equations. This study is limited to the cases for which 
the asymptotic representation of the solution is the same in the entire do­
main of integration and the solutions are linearly independent (no turning 
points, no multiple roots). Some preliminary results of this work have been 
reported in [Landman et al. (1999)]5. 

5.2. Problem Formulation 

We consider a thin cylindrical shell having thickness t, length L, and radius 
R. We introduce the system of orthogonal coordinates, s, <p, that defines the 
position of a point on the neutral surface of the shell, where s is the length 
of the generatrix, 0 < s < L, and tp is the longitudinal angle, 0 < tp < 2ir. 
The shell is bounded by two parallels s = 0 and s = L. The cylindrical 
shell is said to be thin if its relative thickness t/R is small. We introduce 
a local orthogonal system of coordinates e\, e.^, n, where e.\ and e2 are 
unit vectors in the s and <p direction, respectively, and n is the normal 
unit vector (n = e\ x e-i). Let u, v, and w be the components of the 
displacement U in the directions ei , e2, and n. We use the shell equations 
of the 2D Kirchhoff-Love theory. After we separate the variables in the 
circumferential and axial directions the equations of vibrations for thin 
cylindrical shells have the form 

dY 
— =A(»,m,X)Y, (1) 

where A is an 8 x 8 matrix, Y(s) = {yi(s),. •. ,ys,(s)} is an 8 x 1 vector 
function, ji is the main small parameter related to the relative thickness of 
the shell, m is the wavenumber in the circumferential direction, and A is 
the frequency parameter. The boundary conditions are 

BiY{Sl) = 0, i = l ,2 (2) 

where Si = 0 and S2 = L, and Bi are [4 x 8] matrices. 
When employing the Kirchhoff-Love theory it is most convenient to use 

the following variables: Y = (u,v,w, T\, S21, N\, Mi, 71), where T\ and 521 
are the stress resultants, N\ is the transverse shear resultant, M\ is the 
moment resultant, and 71 is the angle of rotation of the normal [Bauer 
et al. (1993)]3. For such variables we consider boundary conditions of the 
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form: u = 0 or Tx = 0, v = 0 or Si2, w = 0 or A^ = 0, 71 = 0 or Mx = 0 at 
s — 0 or s = L. 

Sometimes it is more convenient to express the resultants and the angle 
of rotation as functions of the displacements, In this case, we get the system 
of equations for U = (u, v, w) 

/j,4LfJ,(U,fj,,m) + L(U,n,m) + \U = 0, (3) 

where LM and L are linear differential operators of the eighth order and of 
the fourth order, respectively. In this case, the boundary conditions must 
be formulated in terms of u, v, w and their derivatives. 

To solve the boundary value problem (l)-(2) we apply the asymptotic 
integration method described in [Bauer et al. (1997)]1, [Bauer et al. (1995)]2, 
[Bauer et al. (1993)]3. For this we need to construct the formal asymptotic 
solution of equation (1) and then require that the boundary conditions (2) 
are satisfied. 

We seek the solution of equation (1) in the form 

8 00 

Y(s> M) = E E °iy>kKi exppis, (4) 
i= l fc=0 

where C; are arbitrary constants, Y\ is the matrix of the amplitude vectors, 
and Ki depends on the order of pt with respect to /i. For example, if Pi ~ 
/x_1, then Ki = 1. 

Substituting solution (4) into equation (1) we obtain the characteristic 
equation for pi 

\A(m,n,\)-pI\=0, (5) 

where I is the identity matrix. In this study we consider only the cases 
where all pi are simple roots of equation (5), i.e. pi 7̂  Pj for i ^ j . Under 
such assumptions, we can use the formal asymptotic solution (4). Then, 
all solutions are linearly independent and their linear combination provides 
the general solution of the initial equation. 

For different relations between the parameters, solutions (4) have differ­
ent forms. In this study we use symbolic computation to construct formal 
asymptotic solutions for different values of the parameters /i, A, and m. 

The order of the function \p\ in /j, is called the index of variation of the 
solution. The solution is exponentially increasing away from the edge s = 0 
if $lpi > 0. Such integral is called the integral of the edge effect near the 
end s = L. The solution is exponentially decreasing away from the edge 
s = 0 if $lpi < 0. Such integral is called the edge effect near the end s = 0. 
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The solution is oscillating if 5Rpi = 0 and 9pi ^ 0. If Pi = 0, the solution is 
said to be slowly varying. In solving the boundary value problem with an 
error of order e~c'M , where c and d are some positive constants, we may 
take the value of the edge effect integrals to be equal to zero at the other 
end. 

After the construction of the formal asymptotic solutions, the boundary 
conditions should be imposed to find the frequency parameter A. Substi­
tuting (4) into (2) we obtain a system of linear equations in d that has 
nonzero solutions if its determinant vanishes, 

A(A, / i )=0 . (6) 

One can solve this eighth-degree equation numerically. In some cases this 
equation may be simplified. 

Simultaneously with the problem for n =£ 0 (perturbed problem) we 
consider the same problem with [i = 0 (unperturbed problem). 

If all pi are different from 0 and not pure imaginary, then 

limA(A,/x) = A(A,0) (7) 

and 

A = A0 + /xAi + • • • , (8) 

where Ao is the frequency for the unperturbed system, i.e. A(Ao,0) = 0. 
Of special interest are the cases of regular degeneracy [Vishik and 

Lyusternik (1957)]6. Let the perturbed system have order n and the un­
perturbed system have order m. Let the perturbed system have I = n — m 
additional roots such that l\ of them have negative real parts and I2 have 
positive real parts, where l\ is the number of additional boundary conditions 
on the left edge and I2 is the number of additional boundary conditions on 
the right edge. In this case the solution may be constructed by an iterative 
method. 

The existence of pure imaginary roots makes the problem more difficult. 
As a rule, in this case, the function A(A, \j) has a limit point at fi = 0 and 
limM_>oA(A,/x)^A(A,0). 
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5.3. Formal Asymptotic Solutions of the Equations of 
Cylindrical Shells 

We consider the equations describing the vibrations of thin cylindrical shells 
in terms of displacements [Goldenveizer et al. (1978)]4. 

d2u \-vd2u .., 2 . , l + i/ d2v dw 

~ - d ^ - — W 2 ~ { ) 2 08d<p+'"to=0' 
1 + v d2u l — vd2v d2v 4 / d2v d2v 

2~~dsdip 2~~fo2~d^2~+fl V ( ~"'~d^~~d^ 

,. 9x, dw A ( .„ , d3w d3w\ , , 

^ " ̂ Xv +0^+» {^2 " " W " vO = °' (9) 

du dv . 4 /,„ x 93i> . d3i> 

, , , 4 f d4w d4w dAw\ 
+w-^-^Xw+^W+2^2w+w)=0-

Here pA = t2/(12R2) is the main small parameter, A — pu)2R2/E is the 
frequency parameter, E is Young's modulus, v is Poisson's ratio, p is the 
shell mass density, and u> is the natural frequency. 

Separating the variables s and if in the expressions of the displacements 

u(s,ip) = U(s) sin mtf, 

v(s,ip) = V(s)cosm(f, (10) 

w(s,tf) = W(s)sinm<f, 

and substituting them in (9) we obtain the system of ordinary differential 
equations 

d2U \ - v 2 r r ,n 2 , „ T l + i/ 8V 8W n 

- ^ + - 2 - m t / - ( 1 - ^ A C / + - y - w a 7 + ̂ ^ = 0' 
1 + - ? - ̂ S + rn2V + / (-2(1 - , ) S + "^ 

2 9s 2 ,9s2 ^ V ds2 

( 82W \ 
(I - v2)\V + mW + pA l-(2-v)m-jr—+m3W\ = 0, 

J/-^- + m ^ + pA - ( 2 - v)m—— + m T 
<9s V 9s2 

' r)iW f)2W 

W_{1_S)XW + ^{^_2m2?JL+rn*W 

(11) 
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To determine the structure of the asymptotic expansions, we seek a solution 
in the form 

U = U0e
ps, V = V0 e

ps, W = W0 eps. (12) 

Substituting (12) in (11) we obtain the following linear system of three 
equations in UQ, VQ, and Wo: 

-Pz + 

1 + v 

l - i / 
m2 - (1 - i/2)A 

1 + v 
U0 + ——- mpVo + vpW0 = 0, 

mpUo — 
1-v 

p2 -m2 + M4 (2(1 - v)p2 - TO2) 

+ {l-v2)\ VQ + [TO - Ai4 ((2 - v)mp2 - m3)] Wo = 0, 
(13) 

vpU0 + [m - ^ ((2 - v)mp2 - TO3)] V0 

+ l - ( l - „ 2 ) A + M
4 ( p 2 - m 2 ) 5 Wo=0. 

System (13) has nontrivial solutions if its determinant is equal to zero. This 
determinant is an eighth-degree polynomial in p. Thus, its eight zeros can 
be found. 

5.4. Axisymmetric Vibrations 

We start with the analysis of the axisymmetric case (TO = 0). In this case, 
system (13) becomes 

- [p2 + (1 - u2)X] U0 + vpW0 = 0, 

1-v 
p2 + M

42(l - v)p2 + (1 - u2)\ Vo = 0, (14) 

- vpU0 + [1 - (1 - v2)\ + M V ] WO = 0. 

This system splits. The first and third equations in (14) define the 
transverse-axial vibrations, and the second equation defines the torsional 
vibrations. We consider only the transverse-axial vibrations. 

The characteristic equations is 

-p2 - (1 - z/2)A vp 
-vp l - ( l - i / 2 ) A + /i4p4 0, P(p;h,X) = 

which expands to 

A - A2 + A V + p2 - Xp2 + hiXpi - h4Xv2p4 + h4p6 = 0, 

where/i4 = / / / ( ! - i / 2 ) . 

(15) 

(16) 
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Now we must find the roots pi of equation (16) for different values of 
the small parameter h -c 1. We write (16) in the form 

6 

P(p;h,\)=Y,aiPkiha>\/3i=0, (17) 
i 

where the coefficients at do not depend on p, h and A, and i is the number 
of the term in (16). The points M* = {ki,ai,/3i} in the (p,h,X) space are 
called the representative points. Each point is associated with a coefficient 
Oj, that is later called the weight of the point. For equation (16) we have 
Mi = {{1, {0,0,1}}, {{ -1 + ^ , ( 0 , 0 , 2 } } , {{1, {2,0,0}}, { { - 1 , {2,0,1}}, 
{{1-^ 2 ,{4 ,4 ,1}},{{1,{6,4 ,0}}. 

If the order of the parameter A is given, i.e. A = Xoh*, where Ao ~ 1 
and x is known, then equation (16) contains only one small parameter h. 
Newton's diagram method may be used [Bauer et al. (1993)]3 to obtain 
the roots of such an equation. In this case, the representative points lie 
in the (p, h) plane and have the form Mi = {&;,, on + ftx}. The segments 
of the lower part of the convex hull of the set of the points Mi, i. e. the 
segments that are visible from the point (p, h) = (0, — oo), define the terms 
of equation (16) that should be kept to determine the main terms of the 
roots, Pi. 

We consider three cases here, where x is equal to 1, 0 and —1, respec­
tively. We start with the case x = 1 for which Newton's diagram is plotted 
in Fig. 5.1. 

In this case, the representative points for equation (16) are M\ = (0,1), 
M2 = (0,2), M3 = (2,0), MA = (2,1), M5 = (4,5), and M6 = (6,4) and 
Newton's diagram consists of two segments. The first segment is determined 
by M\ and M3, and the second segment by M3 and M§. Therefore, equation 
(16) has two sets of roots, the first one being defined by the equation 

A + p2 = 0, (18) 

while the second one may be found from the equation 

p2 + h4p6 = 0 , ( 1 9 ) 

Hence, the roots are 

pi,2 = ±iVA (20) 

and 

Pi = | , eJ = ± ^ ± i ^ j = 3,4,5,6. (21) 
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h 

Ms 

Fig. 5.1. Newton's diagram for x = 1, m — 0. 

The order of the Pj may be determined by the angles between the segments 
and the p axis. 

We also can determine the relative orders of the eigenvectors UQ and 
WQ. For this we keep only the main terms in equations (14) and substitute 
the expressions for the roots pi into either the first or the third equation. 
The only limitation for this choice is that both coefficients of UQ and WQ 
are nonzero. The main terms for UQ and WQ are given in Table 5.1. 

Table 5.1. Roots and eigenvectors for m = 0, x = 1. 

V 

UQ 

WQ 

1 

VXi 

Pi 

- v \ 

2 

-VXi 

Pi 

- v \ 

3 

h 

V 

P3 

4 

£2. 
h 

V 

P4 

5 

h 

V 

P5 

6 

h 

V 

P6 

In the second case, x = 0, the representative points for equation (16) 
are My = (0,1), M2 = (0,1), M3 = (2,0), M4 = (2,0), M5 = (4,4), 
and Me = (6,4). In this case, Newton's diagram consists of 2 segments 
(Fig. 5.2). 

The first segment is determined by the points Mi, M2, M3 and M4, and 
the second one by the points M3, M4, and Mg. Therefore, equation (16) 
has two groups of roots, the first one being defined by the equation 

A - A2 + A V + p2 - Xp2 = 0, (22) 
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Fig. 5.2. Newton's diagram for x = 1, m = 0. 

and the second one by the equation 

p2 - \p2 + ft4/ = 0. 

Hence 

Pl,2=±F(X), F(\) 
A - (1 - u2)X2 

and 

P3,4,5,6 = 
(A - l ) 1 / 4 

h 

(23) 

(24) 

(25) 

For this case, the roots and the eigenvectors are shown in Table 5.2. 

Table 5.2. Roots and eigenvectors for m = 0, x = 0. 

V 

Uo 

WQ 

1 

F(A) 

P i 
Ai/ 

A - l 

2 

-F(\) 

P2 
Xv 

A - l 

3 
( A - l ) 1 / 4 

h 
V 

4 
( A - l ) 1 / * 

h 

Pi 

5 
( A - l ) 1 / 4 * 

h 
V 

Ph 

6 
( A - l ) 1 / 4 * 

h 
V 

P6 

Note that the above results for x = 0 are valid when A is not too close 
to 1, otherwise the first negligible term for p has the same order as the main 
term [Bauer et al. (1995)]2. 
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Finally, in the third case, H = — 1 and the representative points are 
Mi = (0, - 1 ) , M2 = (0, - 2 ) , M3 = (2,0), M4 = (2, - 1 ) , M5 = (4,3), and 
M6 = (6,4). 

In this case, Newton's diagram consists again of 2 segments. The first 
segment is determined by the points M2, M4, and the second one by the 
points M4, and MQ. Therefore, equation (16) has two groups of roots, the 
first one being denned by the equation 

-Xz + YvA - Xp 0, (26) 

and the second one defined by 

-Xp2 + h4p6 = 0. 

For this case, the roots and the eigenvectors are given in Table 5.3. Note 
that, for the roots p\ and P2, the coefficient of Uo in the first equation in 
(14) is equal to zero, and to determine Uo and WQ we must use the third 
equation in (14). 

Table 5.3. Roots and eigenvectors for m = 0, x = —1. 

p 

Uo 

Wo 

1 

y/(l-v2)\i 

Pi 

V 

2 

-^/(l-^)Xi 

P2 

V 

3 

^ 
V 

P3 

4 
A l / 4 

h 
V 

P4. 

5 

h 
V 

P5 

6 
A 1 / 4 ; 

h 
V 

P6 

As x changes, the representative points move in the (p, /i)-plane. We 
are interested in the cases (called separative) when the convex hull changes. 
These occur when one of the interior points reaches the convex hull, or two 
or more segments form a straight line. If we plot the representative points 
in the 3D-space (p,h,X), then, the separative cases are determined by the 
3D convex hull faces. For equation (16), the 3D convex hull is plotted in 
Fig. 5.3. Since we assume that the parameter h is small, we need only the 
faces that are visible from the point h — — 00. 

In the present case, the 3D convex hull consists of three faces: 1: (Mi, 
M2, M3, M4); 2: (M3, M4, M6); 3: (M2, M4, M5, M6). Imposing the orders 
of all terms forming a face to be equal to each other, we find the relations 
from which the orders of A for the separative cases may be determined: 

A ~ A 2 ~ p 2 ~ A p 2 , 
Xp2 ~ p2 ~ h4p6, 

A2 ~ Ap2 ~ A/iV ~ / i V 
(27) 
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Fig. 5.3. Newton's diagram for >c = —1, m = 0. 

So, for the first and the second relations x = 0, and for the third x = —4. 
Therefore, the entire range of the parameter A is divided into three 

domains where the 2D convex hulls are essentially different. Each of these 
domains is defined as Domain I: x > 0, Domain II: 0 > x > —4, and 
Domain III: x < —4, as well as the separative cases A: x = 0 and B: 
x = —4 must be considered separately. Since the initial equations are valid 
for A <C h~4, cases III and B have no physical meaning. Case A is special 
since in this case the second term in the expansion for p is important [Bauer 
et al. (1995)]2. So here, we consider only the solutions in Domains I and II. 
For any A inside a domain, the structure of the convex hull and therefore 
the roots and the eigenvectors are similar. Thus, we can obtain the values 
of the roots and eigenvectors by considering only one value of A for each 
domain. For Domains I and II we use the results for the considered cases 
x = 1 and x = — 1, respectively. 

5.5. Boundary Value Problem 

The geometry of the point set and its convex hull for Domain I are shown 
in Fig. 5.4. In this case, the solution may be written as 

6 6 

u = ^ Ui expfts, w = ^2 Wi exppiS, (28) 
i=0 i=0 

where pi, Ui and Wj are determined from Table 5.1. 
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Fig. 5.4. 3D convex hull for m = 0. 

We consider two types of boundary conditions: freely supported edges 
and clamped edges. For low frequency vibrations (A -C 1, x > 0) of a 
cylindrical shell with freely supported edges, the boundary conditions have 
the form 

u' = w = w" = 0 at s = 0 and s = L. (29) 

Substituting solution (28) into the boundary conditions (29) we get the 
characteristic equation from which the first approximation for the frequency 
parameter A may be found as the zeros of the determinant 

V\U\ P2P2 P3U3 P4U4 P5U5 PeU6 

Wi W2 W3 WA W5 W6 

D(X)= P"Wl rtW2 ^Ws p\WA p2W5 p2W6 
{ ' v\U\e?lL P2U2e

PiL pzUze^L p4U4e
p*L p5U5e

PlL p6U6e
PlL " 

Wxe
PlL W2e

p*L W3e
P3L W4e

PiL Wbe
p*L W6e

PeL 

p\Wiep^L p2
2W2e

p*L p2
3W3e

P3L p2^V4e
PiL p2W5e

P5L p2
6W6e

Pf>L 

(30) 
The values of A may me obtained numerically from this equation. But 

we may also try to simplify this determinant. We neglect the values of the 
third and fourth integrals on the left edge and the values of the fifth and the 
sixth integrals on the right edge. Then, after factorization, the determinant 
has the form 

D(X) = ^±.e(V2-ihV\)L/h ^ + eMvT) A2 (_j + ^ 2 = Q_ ( 3 1 ) 
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So, we obtain one set for the natural frequency parameter 

A * = ( x ) ' * = 0 ,1 ,2 , . . . . (32) 

This frequency coincides with that for the unperturbed (momentless) sys­
tem. In this case two additional roots have negative real parts and two have 
positive parts. Since there are four additional boundary conditions (two on 
each edge) this is a case of regular degeneracy and the next corrections for 
A may be constructed with an iterative method. Note that relation (32) is 
valid for A < 1. 

Similarly, for high frequency vibrations of a cylindrical shell with freely 
supported edges (A 3> 1, — 4 < x < 0), we use the same equation (30), but 
now pi, Ut and Wi are determined from Table 5.3. 

As usual, we neglect the values of the edge effect integrals on the other 
edge. Thus, after simplification, we get the following expression for D(X): 

D(X) __ — f,iLX1/4((l+i)+h\1/4VlI-l^)/h 
h8 (' 1 + e 2iLA1 / 4 / 

' ) 

-l + e2iLVWZ^}\2(iS + \(l-v
2))2 = 0. (33) 

So, we obtain two sets for the natural frequency parameter, 

. 1 [irk"-2 

and 

fc = 0, l ,2 , 

At = 
irk 

k = 0,1,2,.... 

(34) 

(35) 

Here, there are four pure imaginary roots among the additional ones and 
this is not a case of regular degeneracy. Expressions (34) and (35) are valid 
for A » 1. 

For low frequency vibrations of a cylindrical shell with clamped edges 
(A <C 1, x > 0), the boundary conditions have the form 

u = w = w' = 0 at s = 0 and s = L. (36) 

So, we must find the zeros of the determinant -D(A): 

(37) 

Ux 
Wx 

PiWi 
Uxe

PlL 

Wxe^L 

u2 
w2 

P2W2 
U2e

p*L 

W2e
P2L 

u3 
w3 

P3W3 

U3e
P3L 

W3e
P3L 

u4 
w4 

P4W4 

C/4e
P4L 

W4e
p*L 

u5 
w5 

P5W5 
U5e

p*L 

W5e^L 

u6 
We 

peW6 

UQep*L 

W6e
PeL 

pxWxe^L p2W2e
p*L p3W3e

PaL pAW4ePiL p5W5e
p*L p6W6e

p 
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where Pi Ui, and Wi are determined from Table 5.1. After transformations, 
we keep only the main terms and obtain 

D(X) = 2 e(^-ihV\)L/hx / j + e2iLV\ + Q(h}\ = Q (gg) 

This equation has only the set of roots 

A f c = [ $ k = 0,1,2, (39) 

Again this is a case of regular degeneracy. 
For the higher frequency vibrations ( A > 1, —4 < H < 0) the deter­

minant (37) must be used, but pi, Ui and Wi should be determined from 
Table 5.3. 

After transformations, we keep only the main terms and obtain 

x Xi (_1 + e2iLVxVl^^ ^ + e2iL\i",hj + Q ( f t ) ] = Q_ ( 4 0 ) 

This equation has two sets of roots, 

I / -Trfc. y 

Ai 
1 (irk 

1-v2 \~L 
fc = 0, l ,2 , (41) 

A2 
n{2k+l)h 

2L 
0 ,1 ,2 , . . . . (42) 

The second set has no analog for an unperturbed (momentless) system. 
Again this is a case of nonregular degeneracy. Note, again that the above 
expressions are obtained by assuming A ^> 1. 

5.6. Nonaxisymmetric Vibrations 

The same approach may be used to study the nonaxisymmetric vibrations 
of cylindrical shells. Equation (13) now should be analyzed for m ^ 0. In 
this case, the system does not split, and one has to find the roots of the 
characteristic equation of order eight, 

p2 + ^-m2 - (1 - v2)\ ^mp vp 

^Y-mp 

-vp 

g(p,H,m)- {l-v2)\ f(p,n, 

f(p,H,m) q{p,H,m) 

0, (43) 
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where 

f(p, fJ.,m) = TO + /x4 (—(2 — v)mp2 + m3) . 

g(p, n, m) = n4 (-2(1 - v)p2 + TO2) - ~^P2 + m2, 

q(p, At, m) = 1 - (1 - v2)\ + JJLA (p2 - TO2)2 . 

This equation is represented in the form 

P(p-h,X) = ^aip
kihai\0imh. (44) 

i 

The representative points have four coordinates, Mi = {fcj,aj,/?i,Zj} in 
the 4D space (p,h,\,m). As in the previous axisymmetric case, we must 
construct a convex hull in 4D, the faces of which determine the lines that 
divide the (A, m)-plane into domains with different structures of the roots 
of the characteristic equation. 

In this paper we consider only the cases for which the order of m is 
known. This allows us to reduce the 4D problem to the 3D one discussed 
in the previous section. 

We consider the case where TO = mohT, r = 0, i.e. M; = {fej,ai,/3j}. 
Equation (43) for this case may be written as 

24 

i 

where the 24 representative points M, = {c^, {ki, a*,/?*}}, i = 1,...,24, 
with their weights a* are listed below: 

{ - m 2 ( l + TO2), {0,0,1}}, 

{-(1 + i/)(-2 - 3m2 + m2v), {0,0, 2}}, {2 ( - l + i/)(l + vf\ {0,0,3}}, 

{ ( -1 + TO)2TO4(1 + TO)2, {0,4,0}}, 

{TO2(1 + v){-2 + 3TO2 - 3m4 + TO2!/ + m4v), {0,4,1}}, 

{-2m2(l + TO2)(-1 + i/)(l + vf, {0,4, 2}}, {3 + 2TO2 + 2v, {2,0,1}}, 

{ ( - 3 + v)(l + u), {2,0, 2}}, { - 4 ( - l + TO)2TO2(1 + m)2 , {2,4,0}}, 

{-(1 + z/)(-4 + 4TO2 - 9m4 + Av + 3m4^ - 2m2v2), {2,4,1}}, 

{4(1 + TO2 - V){-1 + u)(l + u)2, {2,4, 2}}, 

{1,{4,0,0}},{-1,{4,0,1}}, 

{2(2 - 4m2 + 3m4 - 2v2 + m V ) , {4,4, 0}}, 

{(1 + v)(-4 - 9m2 + 4v + 3m2p), {4,4,1}}, 
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{ - 2 ( - l + i/)(l + vf, {4,4, 2}}, { m 4 ( - l + v)\l + vf, {4,8, 0}}, 

{ -2m 2 ( - l + v)2{\ + u)\ {4,8,1}}, {-4m2, {6,4,0}}, 

{ - ( -3 + v){l + v), {6,4,1}}, {4m 2 ( - l + i/)(l + v), {6,8,0}}, 

{4 ( - l + v)\l + u)\ {6,8,1}}, {1, {8,4, 0}}, 

{_ 4 ( - i + i/)(l + i/), {8,8,0}}. 

The convex hull of these points is plotted in Fig. 5.5. 

Fig. 5.5. 3D convex hull for m ~ 1. 

The faces of the convex hull determine the separative points x (A ~ h*). 
In the considered case, the 3D convex hull consists of four faces: 

(1) (Mi, M2, M3, M7, M8, M12, M13); 
(2) (M12, Mi3 l M23); 
(3) (Mi, M4, Mi2); 
(4) (M3, M8, M13, Mie, M20, M23). 

Assuming that the orders of all terms forming a face to be equal to each 
other, we find the relations from which the orders of A for the separative 
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cases may be determined: 

A ~ A2 ~ A3 ~ Ap2 ~ X2p2 ~ p4 ~ Ap4, 
p4 „ Xp4 ~ ft4p8, 

ft,4 ~ A ~ p4, 
Xp4 ~ A2/iV ~ AftV ~ / iV-

(45) 

A3 - A2
F 

2„2 

So, for the first and the second relations x — 0, for the third one yt = 4, 
and for the fourth one >*r = —4. Note that for m = 1, the representative 
points M4 and Mg are absent since their weights at = 0. For this specific 
case there is no face 3 and, therefore, no separative point x = 4. This case 
is similar to the case 771 = 0. 

For the case m ~ 1 the convex hulls for the domains — 4 < >r < 0 and 
0 < x < 4 are plotted in Figs. 5.6 and 5.7. 

Fig. 5.6. Newton's diagram for x = — 1, m ~ 1. 

The most interesting case is m ~ ft,-1/4. For such wavenumbers the 
natural frequency is the lowest [Goldenveizer ei al. (1978)]4. The 3D convex 
hull for this case is plotted in Fig. 5.8. 

The asymptotic expansions of the integral have different structures in 
the four domains separated by the separative points: 

xr = 3, 0, x = - l / 2 , X : -4. 
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Fig. 5.7. Newton's diagram for x = 1, m ~ 1. 

Fig. 5.8. 3D convex hull for m ~ h x / 4 . 

5.7. Symbolic Computation 

The Mathematica software has been used to perform the symbolic compu­
tation. The following functions have been built 

(1) Construction of the representative points. 
In the system of equations (9) or similar, after substitutions (10) and 
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(12) the characteristic polynomial of type (43) is constructed and writ­
ten in the form of a list of representative points with their weights 
a». 
Construction of 3D convex hull. 
For the representative points set, the part of the 3D convex hull visible 
from the point (p,h,X) = (0, —oo,0) is constructed. The vertices of 
the convex hull and its faces are listed. Initially, the algorithm based 
on the gift wrapping method and Graham scan was used to construct 
the convex hull. It is important that the weights of the points forming 
the convex hull not be equal to zero for any values of the parameters. 
For example, the weights of two points of the convex hull for m ~ 1 
contain the multipliers (m — 1). This means that the case m = 1 must 
be considered separately. 
Construction of the domains with similar structures of solution. 
Solving the systems of linear equations for each face, we find the or­
ders of the corresponding A (separative points). The entire area of the 
parameter A splits into several domains by these separative points. 
Construction of the lower part of the 2D convex hull. 
For each separative point and for each domain, the roots of the charac­
teristic polynomial are found. For that purpose, A is represented in the 
form A = Xh*, where the order of x is known. For 2D point sets the 
convex hull is constructed using standard function from the package 
"Computational Geometry". As a result we get the list of the segments 
of the convex hull. 
Deletion of terms in equations of the type (18) and (19) and extraction 
of the roots and eigenvectors. 
In some domain of the parameter space, we may neglect some of the 
terms of the initial equation to shorten an equation. Say, instead of one 
equation of the eighth degree we get two equations of the fourth degree 
with fewer terms. The main asymptotic terms of the roots of the initial 
and the transformed equations will be same. The points of a segment 
determine the terms of a shorter equation. Each equation is solved for 
the main terms of the roots p. Then, the eigenvectors are obtained. 
For this purpose, one equation of system (44) is excluded, and, in the 
remaining two, only the main terms are considered. The solution of the 
system 

anu + ai2v + ai3W = 0, (46) 

d 2 i u + a-iiv + (I23W = 0, (47) 
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is represented in the form w = A, u = Au, v = Av, where 

Ol l ,«12 

021,022 
A„ = A„ = 

O l l , O i 3 

021,023 
(48) Ol3,Oi2 

023,022 

A, Au and Av should not be equal to zero. Similarly, we construct n 

integrals of the initial system. It is assumed tha t all its root are simple. 

(6) Factorization of the characteristic equation of type (30) or (37). 

Substi tuting solutions into the boundary conditions, we find the charac­

teristic equation for A. Then, we t ry factorizing it to find the analytical 

expression for the roots. For some boundary conditions this can be 

done. Otherwise, we solve the equation numerically. 
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The basic theoretical framework to analyze the behavior of single crystal 
piezoelectric materials in the presence of pre-existing stresses and elec­
tric fields is discussed. The biasing fields are assumed to be static. The 
associated system of equations describing the behavior of single crystals 
with biasing fields under subsequent deformation and electric fields are 
self-adjoint. The static biasing fields appear explicitly in the final equa­
tions. This framework proves to be ideally suited for the study of material 
stability under superposed infinitesimal deformations and electric fields. 
Stability issues are discussed in the context of superposed infinitesimal 
plane harmonic waves; stability envelopes for the biasing fields are es­
tablished through this analysis. The general solution in terms of complex 
potentials is obtained for antiplane problems. The influence of biasing 
fields on fracture phenomena is analyzed in this framework. In the con­
text of this work, the biasing fields can be large, making it possible to 
obtain critical values of the biasing fields for resonance (in general, loss 
in stability). In particular, results are obtained for single crystal from 
the classes 23, 6mm, and 42m. 

6 .1 . I n t r o d u c t i o n 

Pre-stress and pre-polarization occur naturally in devices containing piezo­

electric components. For example, residual stresses from manufacturing pro­

cesses, poling, and the high stresses due to pressure lead to the presence 

of significant initial fields, which have a profound influence on the behav­

ior of these materials. Indeed there is experimental evidence documenting 

the influence of such initial fields on the evolution of damage and fatigue. 

For example, by measuring the hysteresis loop in experiments on polycrys-
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talline lead zirconate titanate stannate (PZST), it has been shown that 
pre-stress strongly affects its antiferroelectric-ferroelectric phase transfor­
mation (see [Essig et al. (1999)]1). Another experimental investigation of 
the same phenomenon in lanthanum stannate zirconate titanate (PLSnZT) 
demonstrates a great sensitivity to pre-stress along the electric-field direc­
tion [Pan et al. (1996)]2. Specifically, the displacement was observed to 
decrease by 50% from its pre-stress free value when a small pre-stress of 3 
MPa was applied. Further, in the experiments presented in [Adachi et al. 
(1998)]3, the estimation of pre-stress was found to be indispensable to the 
design of BLT's (bolt-clamped Langevin-type transducers), due to the fact 
that pre-stress significantly reduces electromechanical coupling. The micro­
scopic mechanism responsible for the reduction of the piezoelectric effect is 
not yet known. An example of the effects of pre-polarization is presented 
in [Lee and Ramesh (1996)]4, where it was found to play an important role 
in determining further imprint behavior in epitaxial PLZT thin-film capac­
itors. Also, experiments performed on one of the most frequently used bulk 
piezoelectrics, PZT (lead-zirconate-titanate), reveal the unusual effect that 
residual stresses have on microcracks: they migrate inside the body in a 
manner that depends on the orientation of the residual stresses and electric 
field. 

The experimental results indicated above furnish a strong impetus for 
studying pre-existing mechanical and electromagnetic fields in deformable 
solids from a theoretical viewpoint. Moreover, an investigation of the effect 
of initial fields is particularly important as piezoelectric materials are gain­
ing in importance for a variety of structural applications at both large and 
small scales (for a good survey of structural applications of piezoelectric 
materials, see [Sunar and Rao (1999)]5 and the references cited therein). 
There is a considerable body of work on the theory of piezoelectrics in the 
absence of initial fields; indeed a number of expository works are avail­
able in the literature (see for e.g. [Mindlin (1989)]6, [Tiersten (1969)]7, [Lee 
and Haines (1974)]8 and [Rogacheva (1994)]9). Further, a comprehensive 
review of higher order theories of piezoelectric plates from the point of 
view of applications is contained in [Wang and Yang (2000)]10. Initial (or 
biasing) fields have been treated from a theoretical point of view in the 
context of elastostatics; in particular, results for elastostatics plates under 
biasing fields involving second order theories can be found in [Yang and 
Jiang (2002)]11, [Yang and Jiang (2002)]12, and [Yang and Jiang (2002)]13. 
Although special cases of biasing fields in piezoelectrics have been treated 
from a theoretical standpoint (for e.g. [Tiersten (1995)]14), until recently, 
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a satisfactory general theoretical treatment of initial fields in piezoelectrics 
has been lacking in the literature. In a recent series of papers, the author, 
along with Professor Eugen Soos, has developed a theoretical framework for 
piezoelectricity in the presence of initial fields, and used it to study material 
stability and crack propagation [Soos (1996)]15, [Baesu et al. (2003)]16-
[Beasu]21. 

This chapter is organized as follows. In section 6.2,1 introduce notation 
and summarize the basic equations of elastic dielectrics under the quasi-
electrostatic approximation. In section 6.3, I present the general theory of 
piezoelectric materials with initial fields and discuss the linearized incre­
mental theory. The special case of antiplane incremental deformations is 
developed in section 6.4. Stability results in the presence of initial fields are 
presented in section 6.5. Finally, in section 6.6, I briefly discuss transverse 
wave propagation. 

6.2. Background 

In this section I present the basic equations describing the behavior of a non-
magnetizable elastic dielectric which conducts neither heat nor electricity; 
in the following we adopt the quasi-electrostatic approximation. Let B be a 
deformable continuum moving in the 3-dimensional Euclidean space under 
the influence of external forces. Let X be a particle of B, and let X and x be 
its position vectors in the reference and present configurations (at time t), 
BR and B, respectively; Let VR and V be the associated spatial domains. 
A motion \ °f the body is any sufficiently smooth function 

x = X ( X , i ) . (1) 

The deformation gradient F relative to X, and its determinant are defined 
by 

F = ^ | ^ , J = de tF . (2) 

Taking the reference configuration to be occupiable, we have J > 0. The 
right and left Cauchy-Green strain tensors are given by 

C = F T F , B = F F T , (3) 

respectively, and the Lagrangian strain tensor G by 

G = i ( C - I ) . (4) 
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Let PR and p denote the mass densities in the reference and present 
configurations, respectively. The local equation for conservation of mass 
can be written as 

PR = pJ- (5) 

Let T denote the Cauchy mechanical stress tensor and S its symmetric 
part. The latter is derived from the Helmholtz free energy in accordance 
with conventional elasticity, with the proviso that the energy is now a func­
tion of the electromechanical variables. Let E, P and D denote the electric 
field, the electric polarization and the electric displacement, respectively. 
These satisfy ([Eringen and Maugin (1990)]22): 

T = S - P ® E , D = E + P . (6) 

The differential equations of balance in the quasi-electrostatic approxi­
mation (i.e. neglect of time derivatives in Maxwell's equations) are 

/ 9 v = d i v T + / 9 f + g E + (P- V)E, (7) 

div D = q, (8) 

curl E = 0, 

where v is the velocity field, the superposed dot denotes the material time 
derivative, f represents the mechanical body force, and q denotes the vol­
umetric charge density. In equations (7) and (8), the spatial description is 
used, i.e. the various fields are functions of the spatial coordinate x and of 
the current time t. The fields E, P and D are also defined in the domain 
exterior to V. 

The jump conditions satisfied at the boundary dV of V are 

n • [D] =w, n x [E] = 0 on dV, (9) 

where w represents the given surface charge density and n represents the 
exterior unit normal to the boundary. Here, 

[</>] = <P+ - 4>~ ( i o ) 

is the jump of a generic field <j> across dV, and <f>+ and (fi~ are the limits of 
4> on dV from the outside and inside, respectively. For simplicity, the inside 
limit value <p~ will henceforth be denoted simply by <f>. 

From the momentum balance (7), the mechanical surface traction t n 

acting on the boundary of the body is 

t n = n - T = n - ( S - P ® E ) on dV. (11) 
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The local balance laws and associated jump conditions may be expressed 
in an equivalent form by introducing Piola-Kirchhoff type fields, related to 
the reference configuration BR, and defined through the relations: 

n= JF-1SF~T, (12) 

0 = J r F - 1 S = n F T , 

V=JF~1P, £ = F T E , £ ) = J F - 1 D = J F " 1 E + V, (13) 

T = J F _ 1 T = e - V®E, (14) 

qR = Jq. (15) 

Here, © and II represent the nominal stress and the symmetric Piola-
Kirchhoff stress corresponding to the symmetric part S of the Cauchy me­
chanical stress T, and qR is the referential volumetric charge density. 

The referential forms of the local balance laws are: 

pRii = div 1+ pRf+ qRE + CP-V)E, (16) 

div£)=q f i , c u r l € = 0 , (17) 

wherein u is the displacement vector from BR to £?,and the differential 
operators are associated with the reference configuration. In these balance 
laws the material description is used, i.e. all fields are functions of the 
independent material coordinates X and the time t. 

The jump conditions (9) are equivalent to: 

N •[£>]= wfi, N x [ € ] = 0 on <9VR, (18) 

where N is the exterior unit normal to the boundary dVR of VR and wR 

is the surface charge density per unit material surface area in the reference 
configuration. 

From the momentum balance (16), it follows that the mechanical surface 
traction t]\r, acting on the boundary of the body, is given by 

t N = N - T = N - ( 0 - P ® E ) . (19) 

The field equations and the jump conditions are supplemented by the con­
stitutive equations: 

TL = ™ V=-™ (20) 
dG' ' 3<£' [ Uj 

where 

pRi> = H(G,<E), (21) 

is the generalized Helmholtz free energy and G is the Green strain tensor. 
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6.3. General Theory of Piezoelectricity with Initial Fields 

6.3.1. Small deformation and electric fields superposed on 
large static fields 

The equations describing the behavior of the incremental fields are given 
by [Eringen and Maugin (1990)]22. To obtain these equations, they use the 
field equations and jump conditions corresponding to the spatial descrip­
tion. In their work, the perturbed mechanical surface forces, together with 
the surface and volumetric charges, are referred to material surface and 
volume elements in the perturbed current configuration B. In the present 
work, these quantities will instead be referred to unit material surfaces and 
volumes in the initially deformed static configuration B, which is regarded 
as being known [Baesu et al. (2003)]16. 

In the reference configuration BR, the body is assumed to be free of all 
fields. Further at the time t = 0 the body is assumed to be deformed stati­
cally and carries static fields. B is the initial equilibrium configuration. The 
static deformation of the body from BR to B is described by x = x(X), the 
associated deformation gradient is F = F(X), and J = J(X) = d e t F ( X ) . 
The mechanical and electrostatic fields in B are identified by a superposed 
"o", i.e. 

u = u(X), F = F(X), f = T ( x ) , . . . , E = E(x), P = P ( x ) , . . . . 
(22) 

Thus, 

pj = pR, w i t h J = de tF . (23) 

Further, in view of the general relations (6), 

f = S - P ® E , D = E + P. (24) 

According to (7) and (8), the field equations satisfied by these static 
fields are: 

div f + pi + qt, + (P • V)E = 0, (25) 

div D = q, 

curl E = 0. 

At the boundary dV of V, the volume occupied by the reference configura­
tion B, we have: 

n • [D] = w, n x [E] = 0, (26) 
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where n is the exterior unit normal to dV. Further, in view of (24)i, the 
mechanical surface traction t n acting on dV is 

t„ = n - f = n - ( S - P ® E ) . (27) 

The constitutive equations (20) for mechanical stress and electric polariza­
tion in the static equilibrium configuration B are: 

dH - ° ° dH - ° 
n ° = ^ ( G ' € ) ' P = - ^ { G ^ ( 2 8 ) 

where 

- ( F T F - 1 ) , (£ = F T E . 

Time-dependent incremental deformations and fields are now assumed 
to be applied to the body in the initial configuration B, resulting in the 
current configuration Bt = B. Let u(x,£) be the small displacement from 
B to B, and let F 0 = F0(x, t) be the gradient of the deformation from B to 
B, (i.e. B is taken here as the reference configuration). The gradient of the 
displacement u = u(x, t) is Ho = Ho(x, t), and Jo(x, t) is the determinant 
ofFo 

The fields referred to B will be identified by the subscript "o" and will 
be regarded as functions of x and t. For simplicity, the argument x will be 
suppressed in the notation. Thus, we have: 

F0(t) = l + H0(t) , H0(i) = Vu(i), J 0 = d e t F 0 ( t ) , (29) 

and 

F(t) = F0( t)F, J(t) = J0{t)J, J = d e t F . (30) 

The Piola-Kirchhoff versions of the various fields are: 

0o(i) = J0(t)Fo\t)S(t) = J F n ( i ) F F o (t), (31) 

Vo(t) = J0(t)Fvl(t)P(t) = J^FVit), (32) 

E 0 ( t ) = F j ( t ) E ( t ) , (33) 

S)o(i) = J0(t)F^(t)n(t) = J O W F Q ^ O E W +V0(t), (34) 

SoW = Jo(i)F0-1(£)T(t) = 0 o ( t ) - V0(t) ® E(i). (35) 

Further, 

H 0 ( 0 ) = 0 , F0(0) = 1, Jo(0) = l, (36) 
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and therefore, 

0o(O) = S, 7>o(0)=P, € 0 ( 0 ) = E , D0(0) = D, To(0) = f. (37) 

Equations (15), (16) and (17) then yield the balance equations: 

p{t)Mt)=p, (38) 

pu(t) = div 10(t) + pf(t) + q0E(t) + (V0 • V)E(t), (39) 

div D0(i) = q0(t), curl £„(*) = 0. (40) 

Here, go = Qo{t) is the current volumetric charge density per unit mate­
rial volume in the initially deformed configuration B. The jump conditions 
satisfied at the boundary dV of V are: 

n-[®o(t)]=w0(t), n x [ € 0 ( i ) ] = 0 , (41) 

where WQ = wo(t) is the current surface charge density per unit material 
surface area in B. 

From (39), we conclude that the Piola-Kirchhoff mechanical traction 
ton(t) is given by 

U W = n-IoW = n • ( 8 0 W - PoW ® E(t)) on dV. (42) 

Finally, according to (20), the constitutive equations are: 

n ( t ) = § r ( G ( t ) , <£(*)), V{t) = ~~(G(t), <£(*)), (43) 

where 

and 

G(t) = \(FT(t)F(t) - 1), <£(t) = FT(tWt), (44) 

G(0) = G E(0) = F T E . (45) 

Small perturbations of the initial electric field are denoted by e = e(x,£), 
i.e.: 

E ( t ) = E + e(t), (46) 

and the relation 

F(t) = F + H0(*)F, (47) 

which follows from (29)2 and (25), will be used in the subsequent develop­
ment. The perturbations HQ(£) and e(i) are considered to be small, such 
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that the products of all perturbations due to Ho(t) and e(t) may be ne­
glected. In particular, we have 

Jo(t) = l + t r H 0 ( t ) , F^1(i) = l - H 0 ( t ) . (48) 

Henceforth, a superposed bar will be used to denote small perturbations 
of the various fields. For example, Green's strain tensor is approximated by 

G(i) = G + G(t), (49) 

wherein 

G(i) = F T g( i )F , (50) 

by virtue of (29) and (44), and 

g(i) = i ( H 0 ( t ) + H ^ ) ) (51) 

is the associated infinitesimal strain tensor. In the same way, we have 

£(*) = £ + £ ( * ) , (52) 

in which the perturbation <B(t) is derived by using eqs. (13)i, (46) and (47): 

€ ( t ) = F T ( e ( i ) + H ^ ) E ) . (53) 

We also have 

eo(i) = s + 0o(t), n(*) = n° + n(t). (54) 
Equations (29)i and (31) then lead to a relation between the perturbations 
0o (t) and fl(i): 

e 0 ( t ) = J _ 1 Ff l ( t )F T + S H ^ i ) . (55) 

Next, consider 

Po(t) = P + V0(t), V(t) = V + V(t), (56) 

and note that, from (32)2, 

Vo(t) = J^FVit). (57) 

Thus, the perturbation Vo(t) is known if V(t) is known. Similarly, if we 
take 

3)o ( t )=D + S 0( t ) , (58) 
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then, from eqs. (29), (34), (46), (48) and (59), we derive 

£ 0 ( i ) = e(t) + V0{t) + E tr H0(t) - H0( t)E (59) 

and observe that computation of the perturbation S)o(i) requires knowledge 
oiVo{t). Continuing, we have 

<£o(*) = E + CoW, (60) 

where, from eqs. (35), (50) and (51), 

€o(*)=e( t )+Hg ' ( t )E . (61) 

Finally, if 

T o ( t ) = f + S(£), (62) 

then eqs. (35), (46), (54) and (56) yield the perturbation T(i): 

T0(t) = e 0 ( t ) - P o ( t ) 8 > E - P ® e ( t ) . (63) 

At this stage it is evident that all perturbations are known if the per­

turbations fl(i) and V(t) are known. To obtain the latter, the constitutive 

equations (43) are used. Thus, taking into account (49), (50), (52) and (53), 

together with (28), we derive 

m = Sh{fTgWf} + SG{PT(eW + H° WE»' ^ 
V^ = " l ^ < * T g W * > " S { f , T ( 6 ( t ) + H"{t)±)}- (65) 

The superscript "o" on Ji indicates that the corresponding second-order 
derivatives of the generalized Helmholtz free energy are evaluated at Gl­
and E°. 

The perturbations of the force and charge densities are introduced 
through: 

f ( i ) = f + f(i), qo(t) = q + q(t), w0{t) = w + w{t). (66) 

Using the relations (25), (39), (40), (46), (56)i, and (58)-(63), it may 
then be shown that the incremental fields satisfy the following balance 
equations: 

p°ii(t) = div(e0(t) - V0(t) <g> E - P O e(t)) + p°i(t) + q(t)E 

+ qe(t) + {V0(t) • V)E + (P • V)e(t), (67) 
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div (e(t) + V0(t) + E trHo(t) - H0(t)E) = q(t) 

curl(e(t) + Hg ' ( t )E )=0 . 

From (41), the jump conditions for the incremental fields are: 

n • [e(t) + V0(t) + E t rH(t ) - H0(i)E] = w{t) (69) 

n x [e( t )+Hj(f)E] = 0 . 

Finally, (42) may be used show that the incremental Piola-Kirchhoff me­
chanical traction ton(£) reduces to 

ion(t) = n-(e0(t)-V0(t)®E-P®e{t)) on dV. (70) 

6.3.2. Special case of homogeneous initial state and 
non-polarizable environment 

The following development is based on two further assumptions: 

(Hi) The body is homogeneous, the initial deformation gradient 
F is constant in the domain VR, and the initial electric field E is 
constant. 
(H2) The environment of the body (vacuum in our case) is not 
polarizable. 

The second assumption is justified since the dielectric constants of the ma­
terial are significantly larger than the dielectric constant of vacuum. Then, 
according to this assumption, we have P = 0 and e(t) = 0 in the whole 
space exterior to V. Consequently, the associated limit values satisfy the 
relation P + = 0 and e+(t) = 0 on the boundary dV. Obviously, our second 
assumption leads to a significant simplification of the problem, since, by 
neglecting the surroundings of the body, our problem is transformed to one 
of a simple hyperelastic dielectric. 

Returning to our assumption (Hi), we first observe that S, P , T and 
D will also be constant quantities in the domain V occupied by the ini­
tially deformed and polarized body; and, as a consequence of the balance 
equations (25), the assumed homogeneous state can exist only if 

f = 0, q = 0 in V. (71) 

Since the initial applied electric field is assumed to be spatially constant, the 
second jump condition (26) is identically satisfied, whereas the assumptions 
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(Hi) and (H2) taken together show that P and w are related by 

n • P = -w on dV. (72) 

The mechanical traction t n acting on the boundary dV is given by (27). 
Our first assumption (Hi), its consequence (71), and (57) imply that 

the local balance equations are: 

pii(i) = div (e 0 ( t ) - V0(t) ® E) + pi(t) + q(t)E, (73) 

dxv(e(t)+V0(t))=q{t), (74) 

curl e(t) = 0, 

provided that the initial equilibrium state of the body is homogeneous. 
Moreover, our second assumption (H2) implies that the boundary conditions 
(26) reduce to: 

n • (e(t) + V0{t)) = -w{t), n x e(t) = 0 on dV, (75) 

which follow from the fact that E is constant and the environment of the 
body is not polarizable. Finally, from the momentum balance (73), it follows 
that the incremental Piola-Kirchhoff type mechanical traction to n( t) is 

to n( i) = n • (e 0 ( t ) - P0(t) x E) on dV, (76) 

whenever the initial state of the body is homogeneous. 

To complete the system describing the incremental behavior of the body, 

we return to the constitutive equations (64) and (65) giving the perturba­

tions n ( t ) and V(t). We also use (55) and (57), expressing the perturbations 

&o(t) and Vo(t) in terms of TL(t) and V(t), to derive: 

where 

Vok = (efcmn + XkmEn)um,n + XktfU (78) 

o o „ d2H° 
Cklvnn ~ J Fkp^lq-^mr-^ns ^.^ o ^ 5 

OUpgOLrrs 

&mkl ~ J rrrhlpr}iqFir—-r , v'*^/ 
CHCpOLrqr 

Xkl = ~J~ FkmFia-
n 
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It is noteworthy that equations (78) and (79) are valid even if hypotheses 
(Hi) and (H2) are not satisfied. The material moduli possess the following 
symmetry properties: 

C-klrnn = Clhmn ~ Cfclnm = C-mnkli &mkl ~ &mlki Xkl = Xlk- l*UJ 

Hence, in general, there exist 21 independent elastic moduli Ckimn, 18 in­
dependent coupling moduli emki and 6 independent dielectric moduli Xkl-

At this juncture I introduce the incremental mechanical stress tensor 
X and electric displacement vector A. We may conclude from the balance 
equations (73) and (74)i that, if (Hi) and (H2) are applicable, then 

S(t) = e 0 ( i ) - ' P o ( t ) ® E ) (81) 

A(t) = e(t)+V0(t). 

Moreover, according to (77) and (78), the constitutive equations describing 
the behavior of the incremental fields are: 

Z-'kl = ^'klmn'U'm,n ^mkl&mi 

Afc = A-kmnUmin + Skl^l (82) 

where 

^^klmn ~ Ckimn 1 ^kn^lm &kmn Ei- Em - XknElEm, 

Knkl = Zmkl + XmkEl, (83) 

Ski = 5kl + Xkh 

and, from (80), the following symmetry relations are satisfied: 

Qklmn = &nmlk, Ski = £lk- (84) 

We observe that Ctkimn are not symmetric relative to the indices (k,l) and 
(m, n), and that Kmki are not symmetric relative to (k, I). Hence, in general, 
there are 45 independent elastic moduli Clkimm 27 independent coupling 
moduli Amki, and 6 independent dielectric moduli iki- These moduli are 
constant parameters which depend on the considered hyperelastic dielectric 
through the Helmholtz generalized free energy. They also depend on the 
initial deformation and electric field through Ski and Ek-

Using the incremental mechanical stress tensor X and the displacement 
vector A, we may cast the differential balance equations (73) and (74) in 
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the forms 

pii = divE + pf + gE, 

divA = q, (85) 

curie = 0. 

The associated boundary conditions are 

n • A = -w, n x e = 0 on dV, (86) 

and the incremental mechanical traction t o n satisfies 

to n = n • £ on dV. (87) 

6.4. Special Case of Antiplane Deformation 

The special case of antiplane deformation was explored in a series of papers 
by Baesu and Soos ([Baesu and Soos (2001)]17, [Baesu and Soos (2001)]18, 
[Baesu and Soos]19). In the following, the body is assumed to be prismatic 
with cross-sectional geometry independent of x$. In particular, the exterior 
unit normal, n, to the boundary of the cross-section depends only on X\,X2, 
and ri3 = 0. We also assume that 

fa = 0 in V, and ga = 0 on dV; a = 1,2, (88) 

and that / j , q, w, gz depend only on £1,2:2, and t. We have an an­
tiplane [incremental state relative to the (xi,a;2)-plane if 

ua=0, U3 = u3(xp,t), <p = ip(xp,t); a, (3 = 1,2. (89) 

In particular, from (25), 

ea = ea(x/3,t), e3 = 0. (90) 

Next, sufficient conditions for the existence of an antiplane state in a 
piezoelectric crystal are obtained. To this end we observe that all fields 
depend only on X\,X2, and t; hence, (85) implies that 

Xa0,a + qE/3 = O; a, (3 = 1 , 2 , (91) 

where, according to (82), 

SQ/3 = Qa03yU3n + A^ap(fin] «,/3,7 = l ,2. (92) 

Equation (91) then becomes 

^Q/337
w3,7a + A7Q/3</?i7a + q~E0 = 0; a, /3,7 = 1,2, (93) 
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and for this to be satisfied it is sufficient tha t 

^a/337 = 0, ATQ/3 = 0, E0 = O; a ) j 9 , 7 = l , 2 . (94) 

These conditions, together with (83)i ]2 lead to further restrictions on the 

components of the elastic moduli c and the coupling moduli e: 

Ca/337 = °> eia/3 = 0. (95) 

Using the Voigt notation, these are equivalent to 

Cl4 = C15 = C24 = C25 = C46 = C16 = 0, (96) 

e n = e2 i = e i 2 = ew = e2 2 = e2 6 = 0, 

which are satisfied for the crystal classes: 222, mm2, 4, 6, oo, 4, and 42m 

([Sirotin and Shaskolskaya (1975)]23). We conclude that , under hypotheses 

(Hi ) - (H 5 ) , the antiplane s tate is always possible in these crystals. Then, 

(94) and (95) yield 

E a / 3 = 0; a, 0=1,2. (97) 

We also observe tha t for the crystal classes in question, the existence of the 

antiplane s tate is not contingent upon any restrictions involving S. 

For antiplane states, the field equations (85) simplify to 

f,U3= Xa3,a+f>f3 + qE3, (98) 

A a , a = q, 

where 

S a 3 = ^a33/3W3,/3 +hpa3<P,0, (99) 

A a = Aa/33U3i/3 - £a(3V,f3\ a, /? = 1, 2. 

The moduli involved in these equations may be obtained by using the gen­

eral results given in (83)i i 2 : 

^1331 = C55 + S11 - 2e 1 5£ ,
3 - Xn-^3 5 

^1332 = C45 + S12 - (ei4 + e25)_E3 - Xl2-^'3! 

^2331 = C45 + S12 - ( e i 4 + e25).E3 ~ X12E3, 

^2332 = C44 + £22 - 2e24-E3 - X22EJ, (100) 

A113 = ei5 + Xn-E '3, 

A2i3 = e25 + X12-E-3J 

Ai23 = e1 4 + X12-E3, 

A223 = e24 + X22-E3-
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Consequently, the incremental constitutive equations become 

S13 = f c5 5 + 5 n - 2e i 5 ^3 - X i i ^ f ) "3,i 

+ (C45 + -512 - (ei4 + e 2 5 ) £ 3 - X12E3) "3,2 

+ ( e i 5 + X11-E3J f,i + [£25 + X12-E3J V,2, 

(101) 

^23 •"3,1 = Ic45 + 5i2 - ( e u + e25)-E3 - X12EI) 

+ (c44 + S22 - 2e2iE3 - X22EIJ w3,2 

+ (ei4 + X12-E3J </>,! + [e24 + X22^3j V,2 

(102) 

and 

A i = f eis + Xn-Ej u3 , i + ( W + Xi2^3 J "3,2 - £u¥>,i - £12^,2 

A 2 = f e2 5 + Xl2^3 j "3,1 + f e24 + X22-B3J "3,2 ~ £l2</?,l - £22^,2-

For the crystal class 42m, the matrices of the associated elastic, coupling 

and dielectric moduli take the forms: 

X11 0 0 

0 X11 0 

0 0 X33. 

e n 0 0 " 
0 En 0 

0 0 £33. 

1 

0 0 0 e u 0 0 

0 0 0 0 e i 4 0 

0 0 0 0 0 e3 6 

Cll C12 C13 0 0 Ci6 
0 e n c i 3 0 0 - c 1 6 

0 0 c 3 3 0 0 0 

0 0 0 c4 4 0 0 

0 0 0 0 c4 4 0 

0 0 0 0 0 c66 

(103) 

Then, the constitutive equations (101) reduce to 

S13 = fc44 + Sn - Xi i -^ l ) "3,i + [S12 - 2euE3) u3 ,2 + XiiE3<P,i + eu<P,2, 

S 2 3 = [S12 ~ 2euE3\ u3 , i + (c44 + S22 - X11-E3) 113,2 + ei4<P,i + 

XnE3ip,2, (104) 

A i = XnE3u3ti + ei4"3,2 - £n¥>,i, A 2 = e i 4 u 3 , i + XnE3u3,2 - £iiV,2-

We simplify the equations for incremental antiplane strain states in a 

piezoelectric crystal belonging to the class 42m. To ensure the homogeneity 
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of the initially stressed and polarized state, the initial stresses and electric 
displacement must satisfy the restrictions 

S21 = S22 = S23 = 0, D2 = 0. (105) 

The resulting infinitesimal strain g and polarization P may be determined, 
provided that E3, 5 n , S33, and S13 are known, and assuming that c and e 
are positive definite (which implies that the reference state of the body is 
locally stable). 

For simplicity, we use the notation: 

u3 = u, c44 = c, S11 = <r, x n = X, £n =£, E3 = E, e u = e, 

and note that 

e = l + X- (106) 

The constitutive equations (104) are 

S13 = (c + a - xE2) u,i - 2eEut2 + xE<p,i +e<p,2, 

S 2 3 = -2eEu,i + (c- X# 2) u,2 + e<p,i + xE<p,2, ,w~ 

Ai = X-E'w.i + ew,2 - £y,i, 

A2 = eu,! + X-^,2 - £¥>,2-

We also assume that 

/ 3 = 0 and q = 0. (108) 

The field equations (98) then reduce to 

pu— (c + a - X-E2) utn - AeEuti2 + (c - xE2)u<22 + xE<p,11 

+2apil2 + xE<fi,22, (109) 

0 = x-Efyn + 2eu,i2 + X^u,22 - £^,22 - £f,u-

6.5. Stability Considerations 

6.5.1. Static and dynamic local stability 

In the following, dynamic and static energy balance laws are formulated 
as consequences of the incremental field equations given in the previous 
section and show that the associated differential operators are self-adjoint 
([Soos (1996)]15-[Beasu]21). This property, in turn, follows directly from 
the structure of the incremental constitutive laws (82), and from the sym­
metry properties (84) of the moduli Ct and i. These energetic balance laws 
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generalize similar results known in the theory of prestressed hyperelastic 
solids [Balakirev and Gilinskii (1982)]24 and the classical theory of linear 
piezoelectric crystals [Dieulesaint and Roger (1974)]25. 

To obtain the dynamic incremental energy balance law, we first consider 
the scalar product of the velocity u with the momentum balance (85) i. Inte­
grating the resulting expression over V, and using the divergence theorem, 
we obtain: 

— / -pu • iidv = / u • (n • S)ds+ / (pf • u+ qE-u)dv- I (Vu • s ] dv. 

(110) 
Further, from the balance law (85)3, we conclude that the incremental elec­
tric field e is the gradient of a scalar electric potential (\> — 0(x,£), i.e. 

e = -V<j). ( I l l ) 

Multiplying (p by the time derivative of (85)2, integrating the resulting 
equation on V and using the divergence theorem once more, we derive 

0 = - l<j>n- Ads + I fadv - I (A- e) dv. (112) 
JdV JV Jv ^ ' 

The addition of (110) and (112) then results in 

— / -pi i • udv = / n • (Su — <j)A)ds 
dt Jv 2 Jy 

+ l(pf-u + qE- u+ <f>q)dv - I (Vu • S + A • e\ dv. (113) 

Using the constitutive laws (82) and the symmetry properties (84) of the 
moduli Cl and e, we reduce the last term in (113) to 

V u « S + A - e = — ( ^ V u J l V u + i e - ee) . (114) 
(JUL \ £ Zi I 

This allows us to rewrite (113) in the form: 

\_d_ 

2~dt j v 

— / (pu • u + Vu • J W u + e • ie)dv 
at Jv 

= n • (Sii - <pA)ds + / (pf • u + qE • u + <j>q)dv. (115) 
JdV JV 

The right-hand side the first integral represents the incremental kinetic 
energy of the body; the second, the incremental strain energy of the di­
electric material; and the last, the energy of the incremental electric field. 
The mechanical and electrical significance of the various terms in the sec­
ond integral of the right-hand side is obvious, these being similar to terms 
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appearing in the classical theory of linear piezoelectric bodies. It is evident 
that the vector 

<£=-Eu+<£A, (116) 

appearing in the surface integral of eq. (115), is the incremental electrome­
chanical energy flux vector, characterizing the electromechanical energy 
gained or lost by the body through its boundary. This vector plays a funda­
mental role in the analysis of reflection and refraction of electromechanical 
waves. 

Let W be the sum of the specific incremental strain energy and the 
energy density of the incremental electric field, i. e. 

2W = Vu • OVu + e- le . (117) 

This enables us to rewrite the energy balance law (115) in the following 
useful form: 

= / n - E u d s - / 4>n-Ads+ / (pf • u+qE • u+<pq)dv, (118) 
JdV JdV JV 

which may be used to identify those well-posed incremental initial- and 
boundary- value problems having unique solutions, provided that the energy 
density W is a positive-definite quadratic form. In turn, the latter property 
holds if and only if the moduli Cl and e are positive definite. As in the 
classical linear theory of piezoelectric crystals, the foregoing uniqueness 
conditions do not impose any restrictions on the coupling moduli A. 

Using the same procedure for static problems, it may be demonstrated 
that 

/ Wdv= / n - E u d s - / n-A(j)ds+ (pf • u+qE-u+(j)q)dv. (119) 
JV JdV JdV Jv 

As in the foregoing, this equation may be used to identify those well-posed 
equilibrium boundary- value problems for which uniqueness of classical reg­
ular solutions may be proved. Moreover, as in the dynamical case, unique­
ness is assured if W is positive definite; that is, if Cl and i are positive 
definite. Thus, we may conclude that bifurcation, or local instability, of 
the initially deformed and polarized equilibrium state B may occur only 
if the moduli ft and/or e cease to be positive definite. Hence, there exists 
a strong connection between uniqueness and local stability according to 
Euler's criterion of adjacent equilibrium. 
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In the following, we assume time-independent fields. We further suppose 
that only dead mechanical and electrical loads act on the body, i.e. loads 
which are not altered by changes of configuration. Under these assumptions, 
we consider the following homogeneous boundary value problem: 

d ivS = 0 in V, n • S = 0 on dVi, u = 0 on dV2, 

div A = 0 in V, e = - V</>, (120) 

n • A = 0 on dV3, 0 = 0 on dV4, 

where dVi, dV2 and dVs, dVi are sets with disjoint interior parts, and 
3Vi u dV2 = 0V3 U dVi = dV. 

Adapting ideas from the classical linear stability theory of elastic solids 
([Ogden (1984)]26, [Guz (1976)]27, [Guz (1986)]28), we invoke the following 
static stability criterion: 

Criterion 1 The initially deformed and polarized equilibrium state B 
is locally stable if and only if the homogeneous incremental boundary value 
problem (120) has only the null solution. If this condition is not fulfilled, 
we say that B is locally unstable or neutrally stable. 

It is apparent that there exists a strong connection between incremental 
uniqueness and local stability: If, for a loaded configuration B, the incre­
mental boundary value problem has unique solutions, then B is locally 
stable; and if, for B, the incremental boundary value problem has non-
unique solutions for the given incremental electromechanical loadings, then 
B is locally unstable. In particular, we may assert that if the moduli ft and 
i are positive definite, then the initially deformed and polarized state B is 
locally stable. Hence, local instability on a given loading path may occur 
only if, for some critical values of the external electromechanical dead loads, 
either of these moduli ceases to be positive definite. 

The foregoing stability criterion is applicable only to static problems. 
Dynamical stability criteria involving the time evolution of the system are 
more general, and may be used to solve both dynamic and static stability 
problems. Generally, the equilibrium configuration B is locally stable, from 
the dynamical point of view, if small time-dependent perturbations of B re­
main small for all time. Specifically, we shall assume the following standard 
space-time decompositions for the incremental displacement u(x,£) and the 
electric potential <fi(x,t): 

u(x,i) = e iw tu(x), 4>(x,t) = e iwt^(x), (121) 

where w is a complex number and u(x), ^(x) are time-independent fields. 
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The homogeneous dynamical incremental boundary-value problem to 
be solved is: 

pii = div X in V, n - S = 0 on dV\, u = 0 on dV2, 

divA = 0, e = -V</> in V, (122) 

n - A = 0 ondV-3, <f> = 0 on 0V4. 

The incremental constitutive equations imply that S , A and e may be 
written in the form 

S(x,t) = e i w t£(x) , A(x , t )=e i a J t A(x) , e(x,t) = e^ 'e(x) , (123) 

which, when combined with (121)—(123), generate a proper-value problem 

for w: 

divt, = puj2u, d ivA = 0, e = - V 0 in V, (124) 

with boundary conditions 

n - S = 0 onSVi, u = 0 on dV2, 

n - A = 0 on d%, <j> = 0 on dV4. 

We note that S and A may be expressed in terms of Vu and e via the 
constitutive equations (82). 

The following dynamic local stability criterion is assumed in respect of 
the incremental fields: We say that the initially deformed and polarized 
equilibrium configuration B is locally stable if the possible eigenvalues u> of 
the proper-value problem (124) have non-negative imaginary part; i.e., if 

l m w > 0 . (125) 

More precisely, dynamic local stability obtains if small perturbations of B, 
corresponding to small initial oscillations, decay to zero in time, or remain 
small for all time. Configuration B is locally unstable if the small oscillation 
becomes unbounded in time. Such a situation cannot occur if and only if 
(125) applies. Evidently u> depends on the initial deformation (or stress) and 
electric field through the moduli. Hence, assuming a locally stable reference 
configuration, the critical loads producing dynamic instability correspond to 
those values for which, for the first time on the loading path, the condition 

lmw = 0 (126) 

is satisfied, this relation determining the boundary of the stability domain. 
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To establish the relationship between the critical electromechanical 
loads corresponding to impending local instability, we shall first demon­
strate that all eigenvalues LO2 are real numbers. To do this, we assume that 
LO2 may be complex. In this case, all incremental fields will also be complex, 
and we denote their complex conjugates by a superposed star. We note 
that, if {u, (f>, LO2} is a solution of the proper-value problem (124), then 
{u*, (f>*, w*2} also solves the same problem. Hence, we have 

d i v S = p w 2 u , divS* = °PUJ*2U\ d ivA = 0, d i v A * = 0 , 

e = -Vc?!>, e* = -V<£*, 
(127) 

n £ = n £ * = 0 on dVu u = u* = 0 on dV2, 

n - A = n - A * = 0 0 1 1 ^ 3 , <t> = 4>* = 0 ondVA. 

After some manipulation, we are lead to the following result [Baesu et al. 
(2003)]16 

p(uj2-w*2) [ou-u*dv = - / ( V u * . £ + A - e * - V u . £ * - A * - e ) ( f o . (128) 
Jv Jv 

If we take the symmetry properties (84) into account, we conclude that the 
integrand on the right-hand side of (128) vanishes. Thus, 

°p{io2-LO*2) fu-u*dv = 0. (129) 
Jv 

Now, (u, 4>) is a proper vector corresponding to the proper value to, and so 
the integral in (129) is non-vanishing. Consequently, 

UJ2=LO*2 or lmw 2 = 0, (130) 

from which it follows that LO is either purely real or purely imaginary. 
As we have seen, the assumed dynamic stability criterion indicates loss 

of stability at those critical values of the loading parameters for which 
Im LO just passes from positive to negative values. Since, according to (130), 
LO(^ 0) cannot be a complex number, then assuming continuous dependence 
of to on the loading parameters, we conclude that LO must vanish when 
stability is lost: 

u/ = 0. (131) 

Hence, the boundary of the stability domain is determined by those criti­
cal values of the loading parameters at which (131) is satisfied for the first 
time on a given loading path. Said differently, the equilibrium configura­
tion B becomes locally unstable when the eigenvalue problem (124) has 



The Mechanics of Pre-Stressed and Pre-Polarized Piezoelectric Crystals 129 

a non-zero solution corresponding to a zero eigenvalue. However, in this 
case, the eigenvalue problems (124) and (120) corresponding to the dy­
namic and static criteria become identical. The two criteria therefore yield 
the same critical value of the loading parameters for a given dead-loading 
path. This result extends to hyperelastic dielectrics a similar conclusion 
demonstrated by Guz for prestressed hyperelastic solids ([Ogden (1984)]26, 
[Guz (1976)]27). We observe that this equivalence is a direct consequence of 
the self-adjointness of the differential operator describing the incremental 
behaviour of the body. 

An important time-dependent perturbation frequently used in stability 
analysis is the progressive or harmonic wave, defined in our electromechan­
ical context by 

u = a e i ( p x - w t ) , 0 = aei(p-x-",t>, (132) 

where a and a are constant quantities characterizing the amplitude of the 
wave, u> is the frequency, p = pn (n • n =1) is a constant vector, p repre­
senting the wave number and n is the direction of propagation. Such waves 
may exist for all time only in an unbounded domain. It is easily seen that 
the fields (132) satisfy the homogeneous incremental balance equations (85) 
only if a, p and u> satisfy the following equations: 

Mm,am + T;a = pto2ai, -Tmam + Ta = 0, (133) 

with 

A(m(p) =&klmnPkPn, ?l(p) = ^mklPmPk, f ( p ) = iklPkPl, (134) 

and, from (84)i, 

Aim{p) = Kaip). (135) 

We assume the moduli Cl and i are positive definite so that the initially 
deformed and polarized configuration is locally stable. In this case, from 
(133)2, we may express a through am and conclude, using (133), that (132) 
is an admissible incremental solution only if 

(A/m + T ; r m / r ) a m = pu)2ai. (136) 

Thus, the incremental acoustic tensor Q(p) is 

Qim(p) = A , m ( p ) + f , ( p ) f m ( p ) / f (p), (137) 

which, together with (135), implies that 

QT(p) = Q(p) for any p. (138) 
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Consequently, the propagation condition corresponding to our harmonic 
plane-wave problem is 

Q(p)a = /jw2a, (139) 

and this furnishes the frequencies and wave amplitudes corresponding to 
the wave vector p . 

Since the acoustic tensor is symmetric, we once again conclude that the 
eigenvalues poj2(p) are real. Moreover, since we have assumed positive def-
initeness of the instantaneous moduli, we may use (137) to deduce that the 
acoustic tensor Q(p) is positive definite for any p . Consequently, the eigen­
values fko2(p) are positive. We then infer that, to each p, there corresponds 
a triad of mutually orthogonal eigenvectors ai , a2, a3, provided that the 
initially deformed and polarized equilibrium state is locally stable. This, in 
turn, leads us to conclude that the incremental behaviour of the body in 
its initially deformed and polarized state B is similar to that of a classical 
linear piezoelectric crystal ([Balakirev and Gilinskii (1982)]24, [Dieulesaint 
and Roger (1974)]25). Moreover, as in the classical case, all of our conclu­
sions remain valid if we retain the assumption that e(p) is positive definite, 
but relax the restriction on ft(p) and require that it be merely strongly 
elliptic: 

(b<g>c)T-f2(p)(b®c) > 0 (140) 

for any p and any b ® c / 0 . 
If l(p) and n (p) are so restricted, then harmonic plane waves may 

propagate in any direction in a prestressed and pre-polarized hyperelastic 
material. The direction of propagation n, the wave number p, and the 
associated frequency LU satisfy the dispersion relation: 

d e t ( Q ( p ) - ^ 2 ( p ) l ) = 0 . (141) 

The velocity of propagation V(p) of the wave is then given by 

V 2 (p)=u; 2 (p) /p (142) 

for any given p . 

We close by recalling that the instantaneous moduli depend on the ma­
terial properties through Helmholtz' generalized free energy H, as well as on 
the initial deformation and electric field. Considerable simplification of the 
constitutive laws may be achieved if we invoke three additional hypotheses: 

(H3) The initial applied static deformation F is infinitesimal (geometric lin­
earity). 
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(H4) The initial applied static electric field E is weak (electrical linearity). 
(H5) Helmholtz' generalized free energy H is a quadratic function of the 

infinitesimal strain g and of the electric field E (physical linearity). 

In accordance with (H5), we have 

W = H(g, E) = -gkiCkimngmn - Ememkigki ~ -^EkXkiEi, (143) 

where Ckimn, &mki and \ki a r e the classical material constants of the hypere-
lastic material or piezoelectric crystal, possessing the well-known symmetry 
properties: 

Ckimn = C-lkmn = Cfclnm = ^mnkh &mkl = ^mlki Xkl = Xlk- V-'-^^J 

If (H3) is satisfied, we may set F « 1 in eqs. (79) for the instantaneous 
moduli. Thus, taking (143) and (83) into consideration, we derive 

Amfci = emki + XmkEi, and iki = Ski + Xki, (145) 

where 

Skn = Cknlm°9lm ~ emknEn, (jlm = ^ ( ^ , m + Um,l)- (146) 

Hypothesis (H4) further implies that the last term in (145)i may be ne­
glected. 

We stress the fact that these equations are applicable only if the con­
sidered material is linear and only if the initial deformation and electric 
field are infinitesimal. Further reductions may be achieved for particular 
types of material symmetry and for particular forms of the initial pertur­
bations. These issues will be addressed in a forthcoming work concerned 
with applications of the general theory. 

6.5.2. Local stability against antitplane perturbations 

In the course of obtaining sufficient conditions for the local stability of the 
configuration B, we first investigate the reference configuration £?#. From 
[Eringen and Maugin (1990)]22, the incremental specific energy W is 

2W = ui^kimnUm,n + ekikiei, (147) 

which may also be written, relative to BR, as 

2W = 9klCklmngmn + ek£klh- (148) 
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From the last expression it is clear tha t BR is stable if the elasticity tensor, 

c, and the dielectric tensor, e, are positive definite - conditions which we 

assume to hold in what follows. Similarly, from (147), the local stability 

of B is guaranteed by the positive definiteness of 0 - the instantaneous 

elasticity tensor, and of e - the dielectric tensor. If we assume tha t i = e, 

the second requirement is satisfied if BR is stable. 

We now investigate the requirements for the positive definiteness of Cl. 

In the special case of an antiplane incremental s tate, W reduces to 

2W — 'U3,l01331'U3,l + U3,1^1332M3,2 + M3,2^233lW3,l 

+ w3i2n2332W3,2 + e i £ n e i + e i£ 1 2 e 2 + e2£2iei + e2£22e2, (149) 

where, in consequence of the symmetries possessed by Cl, 

^1332 = S W - (150) 

Hence, from (149), sufficient conditions for the local stability of B against 

antiplane displacements are 

^1331 > 0, ^1331^2332 ~ ^1332 > 0, ^2332 > 0. (151) 

For the crystal class 42m, these are equivalent to 

c-XE2>0, (c-XE2) (c + a-xE2) -4e2E2 > 0, c + a^xE2 > 0. 

(152) 

Moreover, the positive definiteness of e implies tha t 

e = l + x > 0 . (153) 

Henceforth we assume the initial stress a and electric field E to be such as 

to satisfy the sufficient conditions (152) and (153) for the local stability of 

B. 

6.6. Transverse E l e c t r o - A c o u s t i c W a v e s 

To illustrate the foregoing theory, in this section we consider propagation 

of antiplane waves in class-23 piezoelectric crystals subject to initial defor­

mations and electric fields. We suppose tha t the body is unbounded, tha t 

the initial applied stress is zero, i.e., 

Skn = 0, (154) 

tha t only the £2 component of the electric field is non-zero, and tha t the 

piezoelectric crystal under consideration has cubic symmetry and belongs 



The Mechanics of Pre-Stressed and Pre-Polarized Piezoelectric Crystals 133 

to the symmetry class 23. Under these assumptions as was shown in [Baesu 
and Soos (2001)]20 the constitutive equations take the form 

S12 = (c - xE2) w,i - 2eEu,3 + x#¥>,i + e<pj3, 

S 2 3 = -2eEu,i + (c - xE2) «,3 + e<p,i + X^V.3, (155) 

Ai = X.Eutl + ewi3 - eipti\ A2 = X-Ew,3 + eut\ - £^,3, 

where for the sake of simplicity we have used the notation 

u = u2, c = c44, e = ei4, x = Xn, £ = 1 + X, E = E2- (156) 

The field equations take the form 

pu= (c- x-B2) Au - 4 e£u,1 3 + X-̂ Av? + 2e^ i l 3 , (157) 

X-EAu + 2eu 13 - eA<^ = 0. (158) 

We also note that the density of specific incremental energy W (see [Baesu 
et al. (2003)]16 takes the form 

2W = U,lf i l22lU,l + W,1^1223W,3 + «,3^322lW,l + U,3^3223U,3 

+ ¥>,i£n¥>,i + y,i£iz<p,3 + V,3e3iv,i + Vd^Wfi, (159) 

which, for the case under consideration, may be reduced to [Baesu and Soos 
(2001)]20 

2W = (c - xE 2 ) u\ - 4eE2ui3wii + (c - x^) u2
s + eip\ + etp%. (160) 

From (160) we observe that the specific energy W is positive if and only if 
c, e, e, and the applied electric field E satisfy the conditions 

c-XE2>0, (c-xE2) -4e2E2>0, e > 0. (161) 

These conditions guarantee that the pre-strained and pre-polarized config­
uration is locally stable with respect to antiplane perturbations. Note also 
that the assumption that the reference configuration of the body is locally 
stable translates as 

c > 0 , e > 0 . (162) 

We are interested next in conditions for propagation of a plane trans­
verse homogenous wave which is polarized parallel to the symmetry axis x2 

and its direction of propagation is parallel to (x\,x^). We assume that 

u = aei{klXl+k3X3~wt), <p = bei('klXl+k3X3-"t). (163) 
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Here, k\ and k3 are the components of the wave vector k, u> is the constant 
frequency of the wave, a and b are constant amplitudes of the incremental 
displacement u, and ip is the incremental potential. With (163) the system 
(157)-(158) becomes 

pco2a (c-xE2)k2 -AeEkxks 

xEk2 + 2ek!k3 

XEk2 + 2ekxk3 

a — ek• b = 0, 

(164) 

(165) 

with 

rv — rb i ~J~ /Co . 

Solving for b in (165) we get 

, xEk2 + 2efcifc3 
b== iifcS a ' 

and substituting the result in (164) we obtain 

(xEk2 + 2efcifc3y 
pu> a = (c - X ^ 2 ) k2 -4eEkik3 + 

ek2 

(166) 

a. (167) 

Equation (167) shows that the wave under consideration exists if and only 
if the following dispersion equation is satisfied 

o 1 
PU! e c E-

;M es in26»-£ 
) 2 ) 

where we used the relations 

k\=kcosd, ks = ksm6, with 6 G [0, 2TT] , 

(168) 

(169) 

and 9 is the angle between the symmetry axis x\ and the wave vector k. 
To analyze the dispersion (168) let first assume that the wave vector 

k is given and try to obtain conditions to be satisfied such that to is real. 
Note that that the right hand side of (168) is positive for all k > 0 and all 
directions of propagation 0 £ [0, 27r], if (161) are satisfied. Under these con­
ditions we conclude that plane transverse incremental, homogenous waves 
can propagate in all directions and for all wavelengths A = 2n/k > 0. The 
amplitude of such a wave is indeterminate (i.e. a remains arbitrary). These 
particular results are in agreement with the general results in [Baesu et al. 
(2003)]16, except that in reference, W positive is only a sufficient condition 
(not necessary and sufficient as in this particular case) for these results to 
hold. 
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We can rewrite the dispersion relation (168) in the following manner 

to2 = J , 0
2 A - Q 2 + K2 (sin 26 - /3)2) k2, (170) 

where 

v2
0 = ~, *2 = - , (171) 

p EC 

and 

a2 = E2 /c, (3 = E/e. (172) 

Note that tio is the speed of propagation for the case of a weak electrome-
chanic coupling (e « 0), and zero initial electric field. Also note that for 
e ^ 0, but for E = 0, the dispersion relation (168) has the classical form 

to2 = v2.(l + K2 (sin 26*)) k2. (173) 

This shows that in the case of e ^ 0 the phase velocity v = u>/k becomes 
dependent on the direction, and the group velocity vg = dw (k) /dk does not 
coincide with the phase velocity (as in the case e = 0). In conclusion, even 
in the absence of an initially applied electric field, we have the dispersion of 
the acousto-electric waves, which is due to the the electromechanic coupling 
that occurs. 

We now introduce in the dispersion equation the function 

/(6>) = l - a 2 + K2(sin26»-/?)2, 6»G[0,2TT]. (174) 

It is easy to see that this function has the following properties 

if (3 > 1, then f(0) > 0, for 9 G [0, 2TT] , (175) 

if and only if 

1 - a2 + K2 (1 - /3)2 > 0; (176) 

if (i < - 1 , then f(0) > 0, for 6 e [0, 2TT] , (177) 

if and only if 

l-a2 + n2(l+(3)2 > 0 ; (178) 

if - 1 < (3 < 1, then f{9) > 0, for 6 e [0, 2TT] , (179) 

and if and only if 

1 - a2 > 0. (180) 
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To sum up, if the material constants c > 0, e > 0, e and the initial applied 

field E satisfy (175)-(180), then in the piezoelectric crystal under consider­

ation, pre-strained and pre-polarized transverse homogeneous incremental 

waves can propagate with any wavelength; the real and positive frequency is 

determined by the dispersion relation (170). If the above conditions (175)-

(180) are violated, there may be directions for which f(0) < 0. In this case 

the solution of the dispersion equation can be purely imaginary, which leads 

to exponential growth of the corresponding amplitude and ultimately to the 

loss of stability. 

In [Baesu and Soos (2001)]20 it was verified tha t the assumptions of 

the infinitesimal model are in fact satisfied for typical values of material 

constants, i.e. tha t the initial electric field produces only infinitesimal initial 

deformations. This leads us to the conclusion tha t an initial electric field 

which produces initial infinitesimal deformations in a piezoelectric crystal 

from the class 23 for typical values of material constants cannot produce the 

loss of local stability with respect to incremental antiplane states. However, 

we remark tha t the loss of stability may still happen with respect to other 

states, like plane states with respect to (x\, X2), for example. 
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Linear stability theory is applied to the analysis of transient viscous 
flow in an annulus. The transient phase is generated by a sudden closure 
of the annulus. The velocity profiles used for linear stability calculations 
are obtained by the method of matched asymptotic expansions. A quasi-
steady assumption is used in the analysis of the flow linear stability. 
Calculations are done for the first two non-axisymmetric modes. The 
results show that the critical Reynolds numbers decrease considerably 
during a short time interval after the sudden closure of the annulus. 

7 .1 . I n t r o d u c t i o n 

Transient fluid flows often occur in applications, examples of which include 

the design and analysis of water supply systems, oil and gas pipelines and 

the analysis of blood flow in arteries. Fast changes in the characteristics of 

the flow (for example, velocity and pressure) are known to cause damage 
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to pipelines and other hydraulic devices (in hydraulics such an event is 
usually referred to as waterhammer). The pressure in unsteady flow can 
also lead to cavitation. Blood flow unsteadiness induced by cardiac cycle 
can result in atherosclerosis plaque development in regions where the shear 
stress changes direction [Waters and Pedley (1999)]1. 

Recent experimental and theoretical studies of transient flows in pipes 
and channels indicate that transition from one flow regime to another can 
lead to essential changes in the characteristics of the flow. For example, the 
measurements of waterhammer velocity profiles in [Brunone et al. (2000)]2 

showed strong flow asymmetry with respect to the axis of the pipe. The 
transition in accelerated and decelerated pipe flows was studied in [Das 
and Arakeri (1998)]3, where the fluid motion was induced by a piston. It is 
shown that for some set sof experimental conditions flow instabilities result 
in the formation of helical vortices with rapid transition to turbulence. 

One of the effective means for the theoretical study of the transition 
from one flow regime to another is the linear stability theory which can 
be used in order to predict when a particular flow becomes unstable. The 
theory has been applied to many problems where the basic flow is usually 
assumed to be steady [Drazin and Reid (1981)]4. Linear stability of time-
dependent flows is not a well-developed topic in hydrodynamic stability 
theory. It has been pointed out in [Drazin and Reid (1981)]4 that even the 
terms "stable flow" and "unstable flow" may become unclear in the case of 
time-dependent basic flows which change substantially with time. Rigorous 
linear stability analysis of unsteady flows is possible only for periodic base 
flows, where the Floquet theory can be used [Yang and Yih (1977)]5, [von 
Kerczek and Davis (1974)]6, [Davis (1976)]7. Strictly speaking, the method 
of normal modes used in the linear stability analysis of steady flows can­
not be applied to arbitrary unsteady basic flows. However, in some cases 
a quasi-steady assumption can be used. In this case, time is treated as 
a parameter and not as an independent variable. Examples of the use of 
the quasi-steady assumption are given in [Garg (1981)]8, [Gad-el-Hak et al 
(1984)]9, [Ghidaoui and Kolyshkin (2001)]10, [Moss and da Silva (1993)]11. 
It is argued in [Hall and Parker (1976)]12 that the quasi-steady assumption 
is justifiable if there exists a fast (convective) time scale on which a pertur­
bation can grow before significant changes in the base flow can be observed. 
It is shown in [Hall and Parker (1976)]12 that the quasi-steady approach 
represents the first term of an asymptotic expansion of the WKB type. 

In order to perform linear stability calculations calculations, one needs 
to specify the base flow. We are mainly interested in the velocity distribu-
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tion under conditions of rapid change of the flow rate in a short time. A 
theoretical investigation of laminar flow in a channel or a pipe caused by a 
rapid closure of a valve is performed in [Weinbaum and Parker (1975)]13, 
where it is shown that the flow is essentially two-dimensional only in a 
region whose length, measured from the end wall, is of the order of the 
channel height. Outside this region, the flow can be considered as one di­
mensional. An approximate solution for the velocity distribution outside 
the above mentioned region is found in [Weinbaum and Parker (1975)]13 by 
a Pohlhausen type technique used in boundary layer theory provided the 
flow before deceleration was a steady Poiseuille flow. Recently, an asymp­
totic solution for the velocity distribution in a pipe is found in [Ghidaoui 
and Kolyshkin (2002)]14. Similar solutions for the case of a plane channel 
and an annulus are found in [Kolyshkin and Vaillancourt (2001)]15 and 
[Kolyshkin and Volodko (2002)]16. The solutions found in [Ghidaoui and 
Kolyshkin (2002)]14 and [Kolyshkin and Volodko (2002)]16 are valid for 
short times and the flow, before deceleration, can be represented by an ar­
bitrary smooth function of the radial coordinate and time (assuming that 
only the longitudinal velocity component is not equal to zero). 

Linear stability theory is used in the present paper to analyze unsteady 
laminar flow in an annulus. The base flow is assumed to be of the form 
given in [Kolyshkin and Volodko (2002)]16. A quasi-steady assumption is 
used for the linear stability calculations. The stability problem is solved by a 
pseudospectral collocation method for both symmetric and non-symmetric 
modes. Critical Reynolds numbers are calculated. It is shown that there is 
a sharp decrease in the critical Reynolds number right after deceleration. 

7.2. Mathematical Formulation of the Problem 

Consider an infinitely long annulus of inner and outer radii R\ and i?2, re­
spectively, filled with a viscous incompressible fluid. At time t = 0, the 
flow is suddenly blocked so that the total fluid flux through the cross 
section of the annulus is zero. The flow, before and after deceleration, is 
unidirectional, that is, the velocity vector has only one nonzero (longitu­
dinal) component which is a function of the radial coordinate and time. 
The method of matched asymptotic expansions [Ghidaoui and Kolyshkin 
(2002)]14, [Kolyshkin and Volodko (2002)]16 is used to derive an approxi­
mate velocity distribution valid for short times. It is shown in [Kolyshkin 
and Volodko (2002)]16 that the velocity distribution shortly after sudden 
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blockage has the form 

U(r,t)=g(r)-G + 
G 

2R(1 - R) 
(R2 + 3R- 3Rr - r) erfc 

G 1 — r 
— — (-3-R + 5r- Rr) erfc —7= 
2(1 -R)K ' 2^t 

AG [E ( 

+ 0(e), 

exp 
(r - R)2 

4st exp 
( 1 - r f 

4rt 

i? 
2\/ei 

(1) 

where r and t are dimensionless radial coordinate and time, respectively, 
e = vT/R?,, T is the characteristic time, v is the kinematic viscosity of the 
fluid, R = R1/R2 is the radius ratio, g(r) is the initial velocity distribution 
prior to deceleration, that is, u\t=o = g(r), and G is the average velocity of 
the flow prior to deceleration which is given by the integral 

G 
l-R2 f 

JR 

rg(r) dr. (2) 

The velocity profiles (1) contain inflection points. Hence, these profiles are 
potentially highly unstable. We shall consider conditions under which the 
flow (1) becomes linearly unstable. 

We assume that u(r,0,z,t), v(r,8,z,t) and w(r,8,z,t) denote the ra­
dial, azimuthal and longitudinal velocity components, respectively, and 
p(r,6,z,t) represents the pressure. We consider normal perturbations of 
the form 

u(r,z,t) = u'(r)ein0+zaz-'lt, 

v{r,z,t)=v'{r)eine+laz-~i\ 

w(r, z, t) = U{r, t) + w'(r) e^e+iaz-yt^ 

p(r, z, t) = P{t) + p'(r) e
ine+iaz^\ 

(3) 

where a is the axial wavenumber, n is the azimuthal wavenumber, u', v', w' 
and p' are small amplitudes of the normal perturbations. Substituting (3) 
into the Navier-Stokes equations and linearizing the equations in a neigh­
borhood of the base flow, we obtain the following dimensionless linearized 
stability equations: 
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where 

dr2 ' r dr 

The Reynolds number is defined by the formula Re = U*R,2/v, where [/* is 
some characteristic velocity scale. Note that a quasi-steady approximation 
is used in deriving equations (4)-(7), that is, the variable t in U(r,i) is 
treated as a parameter. The quasi-steady assumption is justified if the rate 
of change of the growth rate of perturbations is larger than the rate of 
change of the base flow with respect to time. Calculations performed in 
[Ghidaoui and Kolyshkin (2001)]10 and [Ghidaoui and Kolyshkin (2002)]14 

show that this condition is satisfied for similar transient flow in a pipe. 
The boundary conditions are 

0, v' = 0, w 0, at r = R and r = 1. (8) 

Equations (4)-(7) together with the boundary conditions (8) form an eigen­
value problem. The eigenvalues, j m = j r m + ijim, m = 1,2,..., determine 
the stability of the base flow U(r, t). The flow is stable if j r m > 0 for all m 
and unstable if j r m < 0 for at least one value of m. The real part of 7 is 
proportional to the growth rate of perturbations while the imaginary part 
of 7 is proportional to the phase speed. 

System (4)-(7) and the boundary conditions (8) depend on several pa­
rameters, namely, Re, t, a and n. For fixed values of t and n, the set of 
numbers Re = Re(a) is determined as a function of a in the case only 
one eigenvalue has zero real part, while the others have positive real parts. 
Then the critical Reynolds numbers are found by setting Rec = minif!e(a). 

a 

This procedure is repeated for other sets of values of t and n. 
The details of the numerical procedure are briefly summarized below. In 

order to simplify system (4)-(7), we eliminate the functions p' and w' from 
the system. As a result, we obtain a system of two ordinary differential 



144 A. A. Kolyshkin, R. Vaillancourt and I. Volodko 

U(r,t) 

0.03 

0.02 

0.01 

0.00 

-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

-0.06 

R = 0.6 

er = 0.0001 

£t = 0.00001 

e/ = 0.000001 

0.6 0.8 1 

Fig. 7.1. Base flow velocity profiles, U(r,t), for different values of et and R = 0.6. 

equations for u' and v'. Since the equation for v! is of order four, addi­
tional boundary conditions are needed. These conditions are found from 
the continuity equation (7) and have the form 

du' 
dr 

= 0, at r = R and r = 1. (9) 

A collocation method based on Chebyshev polynomials is used to solve 
problem (4)-(9). The interval (R, 1) is mapped onto the interval (—1,1) by 
means of the transformation 

2 1 + R 
T = r . 

1-R 1-R 
(10) 

A solution to (4)-(9) in terms of the coordinate r is sought in the following 
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Fig. 7.2. Base flow velocity profiles, U(r,t), for different values of et and R = 0.9. 

form: 

I'(T) = YlaiPm^T^ 
i = i 

'J'(T) = J2b^m^T^ 

(11) 

(12) 

where o,j and 6, are arbitrary (complex) constants, and Pmj(T~) and q-mjir) 
are the fundamental interpolation polynomials: 

( 1 - r 2 ) 2 Tm(r) 
Pmj(l") 

9 m j ( T ) 
( 1 - r 2 ) r m ( r ) 

( 1 - r ? ) ( T - T ^ T ^ T , - ) ' 

(13) 

Here Tm(r) denotes Chebyshev's polynomial of the first kind of degree m 
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whose zeros are 

T , - = c o s - f c ^ , j = l,2,...,m. (14) 

The form of the polynomials pmj (T) and qmj (T) ensures that the boundary 
conditions for the functions u' and v' are satisfied automatically. The points 
Tj in (14) are chosen as the collocation points. Therefore, the problem 
reduces to the generalized eigenvalue problem 

{A -~/B)4> = 0. (15) 

Equation (15) is solved by the IMSL routine DGVLCG. Note that solutions 
of the form (11) and (12) are more convenient than those obtained by 
traditional collocation methods [Canuto et al (1988)]17 for two reasons: 
first, in the present case the matrix B in (15) is nonsingular, and second, 
the use of basis functions of the form (11) and (12), which satisfy the 
given boundary conditions, considerably reduces the condition number of 
the matrices in this method (see [Heinrichs (1989)]18). 

7.3. Numerical Results 

All calculations correspond to the case of fully developed Poiseuille flow 
in the annulus before sudden blockage. The function g{r) and the average 
velocity G, in this case, have the form 

1 — R2 

g(r) = 1 - r2 — — lnr, (16) 

and 

G-~T~ + ^h[W (17) 

Only nonaxisymmetric modes with azimuthal wave numbers n = 1 and 
n = 2 are considered. The results in [Ghidaoui and Kolyshkin (2001)]10 

and [Ghidaoui and Kolyshkin (2002)]14 indicate that these two modes are 
the most unstable ones for transient flows in a pipe. 

Figures 7.1 and 7.2 show the velocity distribution given by (1), (16) and 
(17) for different values of the dimensionless time et for the cases R = 0.6 
and R = 0.9, respectively. Both graphs indicate that the velocity profile 
rapidly changes in the boundary layers near the walls while the core region 
is characterized by relatively slow variation of the velocity. Note that, if 
R2 = 10 cm and the fluid inside the annulus is water, then et = 0.0001 
corresponds to 1 sec. 
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Re 
4 

xlO 

Fig. 7.3. Critical Reynolds numbers, Rec, versus a for different values of et. The graphs 
for the modes with n = 1 and n = 2 are shown by solid and dashed lines, respectively. 

In waterhammer analysis, the time scale is of the order of a few seconds; 
therefore we restrict attention to values of the dimensionless parameter et 
in the range [0.0001, 0.001]. The graphs in Figs. 7.1 and 7.2 show that the 
velocity profiles for all times contain inflection points. 

The stability curves for the first two nonaxisymmetric modes with n = 1 
and n = 2 versus the wavenumber a are shown on Fig. 7.3 for three values 
of the time et. It is seen from the figure that the modes with n = 1 and 
n = 2 intersect. However, the most unstable mode is the first nonaxisym­
metric mode with n = 1. The critical Reynolds numbers and the critical 
wavenumbers for n = 1 and n = 2 for all three values of time are very 
close to each other. For example, for et = 0.0002 and the mode with n = 1, 
we have Rec = 15880 and ac = 9.16, while, for the case n = 2, one has 
Rec = 16071 and ac = 8.93. 

Critical Reynolds numbers versus time are shown in Fig. 7.4. The graph 
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Fig. 7.4. Critical Reynolds numbers, Rec, versus et. 

indicates that there is a sharp decrease in the critical Reynolds numbers in 
the interval [0.0001,0.003]. Note that as t —> +0 the flow is linearly stable 
so that Rec = oo at t = 0 (see [Drazin and Reid (1981)]4). 

Figure 7.5 shows the dependence of the critical wavenumbers upon time. 
As can be seen from the graph, the critical wavenumbers increase as time 
increases. 

7.4. Conclusion 

Linear stability analysis of unsteady flow in an annulus is performed in the 
present paper. The unsteadiness of the flow results from a sudden closure of 
the annulus. The velocity profiles are obtained by the method of matched 
asymptotic expansions. The existence of inflection points in base velocity 
profiles suggests that these profiles can be highly unstable. A quasi-steady 
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Fig. 7.5. Critical wavenumbers numbers, ac, versus et. 

assumption is used for the numerical solution of the linear stability problem. 

The results show a sharp decrease in the critical Reynolds numbers during 

the short t ime interval after sudden closure. 

A c k n o w l e d g m e n t s 

The authors gratefully acknowledge the partial support provided for this 

work by the Latvian Council of Science, project 04.1239, and the Natural 

Sciences and Engineering Research Council of Canada. 

References 

1. Waters, S. L., and Pedley, T. J., (1999), "Oscillatory flow in a tube of time-
dependent curvature. Part 1: Perturbation to flow in a stationary curved 
tube." J. Fluid Mech., 383, 327-352. 

2. Brunone, B., Karney, B. W., Micarelli, M., and Ferrante, M., (2000), "Veloc­
ity profiles and unsteady pipe friction in transient flow", J. Water Resources 
Planning and Management, 126, 236-244. 



150 A. A. Kolyshkin, R. Vaillancourt and I. Volodko 

3. Das, D., and Arakeri, J. H., (1998), "Transition of unsteady velocity profiles 
with reverse flow". J. Fluid Mech., 374, 251-283. 

4. Drazin, P., and Reid, W., (1981), "Hydrodynamic stability". Cambridge 
University Press, Cambridge. 

5. Yang, W. H., and Yih, C.-S., (1977), "Stability of time-periodic flows in a 
circular pipe". J. Fluid Mech., 82, 497-505. 

6. von Kerczek, C , and Davis, S. H, (1974), "Linear stability theory of oscil­
latory Stokes layers". J. Fluid Mech., 62, 753-773. 

7. Davis, S. H., (1976), "The stability of time-periodic flows". Ann. Rev. Fluid 
Mech., 8, 57-74. 

8. Garg, V. K., (1981), "Stability of developing flow in a pipe: non-
axisymmetric disturbances". J. Fluid Mech., 110, 209-216. 

9. Gad-el-Hak, M., Davis, S. H., McMurray, J. T., and Orszag, S. A., (1984), 
"On the stability of decelerating laminar boundary layer". J. Fluid Mech., 
138, 297-323. 

10. Ghidaoui, M. S., and Kolyshkin, A. A., (2001), "Stability analysis of velocity 
profiles in water-hammer flows", J. Hydraulic Engineering, 127, 499-512. 

11. Moss, E. A., and da Silva, D. F., (1993), "The evolution of unstable regions 
in impulsively started pipe entrance flows". Phys. Fluids, A5, 2721-2724. 

12. Hall, P., and Parker, K. H., (1976), "The stability of the decaying flow in a 
suddenly blocked channel flow". J. Fluid Mech., 75, 305-314. 

13. Weinbaum, S., and Parker, K. H., (1975), "The laminar decay of suddenly 
blocked channel and pipe flows". J. Fluid Mech., 69, 729-752. 

14. Ghidaoui, M. S., and Kolyshkin, A. A., (2002), "A quasi-steady approach 
to the instability of time dependent flows in pipes", J. Fluid Mech., 465, 
301-330. 

15. Kolyshkin, A. A., and Vaillancourt, R., (2001), "Asymptotic solution for un­
steady viscous flow in a plane channel", Latvian J. of Physics and Technical 
Sciences, no. 3, 12-19. 

16. Kolyshkin, A. A., and Volodko, I., (2002), "Transient viscous flow in an an-
nulus", 7th International Conference on Mathematical Modelling and Anal­
ysis MMA2002, May 31 - June 2, 2002, Kaariku, Estonia. 

17. Canuto, C , Hussaini, M. Y., Quarteroni, A., and Zang, T. A., (1988), "Spec­
tral methods in fluid dynamics", Springer, New York. 

18. Heinrichs, W., (1989), "Improved condition number for spectral methods". 
Math, of Computations, 53, 103-119. 



PART 3 

Biomechanics 





C H A P T E R 8 

M E C H A N I C A L M O D E L S O F T H E D E V E L O P M E N T O F 
G L A U C O M A 

Svetlana M. Bauer 

Department of Hydroelasticity, St. Petersburg State University, St. Petersburg, 
Russia, 198504 

E-mail: S-bauer@mail.ru 

The different mechanical aspects of the development of glaucomatous 
atrophy of the optic nerve fibres are considered. It is known that the site 
of damage of nerve fibres under glaucoma is the scleral lamina cribrosa 
(LC). From the mechanical point of view the LC is a circular perforated 
plate, which is weakened by many pores. 

In the first case, the LC is modelled as a continuous nonuniform 
anisotropic plate. The calculations of the stresses and deformations in 
the LC show that the shear deformation of the vertical element of the LC 
could cause the atrophy of the optic nerve fibres. The solutions for LC 
with different degrees of nonuniformity can help reveal the structure of 
the LC, for which the glaucomatous damage is most probable to develop. 

The LC consists of a few parallel layers of connective tissue. In the 
second model, large axisymmetric deformations of multilayer momentless 
(membrane) shell of revolution with elastic ties between the layers are 
considered. The numerical solution of this problem reveals that, if the 
intraocular pressure increases, the essential shear of the layers occurs at 
the periphery of the LC. This phenomenon may also leads to the atrophy 
of the optic nerve fibres. 

Buckling in the nonaxisymmetric state in the neighborhood of the 
edge could also cause edemas at the periphery of the LC and the atrophy 
of the optic nerve fibres. 

8 .1 . I n t r o d u c t i o n 

What exactly causes optic nerve damage in glaucoma is still an open prob­

lem. From the points of view of some scholars, after A. von Graefe (1857), 

mechanical genesis of this atrophy should be generally admitted. Among the 
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adherents to this conception there are such scholars as J. Emery, D. Minck-
ler and V. V. Volkov [Volkov (2001)]12. However, other scientists, namely 
E. Jaeger and his followers, think that the disease is of a sciatical (vascu­
lar) nature. D. O. Harington, A. P. Nesterov [Nesterov (1995)]6 also agree 
with the conception of vascular glaucoma genesis. Both conceptions are 
currently held. In fact, the adherents to the sciatical nature of glaucoma 
also admit the "role of mechanical factor" [Nesterov (1995)]6. This is why 
it is important to consider the mechanical models of the development of 
glaucoma. 

Fig. 8.1. Meridional section of the eye 

The form of the eye is determined by the outer shell, the sclera. The 
Lamina Cribrosa (LC) is a part of sclera, where the optic nerve fibers pass 
through (Fig. 8.1) and where the layer of sclera becomes thinner and many 
(more than 400) little pores appear. LC plays an important role in the 
balance of intraocular and intraskull pressure. In normal conditions, the 
pressure on LC from the inside (intraocular pressure) is higher than the 
intraskull pressure. And it is known that under glaucoma the visual field 
changes due to dystrophy and then atrophy of the optic nerve fibres, which 
are deformed just at the level of LC [Nesterov (1995)]6, [Quigley and Ad-
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dicks (1981)]10, [Quigley and Addicks (1982)]11, [Volkov (2001)]12. In 1996, 
in Canada a new method of glaucoma treatment was proposed. It is based 
on the synthesis of biopolymers, which strengthen LC [Kanagalingam and 
Shoichet (1996)]7. The polymer is introduced into the bottom of the optic 
nerve. After the final polymerization it solidifies and keeps the nerve safe 
from mechanical influences of increased pressure. 

For ophthalmologists it is important to know how to predict if a patient 
is at risk of developing a damage before the damage occurs. That is why 
it is essential to understand the mechanical response of the LC to elevate 
intraocular pressure and this makes the analysis of the deformations of the 
LC important. The deformation of the LC was addressed in [Dongi and Ze-
qin (1999)]4, where the LC is considered to be uniform and isotropic. The 
authors attempted to take the influence of the tensile forces into account 
since these forces affect the LC from the scleral shell of the eye. This effect 
is not essential, because the LC is much softer {E/E\ ~ 10) and 4 to 5 
times thinner than the sclera. Beside this, in [Dongi and Zeqin (1999)]4 it 
was supposed that at the edge the stress in the LC is equal to the stress 
in the scleral shell. In fact we should make equal not the stresses, but the 
resultants, since the problem is considered to be 2D. Experimental research 
has revealed that an increased pressure [Yan et al. (1994)]13 does not cause 
an increase in the size of the scleral canal through which the optic nerve 
passes (diameter of the LC). Beside this, in [Bauer et al. (2001)]2 the defor­
mations obtained with two models: the shell structure (sclera and LC) and 
the LC alone was compared. In both models the structures were subjected 
to normal pressure. The effect of the increase of the scleral ring and also the 
effect of the deformations of the scleral eye shell on the deflections of the 
LC were studied. The comparison of the results obtained for the combined 
shells and for the simplified structures, where the effect of the scleral shell 
on the LC is neglected, shows that the difference in the maximal deflection 
values of the LC is not more than 2%. So, presumably, the deformation 
of the LC may be analyzed separately from the deformation of the scleral 
shell. Such approach helps to take the peculiarities of the structure of the 
LC into account. 

LC has a circular or, in some eyes, a slightly oval form. The average 
diameter of the LC is 1.5-2 mm [Nesterov (1995)]6, [Volkov (2001)]12. Ex­
perimental research shows that the variations in the disc size of the LC is 
correlated with the variations in the diameters of the eyes and that the size 
of the LC has no influence on the risk of glaucomatous damage [Papas-
tathopoulous et al. (1995)]9. 
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The eyes of most people have LCs with density of the pores increas­
ing at the periphery of LC, but in some eyes these pores are arranged 
uniformly. Besides that, the investigation made by ophthalmologists shows 
that the superior and inferior parts of the LC often contain larger pores 
and thinner tissue support for the passage of nerve-fiber bundles than the 
nasal-temporal parts of the LC [Quigley and Addicks (1981)]10, [Quigley 
and Addicks (1982)]11, [Yan et al. (1994)]13, [Yan et al. (1998)]14. LC is 
modelled as a continuous transversal isotropic plate with clamped edges. 
The equations for such plate contain reduced parameters [Grigolyuk and 
Filshtinskii (1970)]5. The main problem in the analytical evaluations of the 
deformations of the LC is the lack of precise data on the mechanical nature 
of the LC. Some research data on the average depth of the optic disk cup­
ping under fixed values of the intraocular pressure [Quigley and Addicks 
(1982)]11, and experimental data of special research [Yan et al. (1994)]13, 
[Yan et al. (1998)]14, permit to estimate the reduced modulus of elasticity 
for the LC. If microtubuli (pores) uniformly cover the entire plate, then we 
can assume the modulus of elasticity to be constant. In the general case, 
we consider a nonuniform plate and suppose that in the plane of the plate 
the modulus of elasticity is determined as 

E(r, 6) =E1(r) + E2(r) cos 29, (1) 

where r, 9 are polar coordinates. The functions E\{r) and ^ ( r - ) decrease 
away from the center. 

Below, the deflection of the LC under a uniform normal pressure is 
studied by means of the linear and nonlinear Ambartsumyan theory of 
plate [Ambartsumian (1987)]1. 

8.2. Deformations of LC. Linear Theory 

We suppose that the LC is a transversal isotropic plate [Ambartsumian 
(1987)]1: 

rz 
1 V V1 T<i 

-Ex
ar~E7e~E-2

a- e - = G " 
1 _ V v' T0Z 

(2) E;ae- Eiar ~ E7Z' e ^ - G " 
1 v" V ji 
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where ar, ae, az, Trz, TQZ, and Tr$ are the stresses and er, erz, eg, egz ez, 
and ere are the deformations in the polar coordinates. 

The lower and upper surfaces of the plate are loaded by the uniform 
intraocular, p~, and intraskull, p+, pressures: 

az — ~p T$z=0 for z = - - , 

-p+ rrz Tez 0 for z 
h 
2 ' 

According to Ambartsumyan's theory, we assume 

0, 
1 (K-

<f{r), T&Z 
1 (K 

V'(r), (3) 

where h is the thickness of LC, (p(r,9) and ift(r,6) are the force functions 
in r, 8, and 

uz = w(r), 

ue = v 

dw z fh 

~dr ' 2 V 4 
dw z ( h2 

'Vd6 

G' ' 

G' ' 

Substituting these expressions into the elasticity relations and then into the 
equilibrium equations we obtain the system of differential equations for the 
functions u and v in the form 

C(r,0) 
r<92« 1 du 
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dr 
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Similarly we obtain the system of differential equations for the functions w, 

(p and ip, 

' d3w 1 d2w 1 d3w 2 d2w 

r dr2 D(r, 
dr3 r2 drdO2 r3 dO2 

1 dw 

r2 dr 
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For a clamped circular plate, the following boundary conditions are 

imposed [Ambartsumian (1987)] :: 

u = 0, v = 0, w = 0, 
dw 

dr 
• g ^ , V = 0, at r = R. (6) 

file:///ldip
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If the microtubuli uniformly cover the entire LC, then we can take the 
modulus of elasticity as constant. If E± = const (and D = const) then 
systems (4)-(5) coincide with the systems for uniform transversal isotropic 
plate found in [Ambartsumian (1987)]1 and has the following solutions: 

6Pr 
<p = tp0 = — — , u = uo = 0, (v = 0, ip = 0). 

(7) 

When the system of equations is linear one can separately evaluate the 
effect of the radial and angular non-uniformity and small deflections in the 
form of the plate. 

8.2.1. Axisymmetric deformation of the LC 

If the number of microtubuli (or their total area) increases radially towards 
the edge of the plate, then the modulus of elasticity decreases away from 
the center of the plate and it can be assumed, for example, that 

E1 = E(I-£I^). ( 8 ) 

If £\ is small, then one can use a perturbation method and seek the 
solution of the systems (4)-(5) in the following form: 

u(r) = u0(r) +£ i« i ( r ) , 

w(r) - w0(r) + eiiui(r), (9) 

<p(r) = ip0(r) +£ifi(r). 

Substituting these expressions into the equilibrium equations and equating 
the coefficients of s\, we obtain a system of equations for U\, w±, and ipi. 

d u\ 1 du\ 
dr2 r dr 

dr r 

d3wi | 1 d2Wi 

dr3 r dr2 

d2wo v dwo 
dr2 r dr 

^ = 0 ' 

1 dw\ 
r2 dr 

-C2) 
\WG'J 

fd3wo , 1 d2wo 1 dwo 
\ dr3 r dr2 r2 dr 

dipo vip0 

dr r 
<Pi{l-v2) 

E 

(10) 



160 S. M. Bauer 

Taking boundary conditions into account, we may obtain the solution of 
system (10): 

Ml = 0, 

(fi = 0, 

wi{r) = 

P ( l + v) 
2AEh3 

_ P ( l - y
2 ) ( l l + i/) / 0_5 C „ 2 D 3 I Q ^ 

200Eh3 

l-v2 + 

- ( 2 r 5 - 5 r 2 i ? 3 + 3i?5) (11) 

£fe2 

5G' 
5z? 

(2 r 3 -3 r 2
J R + JR

3). 

Thus the solution of systems (4)-(5) has a form 

u(r) = 0(e2)-
w(r) — wo(r) + e\wi(r) + 0{e\) 

fi Pr 
V(r)=—p- + 0(e?); 

v{r) = 0; 

^(r) = 0. 

(12) 

We recall that 0(e\) means that the order of this term is not larger than 
P 2 

It is convenient to introduce dimensionless variables by the following 
formulas 

Ea r W -Bav h4 ^ a v 

P=W W = hW=^JB^ K = 
h2 

G' i?2(l - I / 2 ) ' ( 1 3 ) 

where Eav is the constant average value of the modulus of elasticity. Then 
for a uniform plate 

w0 = ^[(l-p2)2+2K(l-p2)} (14) 

and for small value e\ for a nonuniform plate of the same average elasticity 

/ E(r)rdr = const, E = 
Jo 1 " 

and 

• 2 / 3 e i 

Wr, = i~Ail-p2? + 2K{l-p2 

16 
£ l '-T^-^^-T l + f )(2p*-3p* + l) 
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For £\ small, the value of the deflection of the uniform and nonuniform 
plates are close to each other, but in the neighborhood of the edge (for 
p > p*) the deflection of the nonuniform plate is larger. For example, for 
K = 0.6 and v = 0.4, the value p*=0.491. 

Real LC usually has significantly more pores in the neighborhood of the 
edge then in the center (see [Quigley and Addicks (1981)]10, [Quigley and 
Addicks (1982)]11). To examine the effect of the non-uniformity of the LC 
on the shape of the deflection of the plate we suppose that 

E = Ee~qp. 

We have solved the corresponding problems numerically for different values 
of E and q but for the constant average value of the modulus of elasticity 
£av, i-e. 

2(l-e-"(l + q)Y 

Since the modulus of elasticity in the middle of the plate could not be larger 
than the modulus of elasticity of the sclera for real material, E < 10Eav 

and q < 4.31. 
The equation for the non-dimensional deflection in this case is 

d3w 1 d2w 1 dw 
dp3 p dp2 p2 dp 

d2w v dw 

dp2 p dp 

_ 12peqP(l - e"«(l + q)) 3qK(l + v) 

q2 ' 5 

The boundary conditions in non-dimensional variables has the form 

dw 3 
P = L «, = 0, Tr=-,K. 

Estimates show that, for small q (similar when E\ is small), the deflection 
in the middle of the plate is less than the deflection of the equivalent uniform 
plate, but in the neighborhood of the edge (for p > p*) the deflection of 
the nonuniform plate becomes larger. In Fig. 8.2 the displacements w for 
the uniform plate (1) and the nonuniform plate (2) with q = 2 are shown. 
In this case p* =0.45. 

If the parameter of non-uniformity, q, increases, then the value of p» 
decreases and p% = 0 for q = 3.95. For q > 3.95 the deflection of the 
nonuniform plate is larger than the deflection of the equivalent uniform 
plate for all p. 
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Fig. 8.2. The deflections of uniform plate and nonuniform plate with q = 2 

Fig. 8.3. The deflections of uniform and nonuniform plates with q = 4 

In Fig. 8.3 the displacement w of the uniform plate (1) and the nonuni­
form plate (2) with q = 4 are shown. 

Thus, one can see, that increasing the parameter of non-uniformity leads 
to an increase in the deflection of the plate. 

8.2.2. Nonaxisymmetric deformation of the LC 

If we take into account that the superior and inferior parts of the LC con­
tain larger pores [Quigley and Addicks (1981)]10, [Quigley and Addicks 
(1982)]n, we can suppose that 

Ex =E(l+e2cos26) 
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If £2 is small, then using a perturbation method, we can seek the solution 
of systems (4)-(5) in the form 

u(r, 9) = £2U2{r) COS 29, 

v(r,9) = e2v2(r)sin29, 

w(r, 9) = Wo(r) + £2^2(r) cos 29, 

<p(r,6) = <pQ(r) + e2ip2(r)cos29, 

ip(r,9) = e2ip2{r)sm29. 

(15) 

Substituting these expressions into the equilibrium equations (4) and equat­
ing the coefficients of £2 we obtain a system of equations for u2 and v2-
Taking the boundary conditions into account, the solution of this system 
appears to be u2 = 0 and v2 = 0. 

Substituting expressions (15) into the equilibrium equations (5) and 
equating the coefficients of £2, we obtain a system of equations. From the 
second equation 

d(f2 v?2 
dr r 

2V>2 
r 

0, 

we obtain 

1p2 
1 (d<p2 —- r 
2 l dr 

</>2 (16) 

By (16) two other equations in dimensionless form similar to (13), 

w2 
w2 

Eavh 

p{i-v2y 
¥>2 

ip2h
3 

1p2 = 
$2h3 

yield 

d3w2 1 d2w2 5 dw2 

dp3 

+ ¥>2 

p dp2 p2 dp 

K(l-v) r ^ 2 

8w2 + 6p 

d2w2 1 dw2 
dp2 p dp 

d2(p2 3 d(p2 

20 [ dp2 +~p~dp~~ 

4w2 1 dwo d2wo 

p2 p dp dp2 

3^2 
n2 0, 

(17) 

fa+")* + £ d(p2 

dp 

K{\ 

80 
d (f>2 2 r 
dp3 

P + 02 

.d2(f>2 

dp 
3^2 

p 
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The boundary conditions for fy a n d W2 are 

| f ( i ) + ̂ ( i) = o, MD = o, ^ ( D = f w D -

Here we introduce the new variables 

F i = 
d2U>2 1 dl&2 4u)2 

dp2 p d/9 p2 

F2 — 02 
K(l - v) 

20 

X A2,% er<p2 3 d((>2 3<p2 

dp2 p dp p2 

and system (17) transforms to 

dFi 
dp 

4 \dp p 

6p + F2 = 0, 

1 <M>0 d2w0 _ 3(l + t/)if 
p tip <ip2 5 

Substituting WQ from (14) in the above equations we find 

9 ( l - i / ) 2 , 3(l + i/) / K 
F1 = - ^ - ^ p 2 l n r + ^ - r ^ ( l + - Cip + -j, 

P2 

(18) 

(19) 

where C\ and C2 are arbitrary constants and 

3P(1 - v) 
W2 

16 
) 4 l 3(1 + 1/) / tf\ 2 l 

- P 4 l n p + - 4 ^ ( ^ l + - jp 2 lnp 
C4 

+ dp 4 + CV + C3 + -^. (20) 

Here C\, C%, C3, C\ are constants to be determined from the boundary con­
ditions. The function W2 must be bounded and, therefore, C4 = 0. Since 
w>2(0) = 0 then C3 = 0. Taking the equality u>2(l) = 0 into account, we 
obtain 

- 2 = - ^ / l n p + ^ ) ( l + f)p 2 lnp + C1pV--l). (2D 

The constant C\ may be determined after we find the function ip2- By 
equations (19) 

F2 = 1(1 ~ v)p]np- 3p 0-~- + 8C1 
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Then, by (18) 

9(1 - u) 
<P2 plnp-

K(\-v) K2(l-v) 
5p 25p3 3p 

1 + 7;/ 
•8Ci 

20 c c 
+ -jl2(aP) + ^K2(ap), 1=^ 

2 d V , " 5 / / 2 , , i\ n 

where C2 and C3 are arbi trary constants, I2(z) and K2(z) are modified 

Bessel functions, which are solutions of the equation 

dy_ 
dz2 dz 

In the neighborhood of zero, the functions I2(z) and K2(z) have the expan­

sions: 

- n 2 ( i + l ) / « 1 i+2 x 

tf2(*) 3 - 2 " / 2 ( 2 ) l n 
72; i 1 
~2 

y ^ 1 p\2(»+D/ ' 1 ^ 1 

i=0 v > \l=l 1=1 , 

« ^ © 2 E ^ ( r . ,-!•«> 
i = 0 

Hence in the neighborhood of zero, the function may be represented 

as 
K2(ap) = 1 

P 2p 
K(l - v) 

5p2 •0(P)-

Since the function <f2(p) is bounded at zero, then 

- 9(1 -vfK 
C3 = . 

The constants C\ and C2 should be determined from the boundary condi­
tions (18). 

Figure 8.4 shows the displacements of the transversal isotropic (a) (K = 
0.6) and isotropic nonuniform (b) plates [e2 = 0.4) under normal pressure. 
The transversal isotropic plates have smoother surfaces in a neighborhood 
of the clamped edges. 

The results obtained with the asymptotic relations have been compared 
with those obtained with FEM ADINA (900 nodes). Calculations were 
made for plates with real parameters [Nesterov (1995)]6, [Quigley and Ad-
dicks (1981)]10, [Quigley and Addicks (1982)]11, h = 0.24mm, R = 1mm, 
E = 1.4 MPa, and E/G' = 5. The difference in results is less than 2%. 
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Fig. 8.4. 

In Figs. 8.5 and 8.6, the cross-section area of the deformed plate obtained 
with FEM ADINA for 9 = 0 and 6 = TT/2 is plotted. 

Fig. 8.5. The section 8 = 0 of the deformed plate. 

Fig. 8.6. The section $ = 7r/2 of the deformed plate. 

In Fig. 8.7, the lines ip = const for £2 = 0.5 are shown. These re­
sults agree well with the ophthalmological data [Nesterov (1995)]6, [Volkov 
(2001)]12. In Fig. 8.8 there is a picture from a medical textbook showing 
the effect of the narrowing of the field of vision under glaucoma. 
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yO 

-0.5 0.5 

Fig. 8.7. <p = const for £2 = 0.5 

fA man with normal sight 
sees in such a way 

Fig. 8.8. Narrowing of the field of vision under glaucoma 

Comparing Fig. 8.7 and Fig. 8.8, one sees that, apparently, the atrophy 
of the optic nerve takes place when the tangent stresses reach some critical 
values. This relates to the change in the field of vision under glaucoma. It 
confirms the mechanical genesis of glaucoma and shows that a larger non-
uniformity of the LC leads to a stronger predisposition to glaucomatous 
damage. 
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8.2.3. Deformation of the oval LC 

According to ophthalmologic data, the LC in some eyes could have an oval 
form. The difference between the vertical and horizontal diameters may 
reach 10% of the average value of the radius. Modelling the LCs of different 
forms but constant area can help reveal the shape of the LC, for which 
glaucomatous damage is most probable. 

If the boundary of the LC has the form 

pe = l - e.3 cos 26>, (22) 

where £3 is a small parameter, then in the boundary conditions one should 
d d 

replace — with -7—. Here n is the normal to the boundary. By (22), in 
op on 

non-dimensional variables, 
d d nd 2£3sin26> d 

£3 cos 20-dn dp dp p 89' 

and the solution of equations (4)-(5) may be represented in the form of 
(15) where £2 is replaced with £3. Again we introduce new variables similar 
to (19) and obtain 

dFx 

dp 

»•£( 

•+F2 = 

dF1 + 

dp 

Prom the first of these equations, we 
the second equation, 

* i = .<v+ 

= 0, 

p J 
can 

c2 

= 0. 

evaluate F2 and then, from 

P2 

where C\, C2, C3, and C4 are arbitrary constants. 
Since the function w2 should be bounded and ^3(0) = 0, then C\ = 

Cs = 0. Prom the condition w(l — £3 cos 28) = 0 we get 

C2 = - | i f - C i . 

The constant C\ could be obtained as soon as one knows the function <p2. 
By (19) F2 = -4CiyO and hence 

V?3 = - 2 4 C i p + — / 2 M + — K2(ap), ' 2 ° 
P ^ *•> p ^ "» VK{\-Vy 
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where C2 and C3 are arbitrary constants. The function ip^ip) is bounded 
at zero; therefore, C3 = 0. The constants C\ and C2 can be evaluated from 
the boundary conditions, which in this case have the forms 

4io2(l) 
K 

(P2(l) + ¥>2(1)) or - 4 8 C i + C 2 a / 2 ( a ) = -24 , 

Figure 8.9 shows the displacements of transversal isotropic: (a) (K = 
0.6) and isotropic nonuniform, (b) plates (£3 = 0.1) under normal pressure. 

Fig. 8.9. Displacements of transversal isotropic: (a) (K = 0.6) and isotropic nonuniform, 
(b) plates (£3 = 0.1) under normal pressure 

Calculations show that the influence of the shape of the LC (parameter 
£3) is less than the influence of the parameter £2 (provided £2 = £3), which 
characterizes the angular non-uniformity of the plate. As it was noted for 
the real LC parameter, £3 is smaller than the parameter £2. If the LC is oval 
(22), then the maximal displacements of the LC is w(0) ~ Wr (l — 6£3), 
where Wr is the maximal displacement of the corresponding circular LC. If 
the LC is oval, then the shear deformations of the LC are smaller. It seems 
that the eyes with an oval LC have a lower risk of developing glaucoma 
under ocular hypertension. 
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8.3. Shear of the Layers 

According to ophthalmologic data [Nesterov (1995)]6, [Yan et al. (1994)]13, 
the LC consists of a few parallel layers of connective tissue. The number 
of layers varies widely from eye to eye. The holes in the layers form little 
channels for the nerve fibres. The outer layer is the thickest one. We analyze 
the large axisymmetric deformations of multilayer momentless (membrane) 
shell of revolution with elastic ties between the layers [Bauer et al. (2000)]3. 
It is assumed that the shape of the LC before deformation is given by the 
functions ro(so), Z(SQ), and tpo(so), where so is the arclength from the shell 
apex, TQ is the distance between the shell surface and the axis of revolution, 
ZQ is the vertical coordinate, ipo is the angle between the normal to the shell 
and the axis of revolution, and 

cosipo, zQ = sm<po, (•)' 
d(0 
ds0 

Fig. 8.10. Deformed LC. 

After deformation the form of the LC is described by the functions 
(Fig. 8.10) r(s), z(s), and <p(s), where 

dr dz 
— = cos ip, —- = sin p. 
ds ds 

It is assumed that the layers can slide over each other. The functions 
SQ(S) and k = 1,2,.. . , n represent the arc coordinate of the point s on the 
fc-th layer before the deformation. Then, 

ds 
sko(s) AS ro(so), k = 1,2, . . . , n , 
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where Â  and Â  are the tensile strains in the middle surface of the k-th 
layer in the meridional and circular directions. 

The equilibrium equations for the k-th layer are 

^l-T2
kcos^ + r(qt

1-q
k
1)=0, 

rT^+T2
k
Sm^-r(qt

1-qk
5)=0, 

k = l,2,...,n, (23) 

where T± and T2 are the stress-resultants in the fc-th layer measured per 
unit of length after deformation, q\ and q\ are the intensity of the external 
load on the deformed k-th layer measured per unit of area acting from the 
inner ( g j - 1 and qk~x) and outer (qk and q%) surfaces of the layer (Fig. 8.11). 

Fig. 8.11. The stress-resultants in the fc-th layer 

The functions q®, q®, g™, and gj are defined by the loads which act on 
the shell. We assume that the eye shell is under the intraocular (pi) and 
retrolamina tissue (p^) pressure. Then 

<?i=0, q°3=Pi, Qi=0, g3"=P2. 

The functions qk, qk, fc=l,2,...,n — 1, are the tangential and normal 
interaction stresses in the shell layers, respectively. Tangential stresses are 
supposed to be functions of the relative displacements of the layers: 

qk=qk(s,Ak), Ak=sk+1-st fe=l,2,...,n-l. 

The normal stresses qk are obtained from the equilibrium equations. 
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Here we use the following elasticity relations for the eye shell material 

e * = A * - l , i = l ,2; k = l,2,...,n, (24) 

where hk is the thickness of the fc-th layer of the LC, Ep is the reduced 
Young's modulus of perforated layers of the LC. 

Summarizing the equilibrium equations for each layer we write the equi­
librium equations for the entire eye shell as 

d(rTi) 
ds 

T2cosf = 0, 

rTx-£+T2sm<p-r(Pl -p2) = 0, (25) 

n 

fc=l 

where Tj are the total stress-resultants. So, we get a system of 2n + 2 
differential equations for the unknowns Tk(s), SQ(S), <p(s), and r(s). 

Using dimensionless variables, 

T?(s) sk
0(s) 

V k = TP h ' Vn+k = ' V2n+1 = ^ ^ V^n+2 

we get the system 

(yk(n-l) 1 1 \ {k 

V V2n+2 Vn+k J/2n+2 / 

y'n+k = ̂  + y^-»2)-v{yj^-i)X\ 
\ Vn+k J 

, siny2n+1T2 
V2U+1 = T + A p , 

2/2n+2 J 1 

V2n+2 =cosy2„+i , fc=l,2, . . . , n , 

n f c-X 

91 

(26) 

where s = —, r* is the radius of the edge parallel and 
r* 

fc 

»'sf- «" = jfe r- = *S> fcj/fe, 

T 2 = M T 1 + £ ; p ^ / z J ^ ^ - l , Ap = 

fc=i 

2/2n+2 , \ . _ P l - V2 

fc=1 v 2/n+fc / Tl 
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The following boundary conditions are introduced in the dome apex: 

sk = r = <p = z = 0, I * - ^k 

or, in dimensionless variables, 

T2
fe at s = 0, 

2/fc+n = V2n+2 = V2n+l = 0, y'n+k 

1 

•yfe( i -M) 
at s = 0. 

The solution is bounded at the shell apex if the necessary condition Tk = Tk 

holds. 
The asymptotic analysis of the (2n + l)-st equation of the system shows 

that 

0. V2n+1 -> AP/2 a s s 

At the edge of the plate, conditions of elastic support are introduced for 
each layer, 

T? = ck(s-s%) at r = r v 

The elastic moduli ck may be different for different layers. 
According to some ophthalmologic data [Nesterov (1995)]6, [Yan et al. 

(1994)]13, on the edge "outer" layer of lamina cribrosa, the boundary condi­
tions are the strongest, i.e. CJV > ck for k < N. The stresses corresponding 
to the tangential displacements of the layers can be expressed in the form 

Qi =ak(s
k
0
+1-sk

0)(r-r*). 

We solved the boundary problem numerically for shells with two and 
three layers with different values of the parameters ck and ak taking into 
account that the "outer" layer is the thickest one, i.e. hjy > hk for k < N. 

The non-dimensional displacement of the LC is shown in Fig. 8.12 for 
ck/Ep = 0.03, k= 1,2; c3/Ep = 0.04. 

Fig. 8.12. Displacement of the LC 

The results show that, if the intraocular pressure increases (or the retro-
lamina tissue pressure decreases), the essential shear of the layers occurs 
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at the periphery of the LC. And the largest shear is at the level of the last 
layer, as was observed by ophthalmologists [Nesterov (1995)]6, [Yan et al. 
(1994)]13. This phenomenon may lead to the atrophy of the optic nerve 
fibres [Nesterov (1995)]6. 

8.4. Buckling of the LC 

Large deformation and buckling of the thin circular isotropic plates under 
normal pressure are considered in [Panov and Feodos'ev (1948)]8. It was 
noted that under some critical load the buckling of the plate takes place 
near the edge of the plate. The buckling mode has eight waves (folds). 

In fact, sometimes, in the case of glaucoma, the formation of small folds, 
oedemata, is observed near the edge of the LC [Nesterov (1995)]6, [Volkov 
(2001)]12. This phenomenon also could be explained by the local buckling 
of the LC. 

If we assume that LC is axisymmetric, then the large deformations of 
the LC are described by the following equations [Bauer et al. (2000)]3, 
[Ambartsumian (1987)]\ [Volkov (2001)]12, 

d 
(<pr) 

dr 

d3F 
dr3 

Ex(r) 

dwdF\ I2pr 12 d 
h3 dr \dr dr J h3 

ld2F 1 dF Eih (dw 
r dr2 

d3w 

dr 

ld2w 
dr3 r dr2 

dEx h2 d(p 
dr 

2r 

1 dw 

r2 dr 

r 

dr 

dEx 

dr 

h2Ex d 

1 dEx 

~ E^~dr~ 

d2w v dw 

dr2 r dr 

1 d 

d2F 
dr2 

vdF 
r dr 

(27) 

M -(1-S)<p(r), 
dr 10G' \dr r ) IOC dr \r dr 

where F = F(r) is the force function. The stress-resultants are expressed 
by means of the first and second derivatives of F: 

Tr = - — Te = — 
r dr ' dr2 

The boundary conditions for the system of equations (27) has the form 
(6) similar to those for the linear system 

dw h2ip 
r = i?' W = °> -dV=8V> 

and an additional condition is needed. This condition connects the stress-
resultant Tr and the displacement in the radial direction u. We suppose 
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that the edge moves freely; therefore 

ldF 
Tr r dr 

= 0. 

This boundary problem was analyzed by a perturbation method in [Am­
bartsumian (1987)]*. 

To examine if a bifurcation of the LC is possible or not one should 
use nonlinear nonaxisymmetric equations [Ambartsumian (1987)]x. If the 
buckling mode is localized near the edge of the LC, we write the equations 
for the uniform nonaxisymmetric plates [Ambartsumian (1987)] * and seek 
the solution of these equations in the form 

w = wo(r) +wm(r) cos m9, 

F = F0(r) + Fm(r) cosm0, 

ip = ip0 (r) + ipm (r) cos m#, 

ij) = tpm(r) s'mm9, 

where the prebuckling state of a plate wo, Fo, ipo is obtained from the 
solution of system (27). After separation of variables, we get a linear system 
for the additional non-symmetrical components wm(r), Fm(r), ipm(r), and 
if>m(r). Taking 

dWn 
mA > 1, »< />n » U>T1 

dp dp 

into account, this system can be rewritten in dimensionless variables in the 
form 

1 
12 }w+mr- + 

dF£ d2w*m 

dp dp2 

m2F^d2w*0 , dw*0d
2F^ 

m2w* cPFX 

dp2 

wl 
dp3 

p dp2 

m2 dw!^ 
p dp 

dp dp2 

+ (1 - v2)^mp 

h* 
To 

d2<f*m m2{l-v)V*m m{l + v)di)*m 

d2 

dp2 

w* 

+ 10 

dp2 

m2^ 

2p 

+ (1 - v2WmP 

\-v_ d2rm 

dp 

(1 + v)m d<p*m 

(28) 

d4F* 2m2 d2F* 

dp* dp2 + 

2 r dp2 

m4F* 

dp 
0, 
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1 / dw*, d2W* 2 j2„„* m d w, 
p \ dp dp2 p dp 

°w* 0. 

Here 

P=R> W h' Eh*' 
k* 

Eh2 

G'R2' 
* vR3 ,. 

# / i 

The boundary conditions for this system are 

P=l w*m = °> 
oto* ***¥& 

ldF* 

dp 

p rf/9 /9^ /fT p dp 

1 
After the change of variables x = - , we finally get the system 

P 

1 

12 
mip*m-x 

dx •xAh dx2 m xf2W* 

(ft p* 
-m

2xf4F^ + x4f3^?=0, 

• dh 
dx2 

+ m V ^ + (l_4; 
dx3 ' dx 

h*x2[2d
2<p*m m2{l-u) 

10 

m i 3 I m2w* — x2 

dx2 

d2w* 

-<Pr, 
m(l + v)x dtp* 

dx 

dx2 + (1-^2)C 

+ 
h*x 2 r 

10 
m2tp*m 

l ~ v
 x2 d2^*m (1 + v)™x dip*m 

4 / 2 d <• 

x I x -r-^ -m 

dx2 

x3fi 
d2w*m 

dx2 

2 dx 

2 s * 

- m f4wm 

= 0, 

0, 

where 

t i \ dF£ d FQ 

h{x) = —j^-\p=i/x, U{x) 
d2w; 

dp 
_0 I 
2 l p = l / 2 

and fi(x) are determined from the solution of system (27). 
The functions tp^, ip*m, w*m, F^ should exist in the interval [1, 

quickly decrease as x moves away from the edge x = 1. 
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Supposing that 

< = Cietf x^d\ F*m = C2e^ A « d t , 

the existence condition for the solution of system (30) has the form 

[ * V A 2 - m2)2(/ i a:3A2 - m 2 / 2 ) - (/3A2x3 - m2 /4)2] 
2 

V 
2 "• X t\2Jl ^2 

10 
(A2z2 - m2) ^ ' ,2 \2„,2\4 

1 2 X - A V ) 4 = 0. 

This characteristic equation has four roots A2(a;). Since the solution de­
creases as x moves away from the edge x = 1, we select only the roots with 
a negative real part and substitute them in (30) and (29). Finally, after a 
minimization in x and with wave number m we obtain the buckling load. 

The numerical analysis shows that under some critical load the buckling 
of the plate takes place near the edge of the plate. The buckling mode 
has eight waves (folds) similar to the isotropic case, but the value of the 
critical load for the non-homogeneous transversal isotropic LC could be 
considerably less than the critical load for the isotropic plate. For thin LC 
(/i=0.1mm) the buckling occurs under pressure equals about 60 mm Hg. 

Thus, the buckling in the nonaxisymmetric state in the neighborhood 
of the edge could also cause the atrophy of the optic nerve fibres. 

8.5. Conclusion 

The different mechanical models of the LC are considered. All these models 
confirm the mechanical genesis of glaucoma. 

It is shown that the shear deformation of the vertical element (or es­
sential shear of the layers) at the periphery of the LC could cause the 
atrophy of the optic nerve fibres. The solutions for LC with different de­
grees of nonuniformity can help reveal the structure of the LC, for which 
the glaucomatous damage is most probable to develop. 

It is shown also that the buckling in the nonaxisymmetric state in the 
neighborhood of the edge could also cause edemas at the periphery of the 
LC and the atrophy of the optic nerve fibres. 
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was then calculated by using histologically determined parameters. A 
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of degradation corresponding to the experimentally determined volume 
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9.1. Introduction 

Since Frost's [Frost (I960)]8 observation of in vivo microcracks nearly 40 
years ago, a relationship between damage and degradation in bone tissue 
was expected but was not investigated until recently ([Burr et al. (1998)]5, 
[Jepsen and Davy (1997)]10). Burr et al. [Burr et al. (1998)]5 investigated 
the relationship between area fraction of damage and degradation in secant 
modulus, while [Jepsen et al. (1999)]12 investigated the relationship between 
numerical crack density and degradation of viscous and elastic properties. 
These studies demonstrated that there is a relationship between the dam­
age process and degradation of material properties in cortical bone tissue. 
Further, Griffin et al. [Griffin et al. (1997)]9 developed a model that success­
fully simulated an experimentally observed modulus degradation in cortical 
bone [Pattin et al. (1996)]17 by assuming that the loss of modulus was com­
pletely due to cracks assumed to be present in the interstitial matrix. That 
is, the amount of damage modeled was an outcome of the fit of the model, 
but was not validated by histological observation. Thus, the contribution 
of histologically observable damage to material property degradation is not 
completely known in quantifiable terms. In the case the histologically ob­
servable damage does not degrade the mechanical properties of bone then 
its presence or absence may not be relevant to skeletal fragility. Histolog­
ically observed damage appears in the form of diffuse damage and linear 
microcracks ([Boyce et al. (1998)]3, [Burr and Stafford (1990)]4). Since the 
morphology of linear microcracks [Taylor and Lee (1998)]23 and their re­
lation to the microstructure ([Norman and Wang (1997)]16, [Schaffler et 
aZ.(1995)]19) are better known in comparison to diffuse damage, it may be 
possible to use the knowledge of linear microcracks to develop a quantifiable 
and mechanistic relationship between linear microcracks and degradation 
processes. 

The purpose of this study was to investigate the contribution of linear 
microcracks to material property degradation in human cortical bone tissue 
in quantifiable terms. To achieve this purpose, damage that was induced in 
cortical bone tensile specimens [Knott (2000)]13 was examined. The number 
of linear microcracks, their length and their orientation to the loading axis 
were determined histologically. The volume fraction of damage was then 
calculated by using histologically determined parameters. A micromechan-
ical damage model was developed to estimate the amount of degradation 
corresponding to the experimentally determined volume fraction of dam­
age due to linear microcracks. The degradation observed experimentally 
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was compared to the degradation predicted by the model to determine the 
contribution of linear microcracks to the observed material property degra­
dation. 

9.2. Experimental Materials and Methods 

The micromechanical model was conducted on the experimental data pro­
vided [Knott (2000)]13. The left femur was obtained from a 24 year-old male 
and a 72 year-old male with no known skeletal pathologies. Following the 
removal of soft tissue, the bone was rough cut transversely into rings 50 mm 
in length using a band saw. Each ring was cut into four pegs, one for each 
anatomical quadrant, i.e. anterior, posterior, lateral and medial. The pegs 
were cut into 1.5 mm thick wafers using a Buehler Isomet 1000 low-speed 
precision circular saw. The wafers were machined to the final dimensions 
shown in Fig. 9.1. The number of specimens for the mechanical tests was 
18 for the younger femur and 19 for the older femur. 

Damage accumulation tests in monotonic tension were conducted to 
different levels of strain. All mechanical testing was performed on an Instron 
8501M servohydraulic testing machine. The top grip was connected to the 
actuator through a ball and socket joint that provided proper alignment 
for pure tension. The lower grip was attached to a 500 lb load cell (Eaton). 
A 10% strain gage extensometer (Instron) was used to measure strain. All 
testing was performed in an environmental chamber that was kept at 37° C. 
The specimen was kept wet by a drip of Ringer's solution at 37°C. 

Specimens were subjected to a three-cycle damage protocol where the 
first diagnostic cycle quantified the material properties within the elastic 
range, the second cycle induced damage to the specimen and the third diag­
nostic cycle, identical to the first one, quantified the material properties af­
ter the induction of damage (Fig. 9.2) [Jepsen and Davy (1997)]10. The pre-
damage and post-damage diagnostic cycles were trapezoidal-shaped with a 
hold strain of 0.25% for 30 seconds and with loading and unloading rates 
of 1%/s. 

The damage cycle was triangular shaped with ramp-up and ramp-down 
rates of 1%/s to one of five peak strain levels. These peak strain levels were 
determined based on monotonic tensile tests conducted on separate sets of 
specimens (n = 6) from each donor. The tests were conducted at a rate of 
1%/s to fracture. The five damage levels were chosen to cover the entire 
monotonic stress-strain curve such that there were two pre-yield, one yield 
and two post-yield damage levels. The first four damage levels were 0.25% 
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(n = 3, pre-yield), 0.60% (n = 4 , pre-yield), 0.75% (n = 4 , yield), and 
1.00% (n = 4 , post-yield) for both subjects. The fifth damage level was set 
at 1.50% (n = 4 , post-yield) for the 24 year-old femur and 1.25% for the 
72 year-old femur (n = 4 , post-yield). The fifth damage level for the 72 
year old specimens was reduced to a strain level of 1.25% since monotonic 
tests of several specimens from the same donor experienced failure at a 
level of 1.50% strain. A 240 sec relaxation period at zero strain followed the 
unloading of the damage cycle to allow time for anelastic effects to dissipate. 
Elastic moduli were calculated from the slopes of the pre-damage and the 
post-damage diagnostic cycles by linear regression within the strain range 
of 0-0.2%. The degradation parameter, <j>, was calculated as the ratio of the 
elastic modulus of the post-damage diagnostic cycle (E3) and the elastic 
modulus of the pre-damage diagnostic cycle (£1) such that <f> = E^jE\: 

<p = § and D = 1 - (j). (1) 

Following mechanical testing, the gage region of each specimen was iso­
lated by removing the grip regions with a low speed saw, fixed in 70% 
ethanol overnight and bulk stained in 1% basic fuchsin. The gage region 
specimens were embedded in poly(methylmethacrylate) and sectioned to 
250 (ivn thickness using a diamond coated saw. Two sections were taken in 
the longitudinal circumferential plane (parallel to the flat face of the spec­
imen) of the cortical bone tissue. The sections were glued to acrylic plates 
and ground to 150 /xm thickness. Final polishing was performed with 1 ^m 
diamond suspension. 

The following is the histological analyses employed on the specimens 
obtained from [Knott (2000)]13. The length of the microcracks, Li, was 
measured in transmission mode using a video microscopy system attached 
to a Nikon Optiphot 2 microscope (Nikon Inc., New York). The horizontal 
axis of the monitor was aligned with the width and the vertical axis of the 
monitor was aligned with the tensile loading axis of the specimen. 

Only linear microcracks having a sharp appearance with stain uptake 
along their length and that were traceable through the section thickness 
with changing depth of focus were quantified in this study [Burr and 
Stafford (1990)]4. The angle, /?;, between the microcracks and the hori­
zontal axis of the monitor was measured using a transparent goniometer 
(Fig. 9.3). For each specimen, a mean crack orientation, @M, and a mean 
crack length LM were determined using /3j and Li, respectively. The num­
ber of linear microcracks, Cr # , and the sum of the crack lengths, EL*, 
were also determined for each specimen. 
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Fig. 9.1. All dimensions are in millimeters. The front view is in the longitudinal-
circumferential plane and the side view is in the radial-circumferential plane of the 
cortical diaphysis. 
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Fig. 9.2. Damage accumulation protocol. 

According to the tensor nature of damage it was assumed that the 
degradation of Young's modulus along the longitudinal direction would 
be better explained by the projection of the microcracks on the radial-
circumferential plane rather than by their actual orientation (Fig. 9.3). 
Therefore, the cracks observed in the longitudinal sections were projected 
on the radial-circumferential plane and they were idealized as oblate el­
lipsoids. The diameter of an oblate ellipsoid shaped microcrack, Lpi, was 
calculated by taking the product of Li and cos Bi for each crack. A mean 
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Fig. 9.3. Projection of cracks on the radial-circumferential plane. The specimen is 
loaded under uniaxial tension with stress a. L is the length of the crack and Lp is the 
projected length of the crack in the radial-circumferential plane. 0 is the angle between 
the crack and the radial-circumferential plane. 

projected crack length, LPM, and sum of the projected crack lengths, ELpj, 
were determined for each specimen. 

The section taken through an idealized oblate ellipsoid shaped crack 
will be at a certain distance, h, and orientation, 9, to the actual diameter 
of an oblate ellipsoid shaped crack, 2c (Fig. 9.4) [Taylor and Lee (1998)]23; 
[Underwood(1970)]24. Therefore, the mean projected length of the mea­
sured crack, LPM, will be less than the actual length. The crack diameter, 
2c, was estimated from LPM by using methods of quantitative stereology 
[Underwood(1970)]24. In that analysis, h and 9 were assumed to be random 
variables. In the radial-circumferential plane, the oblate ellipsoid shaped 
cracks were expressed as: 

x2+y2=c2, (2) 

where the origin of x and y coordinates are at the center of the oblate 
ellipsoid shaped crack. For 9 — 0 and constant c, the mean value, LPM, 
will be: 

c 

LPM = ~ xdy. (3) 

o 

This leads to c = 0 . 637LPM- In this manner, the diameter of an average 
sized oblate ellipsoid shaped crack for each specimen was obtained using 



A Micromechanical Model for Predicting Microcracking Degradation 185 

the mean projected crack length LPM- The volume of the average sized 
oblate ellipsoid shaped crack, VPM, was determined using the formula: 

VpM = \v{c)2a. (4) 

The half thickness of the crack, a, along the longitudinal direction (or half 
of the crack opening displacement along the longitudinal direction) and 
was taken as c/10. That is, the crack aspect ratio, 7, was assumed to be 
c/a = 10. The following rationale was used to arrive at this assumption. 
For experiment, the Young's modulus was determined from the linear fit to 
the stress-strain curve up to 0.15% strain. A strain of 0.15% corresponds 
to a far field (global) displacement of 15/U,m along the gage length. The 
crack opening displacement, 2a, is an unknown function of global displace­
ment for cortical bone tissue. However, it is known for composite materials 
[Krasnikovs and Varna (1997)]14 and titanium alloys [Sharpe et al. (1992)]20 

that the crack opening displacement is less than the global displacement. 
Assuming then that the crack opening displacement 2a is half of the ap­
plied global strain, a can be estimated as 4 /zm at a global strain level of 
0.15%. If a typical value of 45 fiva is taken for LPM (Tables 6.2 and 6.3), the 
corresponding c value is determined to be 30 /xm using eqn. (3). Thus, the 
aspect ratio c/a can be estimated to be 30/4=7.5 (which was rounded to 
an aspect ratio of 7 = 10 for the purpose of this analysis). In addition, the 
estimated crack opening displacement was in agreement with qualitative 
observations of crack opening displacements of the microcracks observed 
during cyclic loading [Akkus and Rimnac (2001)]1. 

Circumferential 
y 

Fig. 9.4. Schema of an oblate ellipsoid shaped microcrack in the radial circumferential 
plane. A crack length of LP at height h and angle 6 will be observed instead of the 
actual length of the crack, 2c. (Adapted from [Taylor and Lee (1998)]23). 



186 O. Akkus, C. M. Rimnac and A. Guran 

100 

IB 
Q. 

100 

50 

Older Femur 

0 20 40 
p. (Degrees) 

0 20 40 60 
B(Degrees) 

80 

Fig. 9.5. Cumulative percent distribution of angular orientation, ft, of microcracks 
for the specimen sections from the younger femur and from the older femur. Sample 
size was 380 for the specimen sections from the younger femur and 529 for the older 
femur, ft values within the younger femur and the older femur were pooled to obtain 
the cumulative percent distributions. 

The total volume of damage within a specimen, VD, was calculated by 
taking the product of VPM and Cr # for that specimen. VD was normalized 
by the total observation volume (i.e., volume of the histological sections) 
so as to obtain the volume fraction of damage, F, for each specimen. F 
was, thus, calculated for the total volume of the two histological sections 
taken from each specimen. If one assumes that the cracks are randomly 
distributed within the volume of the gage length, the volume fractionF 
obtained from the sections would also reflect the volume fraction of damage 
for the specimen. The width, length and the thickness of the sections were 
determined from which the volume of the histological sections (two per 
specimen) was calculated. The width of the sections was taken to be equal 
to the width (= 3 mm) of the specimen from which they came. The length 
of the sections was taken to be equal to the gage length (15mm) for each 
specimen. The thickness of the sections was measured using a dial indicator 
(iO.Olmm accuracy). The volume of the two sections, Vs, was calculated 
by taking the product of length, width and the total thickness of the two 
sections from each specimen. Finally, the volume fraction of damage, F, was 
calculated for each specimen by dividing the total volume of damage for that 
specimen, VD, by the volume of the histological sections, Vs (F = VD/VS). 

A statistical analysis was conducted using Minitab (Minitab, Inc., State 
College, PA). Differences between the mean values for the younger and the 
older femora were determined by Mann Whitney test at a significance level 
of p < 0.05. The variation in E^/Ey (y: response) as a function of SLj, 
TiLpi, VD, F and Cr# (x: predictors) was investigated using linear re­
gression analysis and the coefficient of variation, R2, was determined. The 
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outliers were determined by checking the Cook's distance value. The ob­
servations which had a Cook's distance value greater than 1 were excluded 
from the regression analysis ([Cook (1977)]7). Cook's distance combines 
leverage and standardized residual into one overall measure of how unusual 
is an observation ([Weisberg (1980)]25). Leverage indicates if an observation 
has unusual predictors (x variable), and standardized residual indicates if 
an observation has an unusual response (y variable). A p < 0.05 was taken 
as significant for the results of the regression analyses. 

The statistical distribution of the observations was confirmed by prob­
ability plotting. Probability plotting is a graphical method for determining 
whether sample data conform to a hypothesized distribution based on a 
subjective visual examination of the data. To construct the plot, the obser­
vations are ranked from smallest to largest. The ordered observations are 
then plotted against their observed cumulative frequency. If the hypoth­
esized distribution adequately describes the data, the plotted points will 
fall approximately on a straight line and will lie within the 95% confidence 
interval. 

9.3. Prediction of Material Property Degradation by a 
Micromechanical Damage Model 

It was of interest to determine the degradation in Young's modulus along 
the longitudinal direction by a micromechanical model. The model em­
ploys an analytical technique that is a combination of Eshelby's equiva­
lent inclusion method and the mean field theory ([Pedersen (1983)]18). In 
this model, microcracks are introduced as ellipsoidal inclusions with a zero 
stiffness tensor, Cr, that are embedded in the transversely isotropic corti­
cal bone medium, CM- The following coordinate axes will be used in this 
model: the X3 axis is along the direction of osteonal orientation (longitu­
dinal axis); and, the x\ and X2 axes define the plane of isotropy (radial-
circumferential plane) in cortical bone. The geometry of a microcrack is 
defined as, (x\/c)2 + (a^/c)2 + (xs/a)2 = 1, where the half length of the 
ellipsoid along the x\ and x-i axes is c and along the X3 axis is a. As noted 
in section 10.2, the aspect ratio, 7 = c/a, was taken as 10 for the oblate 
ellipsoid approximation of linear microcracks during experimental analysis. 
However, the model was also utilized to examine the effect of other aspect 
ratios, so that different microcrack morphologies could be examined. 

The derivation of the formulation for the prediction of damaged elastic 
constants is adopted from the textbook by Clyne and Withers [Clyne and 
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Withers (1993)]6. The composite material is loaded by an applied stress aA 

which generates an overall strain of eA that is averaged across the compos­
ite. As the initial step a homogenization scheme is carried out to convert 
the elastic properties of microcracks to those of bone tissue. The homoge­
nization requires the representation of the microcrack (i.e. real inclusion) 
with a ghost inclusion that has the elastic properties of bone. Due to a 
appropriate transformation strain, eT, imposed on the ghost inclusion, the 
shape of the resulting inclusion is the same with the real inclusion, mak­
ing it possible to homogenize the problem without changing the stress field 
in the matrix. Following the homogenization scheme a mean field stress, 
< a >M, is introduced to account for high volume fraction of inclusions. 
The mean field stress is a perturbation on the stress state of an inclusion 
due to all other inclusions; thus, it represents the average over the volume 
of the composite. 

States of strain and stress for the ghost inclusion after the application 
of the external load are: 

eA +ec+ <e>M, (5) 

07 + o-A+ < a >M= CM {eA + £C+ <£>M S T ) , (6) 

where ec is the constrained strain in the ghost inclusion before the external 
stress is applied and the stress corresponding to the constrained strain is 
07. Eshelby has proven that the constrained strain is related to the trans­
formation strain through the Eshelby tensor, S: 

ec = SeT. (7) 

The mean average stress acting on the inclusion after accounting for 
the effects of other inclusions is < a >i= ar+ < a >M- The mean field 
partitions between the inclusion and the matrix akin to an externally ap­
plied load and when averaged throughout the volume of the composite it 
vanishes: 

(l-f)<a>M+f<a>I=Q. (8) 

States of strain and stress for the real inclusion after the application of 
the external load are: 

eA +ec+ <e>M, (9) 

07 + aA+ < a >M=< o- >i +aA = d (eA + ec+ < e >M) (10) 

The transformation strain is obtained by using eqns. (7) and (8), and 
by combining the equivalent stress states in the ghost and real inclusions 
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(eqns. (6) and (10)): 

£T = -{{CM ~ CT)[S - f(S - I)} - CM}-\CM - C,)£A. (11) 

Knowing the transformation strain, substituting eqn. (6) in eqn. (8) and 
making use of < C T > J = 0 7 + < < T > M and e° = SeT the perturbation on 
the stress acting on the matrix becomes: 

<<T>M=-fCM(S-I)eT. (12) 

Using eqn. (8) the stress perturbation acting on the inclusion becomes: 

< a > / = ( l - / ) C M ( 5 - / ) e T . (13) 

The overall stiffness matrix of the composite, Cc, is related to the vol­
ume averaged composite strain, EA: 

aA = CMeA = Cc~4 = Cc(e
A+ < £ >c), (14) 

where < e > c is the perturbation in the overall strain of the composite due 
to the presence of inclusions. This perturbation is the summation of the 
perturbed strain, < e >M, acting on the matrix and the inclusion (over the 
total volume) and the constrained strain ec acting on the inclusions only: 

< £ >c=< £ > M +feC (15) 

The mean matrix strain < e >M can be obtained using eqns. (7) and 
(13): 

< cr > M = CM < £ > M = -/CM(S - I)e , 

<£>M = - / ( £ " £ )• 

Substituting eqn. (16) in eqn. (15): 

< £ >c= feT (17) 

Therefore, the overall composite strain £Q becomes: 

e£=eA + feT (18) 

The stiffness matrix of the composite can be determined by substituting 
for the transformation strain (eqn. (11)) in eqn. (18) and substituting the 
resulting in eqn. (14): 

Cc = [CM1 - f{(d - CM)[S - f(S - I)} + CM}-\d - C M ) ^ 1 ] " 1 . 
(19) 
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Equation (19) is used to determine the changes in the elastic stiffness 
tensor of bone tissue with increasing volume fraction of penny-shaped mi­
crocracks. 

Cc = [CM
l + fCM[S - f(S - /)] + CM

l]_1. (20) 

The undamaged stiffness CM for human cortical bone was obtained from 
experimentally determined technical constants by ultrasonic testing [Yoon 
and Katz (1976)]26: 

E1=E2 = 18.80GPa, E3 = 27.40GPa, (Et: Young's moduli), 

G13 = G23 = 8.71GPa, G12 = 7.17GPa, (G i j : shear moduli), 

^ 1 2 = ^ 2 1 = 0 . 3 1 2 , 1/13 = ^23 = 0 .193 , 

^31 = 3̂2 = 0.281, [vij\ Poisson's ratio). 

A property ratio was represented as the ratio of the damaged technical 
constants obtained from Cc to the undamaged technical constants obtained 
from CM-

9.4. Experimental Results 

Almost 75% of the cracks observed in the younger femur sections had a 
(ii < 45° while about 20% of the microcracks observed in the older femur 
sections had a /?$ < 45° (Fig. 9.5). About 25% of the microcracks were 
oriented perpendicular {(3 = 0°) to the longitudinal axis of the younger 
femur while the older femur had few such microcracks. The mean crack 
orientation, /3M, for the younger femur was significantly smaller than that 
of the older (p < 0.01). The mean crack length, LM, increased significantly 
with increasing mean crack orientation, (3M, for the younger femur (R2 = 
0.383, p < 0.01) but not for the older femur (R2 = 0.109, p = 0.168). LM 

increased significantly with increasing (3M, when the observations for the 
younger and the older femora were pooled together (R2 = 0.300, p < 0.01). 
The mean crack length, LM, for the younger femur was also significantly 
smaller than that of the older femur p < 0.05). In contrast, the mean 
projected crack length, LPM, for the younger femur was significantly greater 
than that of the old femur (p < 0.05). The physical damage parameters ELj 
and Cr# for the older femur were significantly greater than for the younger 
femur (p < 0.05). There was no significant difference in ELpj, Vb and F 
between the younger and older femurs. 

The physical damage parameter values covered several orders of magni­
tude as the degradation increased. Specifically, the maximum values of ELj, 
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Table 9.1. Statistical results for the regression analysis between the 
Young's modulus degradation (E3/E1) and the logarithm of the damage 
parameters. 

Damage Parameters 

Log ELi(/im) 
Log ELpi^/zm) 

Log VD 

Log F 
Log Cr # 

Younger 

& 
0.132 
0.211 
0.207 
0.244 
0.173 

P 
0.139 
0.055 
0.058 
0.037 
0.086 

Older 

& 
0.327 
0.352 
0.335 
0.353 
0.280 

V 
0.011 
0.007 
0.009 
0.007 
0.020 

Combined 

& 
0.149 
0.239 
0.251 
0.283 
0.180 

P 
0.018 
0.002 
0.002 
0.001 
0.009 

1.00 

0.98 

u T 0.96 

UJ 0.94 

0.92 

0.90 

0 

0 

+ + 

+ 0 + 

+ 

+ 

0 

log(F) 

Fig. 9.6. The variation in degradation of Young's modulus (E3/E1) with the logarithm 
of the damage volume fraction F. The open circle and plus symbols refer to the specimens 
from the younger and older femora, respectively. 
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Fig. 9.7. Prediction of property degradation for an oblate ellipsoid with an aspect ratio 
of c/a = 10. (— E\ and G12; ° E3; + G13; A !/i2 and 1/21; <C> ^13 and 1/23; • ^31 and 1/32-

T,LPi, VD, F and Cr. # were approximately 500, 250, 2000, 2000 and 150 
times greater than the minimum value (for observations pooled over age), 
respectively. The span of the data raised the possibility that a lognormal 
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1 10 100 
Aspect Ratio (c/a) 

Fig. 9.8. Prediction of property degradation for changing aspect ratio at a constant 
volume fraction of 0.1. (— E\ and G12; o E3; + G13; A v\2 and V2W 0 fi3 a n d U2Z\ • 
^31 and ^32). An aspect ratio of 1 represents spherical voids whereas an aspect ratio of 
100 represents a penny shaped crack. 

distribution would better represent the data than a normal distribution. 
Therefore, normal and lognormal probability plots for each of the physical 
damage parameters were examined. Probability plots of the physical dam­
age parameters showed that the lognormal distribution described the data 
better than a normal distribution. 

Because the lognormal distribution better represented the physical dam­
age parameters, the logarithms of the damage parameters were taken and 
their relation to the degradation parameter (E3/E1) was investigated by lin­
ear regression (Table 9.1 and Fig. 9.6). No outliers were detected during the 
regression analysis between the modulus degradation and the logarithm of 
damage parameters. For the younger femur Log F was the only damage pa­
rameter which was significantly related to modulus degradation (Table 9.1). 
For the older femur, all parameters were significantly related to modulus 
degradation. All of the logarithm damage parameter values had a signifi­
cant relationship to modulus degradation when they were pooled over age. 
The damage volume fraction, F, had the smallest p values and the great­
est R2 values for all regressions of the logarithm damage parameter values. 
In all of the regressions of logarithm damage parameters described above, 
the sum of the projected crack lengths, ELp4, consistently had greater R2 

values than the sum of the crack lengths, SLj. 

9.5. Results of the Micromechanical Damage Model 

The degradation in the technical constants was modeled for increasing dam­
age volume fraction (F) of microcracks having oblate ellipsoid geometry 
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(Fig. 9.7). As expected, the moduli values approached 0 as the damage 
volume fraction approached 1. The model predicted that £3, 1/31, 1/32 and 
G13 were the most sensitive material properties to accumulation of oblate 
shaped cracks. The Poisson's ratio in the plane of transverse isotropy, v\i 
(— ^21), was insensitive to increasing damage volume fraction. Interestingly, 
the model predicted that 1̂ 3 (= 1/23) should increase with damage accu­
mulation. This was expected since the increase in strain (£3) along the X3 
direction would be greater than the increase in strain (£3) along the xi di­
rection with the accumulation of oblate ellipsoid shaped microcracks. This 
would be expected to increase ^13 (= —£3/61) with an increase in damage 
volume fraction. 

1.02 •, ! . . 

0.000000 0.000026 O.OO0O5O O.0OO07E 0.000100 

Damage Volume Fraction, F 

Fig. 9.9. Linear regression (solid line) for the experimentally observed degradation and 
the degradation predicted by the model (dashed line). For the experimentally observed 
degradation: E3/E1 = - 690 .7F + 0.9911, with R2 = 0.265 and p < 0.05. For the model 
prediction: £ 3 / B i = -14 .05F +1.0000, with B? = 0.9988 and p < 0.05. The dashed line 
was obtained from the regression to the model results within the range of 0 < F < 0.0001. 
The open circle (o) and the plus (+) symbols refer to data from the specimens of the 
younger and older femora, respectively. 

The effect of microcrack morphology on the technical constants was also 
examined at a constant damage volume fraction (F = 0.1) while increasing 
the aspect ratio c/a (Fig. 9.8). An aspect ratio of 1 represents spherical 
voids whereas an aspect ratio of 100 represents a penny shaped crack. The 
modulus in the radial circumferential plane, E\, and 1/12 (= ^21) were in­
sensitive to increasing aspect ratio of the microcracks. The most sensitive 
parameters to increasing aspect ratio were z/31, G13 and E3. Microcracks 
that had an aspect ratio of 100 predicted 6 times more degradation than 
the microcracks that had an aspect ratio of 10 at the assumed constant 
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Fig. 9.10. Percent contribution of histologically observed linear microcracks to the 
degradation in Young's modulus, A, versus damage volume fraction, F, for the younger 
femur (o), older femur (+) and combination of the two femora (solid line). A = 
£*MOD/DEXP> where DMOD and DEXP are the damage parameters denned by (1) for 
the experiment and the prediction, respectively. 

damage volume fraction of 0.1. 

9.6. Comparison of Experimental Results to the 
Micromechanical Damage Model 

The relation between the degradation in longitudinal Young's modulus, E3, 
and damage volume fraction was experimentally determined in the previous 
section. It was of interest to compare this experimentally determined rela­
tion with that predicted by the micromechanical model. For this purpose, 
the equation of the regression line (E3/E1 vs F) fitted to the combined ex­
perimental data was determined and compared to model predictions within 
the experimentally observed range of 0 < F < 0.0001 (Fig. 9.9). Similarly, 
a line was fitted to the model prediction of the relationship between E^jE\ 
and F within the range of 0 < F < 0.0001. 

The model predicted much less degradation than the experimental re­
sults at a given damage volume fraction (Fig. 9.9). The slope of the regres­
sion line fitted to the experimental data was much greater than the slope 
of the regression line that was fitted to the model predictions (—690.7 vs 
-14.05, respectively, Fig. 9.9). 

It is important to note that the experimentally observed degradation oc­
curred due to accumulation of linear microcracks, diffuse damage and possi­
bly other forms of damage that are not known or yet measurable. However, 
the degradation predicted by the model is only due to linear microcracks. 
Thus, it is possible to find the contribution of the linear microcracks (pre-
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dieted degradation) to the total degradation (experimental degradation). 
For this purpose, the damage parameter that was defined in eqn. (1) was 
obtained for the experiment, .DEXP> and for the prediction, I?MOD : 

DEXP = 1 - ( T T ) = 1 - aExpF - 6EXp, (21) 
V - k l / E X P 

-DMOD = 1 - I T T = 1 _ CIMODF — &MOD- (22) 
V - k l / M O D 

Where {ES/EI)EXP
 ls the equation of the line obtained by regression of 

the experimental data (younger, older, and combined), ( . E ^ / E ^ M O D is the 
equation of the line obtained by regression of the predicted data, and OEXP 

and CIMOD are the slopes of the regression lines for the experimental and 
predicted data, respectively. The slopes, a^,xp, for the experimentally de­
termined regression lines were —338.6, —1113.7, and —690.7 for the younger 
femur, older femur and for the combination of the two femora, respectively. 
The slope for the model prediction, OMOD, was —14.052. 

The intercepts of the regression lines for the experimental data for the 
model prediction were bexp and bMOD, respectively. The intercept, bExp, 
for the experimentally determined regression lines were 0.9866, 0.9955, and 
0.9911 for the younger femur, older femur and for the combination of the 
two femora, respectively. The intercept for the model prediction, 6MOD ; was 
1.0000. 

Using these slope and intercept values, the percent contribution of the 
histologically observed linear microcracks to the total (observed) degrada­
tion, A, can then be calculated as: 

, _ / - D M O E A _ / 1 - QMOD F - &MOD \ l f ) „ ,„„,. 

V £>EXP / \ 1 — OEXP F - b-EXP J 

Using eqn. (23), A was determined (Fig. 9.10) as a function of volume 
fraction F for the younger femur, older femur and for the combination of 
the two femora. Interestingly, the model predicts that only 2.97% (younger 
femur), 1.21% (older femur), and 1.80% (combination of the two femora) 
of the observed degradation is due to the accumulation of histologically 
observed linear microcracks at F = 0.0001. 

Ideally, the intercepts of the regression lines should be unity since, at 
F — 0, the degradation, E3/E1, is equal to 1. The intercepts of the ex­
perimental regression lines are close to unity but still differ from unity due 
to experimental scatter. If 6EXP is assumed to be 1, eqn. (23) becomes 
Ai = (OMOD/OEXP) X 100 (where Ai is the value of A when &EXP = !)• The 
percent contribution of histologically observed linear microcracks to the 
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total degradation, Ai, becomes 4.15%, 1.26%, and 2.03% for the younger 
femur, the older femur and the combination of the two femora, respectively. 

The damage volume fraction, F, was calculated using the apparent vol­
ume, Vs, of the histological sections. However, cortical bone tissue has an 
inherent porosity. The volume fraction of damage would increase if it were 
calculated by accounting for the inherent porosity in the bone tissue: 

^ Vs-PVs Vsl-P 1-P' V ' 

where Fp is the damage volume fraction when the inherent porosity is ac­
counted for, VD is the total volume of damage within a specimen, and P is 
the inherent porosity of the bone tissue. Knott [Knott (2000)]13 reported 
the porosity of the younger femur and the older femur used in this study 
as 3.9% and 7.9%, respectively. Using these porosity values, the damage 
volume fraction was recalculated using eqn. (24). The increase in the dam­
age volume fraction by accounting for the porosity did not affect the results 
greatly. The percent contribution of linear microcracks, Ai, becomes 4.32%, 
1.37% and 2.12% when the inherent porosity is taken into consideration. 

9.7. Discussion 

In this study, human cortical bone tissue was damaged under tension and 
the degradation in the Young's modulus along the longitudinal axis was 
monitored. Other material properties have been used to monitor the pro­
cess of degradation and the choice of these parameters affects the results. 
For example, [Jepsen et al. (1999)]12 have showed that the degradation in 
torsional relaxation is not significantly related to numerical crack density 
while the degradation in torsional stiffness is significantly related to numer­
ical crack density for human cortical bone. Young's modulus is a reasonable 
material property to monitor as an indicator of damage, as opposed to a 
secant modulus, because Young's modulus is likely not as influenced by 
anelastic effects in cortical bone [Jepsen et al. (2000)]n. 

A limitation of this study was that the specimens were obtained from a 
single younger femur and a single older femur. Thus, it is difficult to draw 
rigorous conclusions with respect to age effects on the observed differences 
in the microcracks. However, it is still interesting to compare the younger 
and older femora results. 

It was found that the mean crack length, LM, increased as the mean 
crack orientation, (3M, approached the longitudinal axis of the bone. This 
result is expected since crack growth becomes easier for orientations closer 
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to the longitudinal axis of bone tissue ([Behiri and Bonfield (1989)]2). In 
addition, cracks that are propagating at closer angles to the longitudinal 
axis of the bone would be expected to grow longer before encountering 
a microstructural barrier as compared to cracks that grow in the radial 
circumferential plane. 

In this study, the objective was to develop a damage parameter that 
would be more mechanistic in comparison with damage parameters like 
crack number ([Jepsen et al. (1999)]12) or area fraction of damage ([Burr 
et al. (1998)]5). For this purpose, microcrack morphology was partially 
accounted for by measuring the crack length and the crack orientation. 
The crack orientation was of additional interest since it was hypothesized 
that the degradation of Young's modulus along the longitudinal direction 
would be better explained by the projection of the microcrack lengths, Lpi 

on the radial-circumferential plane rather than by the measured lengths, 
Li (Fig. 9.3). In this analysis, damage was treated as a vector ([Talreja 
(1985)]21), such that, if a crack does not have a component along a plane, 
then it will not lead to property degradation along the direction perpendic­
ular to that plane. Vectorial consideration of damage has been successfully 
used to model the stiffness reduction in graphite fiber-epoxy matrix com­
posites due to accumulation of transverse cracks ([Talreja et aL(1992)]22). 
In support of the hypothesis, the regression analyses showed that the R2 

values for the sum of the projected crack lengths, TiLpi, were always higher 
than the R2 values for the sum of the crack lengths, T,Li (Table 9.1). The 
volume fraction of damage, F, was obtained by normalizing the total volume 
of damage by the volume of the histological sections. This modification fur­
ther improved the relationship between damage and degradation processes 
such that, for every regression analysis, F had the best R2 value for both 
the younger femur and the older femur as well for their combination. 

The projections of the microcracks on the radial-circumferential plane 
were approximated as oblate ellipsoids. Taylor and Lee ([Taylor and Lee 
(1998)]23) previously predicted that a linear microcrack could be repre­
sented as an ellipse whose major axis is lying close to the longitudinal axis. 
The projection of this ellipse on the radial-circumferential plane would 
also be an ellipse. However, no Eshelby's tensor solution for this shape 
was found. Thus, in this study, the projection of the ellipse on the radial-
circumferential plane was idealized as a circle, for which the Eshelby's tensor 
exists. 

Approximation of the projected crack as an oblate ellipsoid (that ap­
pears circular in the section taken along the radial circumferential plane) 
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allowed for determination of the microcrack volume, V,. As noted previ­
ously, this calculation depended on the c/a ratio, which was assumed to be 
10. Ideally, the c/a ratio would have been obtained experimentally. The to­
tal volume of damage, VD, and the damage volume fraction, F, is inversely 
proportional to the aspect ratio, i.e. a tenfold increase in aspect ratio would 
lead to a ten fold decrease in YD and F. Consequently, for a tenfold in­
crease in aspect ratio, the slopes of the regression lines would increase ten 
fold while the intercepts would be unchanged. However, a tenfold increase 
in the aspect ratio does not alter the significance of the regression analyses. 
A tenfold increase in the aspect ratio increases the slope of the regres­
sion line predicted by the model by 9.3 times, which compensates the ten 
fold increase in the slopes of the regression lines obtained experimentally. 
Therefore, the contribution of histologically observable linear microcracks 
to property degradation (see eqn. (23)) is not altered significantly due to 
increasing aspect ratio. This argument is also valid for the decreasing aspect 
ratio. 

As opposed to phenomenological models ([Griffin et al. (1997)]9), the 
proposed micromechanical model accounts for both microcrack morphology 
and anisotropy of damage using a tensorial approach. However, only oblate 
ellipsoid shaped cracks perpendicular to the longitudinal axis can be mod­
eled. This is due to the lack of an Eshelby's Tensor solution for an oblate 
ellipsoid shaped crack that is inclined to the plane of transverse isotropy. In 
the future, the model will be developed further in this respect by determin­
ing the Eshelby's tensor that would also account for the orientation of the 
microcracks. Nonetheless, the model provided insight into the approximate 
contribution of histologically observable linear microcracks to the observed 
degradation in Young's modulus. 

An important limitation of this study was that it was not possible to 
separate damage that was formed in vivo and damage that occurred during 
specimen machining from the damage induced during tensile loading. This 
could have been achieved by labeling the damage with a stain that has 
a different color than basic fuchsin prior to mechanical loading ([Lee et 
al. (2000)]15). If the background damage was isolated in this fashion, the 
observed damage volume fraction would be lowered, though the amount is 
unknown. 

The results suggested that linear microcracks accounted for less than 5% 
of the observed degradation (Fig. 9.9). Had the background damage been 
accounted for, the contribution of the linear microcracks to degradation 
would have been even lower. The remaining degradation is likely due in part 
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to diffuse damage tha t is formed by arrays of submicroscopic cracks ([Boyce 

et al. (1998)]3). Like the cracks at the microscale, these submicroscopic 

cracks will also contribute to the damage volume fraction. However, not 

much is known about the morphology and density of these submicroscopic 

cracks. Gaining insight into these aspects of submicroscopic cracks is crucial 

to more fully explaining material property degradation. Finally, it is also 

possible tha t an, as of yet, unidentified or undetectable mode of damage 

contributes to material property degradation in cortical bone tissue. 
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An evolution of three solid elements for thermal-mechanical finite ele­
ment analysis (FEA) is presented. The elements were developed for a 
research-based FEA code for which the principal application was three-
dimensional FEA of manufacturing processes such as welding. The evo­
lution began with the 8-to 26-node hexahedron which permitted rapid 
grading from a fine mesh in the area of interest, typically the fusion 
zone, to a coarse mesh in the far field. A nonconforming 8-to 26-node 
hexahedron and an 8- to 16-node solid shell followed. The nonconform­
ing element provided superior performance especially in areas involving 
bending and quickly became the preferred element. The evolution of the 
hexahedron to the solid shell then permitted the use of thinner elements 
in the far field. A further step to a nonconforming shell is proposed for 
the continued evolution of this element group. 

1 0 . 1 . I n t r o d u c t i o n 

The finite element method is one of the most widely available numerical 

analysis techniques. It can be used in a variety of thermal, stress, thermal-

stress, dynamic and other problems. In recent years, a number of famil­

iar commercial finite element packages and C A D / C A M products have ap­

peared. New elements appear only rarely in such commercially available 

codes and only after substantial testing. 

Finite element analysis (FEA) of manufacturing processes such as weld­

ing is handled by few commercial F E A products as advanced computat ional 

techniques and complex material models are required for these thermal-

mechanical processes. Research-based FEA codes are an appropriate av-
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enue for the examination of such processes and elements which address the 
particular concerns of the developer may evolve to address the developers' 
concerns. Here, the evolution of three solid elements for a research-based 
FEA algorithm is presented. The 8- to 26-node linear hexahedron intended 
primarily for hexahedral mesh grading without the use of tetrahedrons was 
developed from a two-dimensional (2-D) 4- to 8-node linear quadrilateral. 
A nonconforming version of the same hexahedron which provided better 
response in areas with bending followed, as did an 8- to 16-node solid shell 
element for use in areas of the structure requiring a thinner element. 

In the case of the thermal-mechanical FEA algorithm for which the el­
ements were developed, an updated Lagrangian formulation in which ther­
mal histories are used to compute thermal expansion, stresses and strains 
is employed. Good agreement with experiment has been established; e.g., 
[McDill et al. (1990)]16, [Oddy et al. (1990)]23, [McDill et al. (1992)]18. The 
constitutive model embedded in the stress analysis includes elastic, plastic 
and thermal strains as well as strains, due to volume changes and the trans­
formation plasticity, which occur during phase changes. The large strains 
and rotations that may take place are accommodated in a finite deforma­
tion algorithm which uses the Green-Naghdi stress and centred strain. A 
direct frontal solver and an iterative conjugate gradient solver are available. 

10.2. 8- to 26-Node Linear Hexahedron 

The need for three-dimensional (3-D) thermal-mechanical FEA analysis 
for welding, and similar processes, was known early in the development 
of the algorithm; e.g., [Goldak et al. (1986)]6. At the time, mesh grading 
was essential to reduce computational costs. The 8- to 26-node hexahedron 
allowed the required grading to occur while, at the same time, eliminating 
the need for implementation of tetrahedral elements. 

The 8- to 26-node linear hexahedron (Figs. 10.1(a) and 10.1(b)) is for­
mulated [McDill et al. (1987)]15 much like the familiar 8-node linear brick 
using a standard isoparametric approach; i.e., 

Ni(^,Vj) = Stj. (1) 

This 3-D element evolved from a 2-D 4- to 8-node linear quadrilateral 
[McDill et al. (1987)]15, [MacNeal and Harder (1985)]14. In the 3-D element, 
nodes 1 to 8 are mandatory vertex nodes. Additional, but optional, nodes 
facilitate grading. Nodes 9 to 20 are optional midedge nodes and nodes 21 
to 26 are optional midface nodes. These optional nodes may be used in 
any desired combination and create smooth (C°° continuous) subelements 
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within the element. Within each subelement the basis functions are lin­
ear. However, the basis functions for the midface nodes and midedge nodes 
as well as their adjacent corner nodes, are creased at the junction of the 
subelements and are, therefore, C° continuous. No irregular nodes [Rhein-
bolt and Meszenteyi (1980)]27 or external constraint equations [Somervaille 
(1972)]30, are needed for the optional nodes, since compatibility is inherent 
in the basis functions. 

The presence of a midface node alters the basis functions of those mid-
edge nodes present on that face as well as the corner nodes on that face. 
Similarly, a midedge node, alters the basis functions of the corner nodes on 
that edge. Basis functions (Table 10.1) should be evaluated, in decreasing 
order, from N26 to N\. When a node is not present all references to it are 
removed from Table 10.1. 

Fig. 10.1. Nodal positions for the 8- to 26-node linear hexahedron; (a) corner and 
optional midedge nodes; (b) optional midface nodes 

Factoring the stiffness matrix is the most costly portion of FEA when 
using a direct solver. This cost, C/, is proportional to the number of degrees 
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of freedom in the problem df, and to the square of the frontwidth fw (or 
bandwidth): 

Cf(xdfx (A,)2. (2) 

With the 8- to 26-node hexahedron, grading can be done so that the 
characteristic dimension, h, doubles in the neighbouring element (2:1 grad­
ing). The cost ratio, Cr for an equivalent uniform mesh with m elements 
on an edge will approach the limit: 

Cr « ^ - y (3) 
0(log2m) 

Naturally, the cost advantage of binary grading seen with Cr is not as 
easily exploited in an indirect solver; e.g., conjugate gradient, nevertheless 
it provided a useful point of comparison. 

Table 10.1. Basis functions JVj for the 8- to 26-node hexahedron. 

Node N(£,r),C, 

~~^6 4 ( i - K I ) ( i - M ) ( i - 0 
25 f ( i -KI ) ( i -M) ( i + 0 
24 l ( l - | « l ) ( l - r ? ) ( l - | C I ) 
23 1(1 _ | £ | ) ( i + , , )(! _ | C | ) 
22 l ( i - 0 ( i - W ) ( i - ! C I ) 
2i | ( i + 0( i -M)( i - ICI) 
20 1(1 + 0 ( 1 - » ? ) ( ! - I d ) - 1 ( ^ 2 1 + ^ 2 4 ) 
19 | ( 1 " 0 ( 1 - » ? ) ( 1 - | C I ) - 1 ( ^ 2 2 + ^ 2 4 ) 
18 1(1-£)(! +r))(l - \C\) - HN22 + N23) 
17 | ( 1 + 0 ( 1 + »7)(1 - ICI) - |(JV2i + JV23) 
16 1(1 + 0 ( 1 - M X 1 - 0 - 1 ( ^ 2 1 + J V 2 6 ) 
15 I ( l - K I ) ( l - ' 7 ) ( l - 0 - 1(^24 + ^26) 
14 | ( l - 0 ( l - | » 7 l ) ( l - C ) - | ( i V 2 2 + i V 2 6 ) 
13 i ( l - K I ) ( l + »7 ) ( l -C) - i ( JV23+JV26) 
12 | ( 1 + 0 ( 1 - M ) ( l + 0 - 1 ( ^ 2 1 + ^ 2 5 ) 
11 1(1 - Ifl)(l -«?)( ! + 0 - 1 ( ^ 2 4 + ^ 2 5 ) 
10 | ( 1 " 0 ( 1 - M ) ( l + 0 - 1 ( ^ 2 2 + ^ 2 5 ) 
9 | ( 1 - |^|)(1 + 7/)(l + C) - I(JV23 + JV25) 
8 | ( 1 + 0 ( 1 - V)(l - 0 " h(N15 + N16 + N20) - \(N2i + N24 + N26) 
7 | ( 1 - 0 ( 1 - ^)(1 - 0 - l(Ni4 + N15 + N19) - |(JV22 + N24 + N26) 
6 I ( 1 - 0 ( 1 + ??)(1 - 0 - l(ATi3 + N14 + N18) - | ( iV2 2 + N23 + N26) 
5 1(1 + 0 ( 1 + ^)(1 - 0 - |(ATi3 + JVie + N17) - |(7V21 + 7V23 + N26) 
4 | ( 1 + 0 ( 1 - r?)(l + 0 ~ |(JVii + N12 + N20) - |(JV2i + iV24 + JV25) 
3 I ( 1 - 0 ( 1 " v)(l + 0 - |(ATio + JVn + Nlg) - \(N22 + N24 + JV25) 
2 | ( 1 - 0 ( 1 + » ? ) ( 1 + 0 - 5 ( ^ 9 + J V i o + J V i s ) - 5(^22 + ^23 + ^25) 
1 1(1 + 0 ( 1 + ^ ( 1 + 0 " | ( ^ 9 + JV12 + JV17) - \{N21 + ^23 + N25) 

The 8- to 26-node hexahedron very quickly became the mainstay of 
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thermal, stress and thermal-stress analyses and was essential in demon­
strating the feasibility of early 3-D thermal-mechanical analysis of welds; 
e.g., [Goldak et al. (1986)]6. The use of other types of elements such as the 
20-node quadratic hexahedron was discontinued, simplifying continued de­
velopment of the FEA code. However, selective reduced integration [Hughes 
(1987)]8 was introduced for the 8- to 26-node hexahedron to deal with con­
cerns during plastic deformation. The element, like other elements which 
utilize low order polynomials to model the displacement field, can be un­
suitable for plasticity [Nagtegal et al. (1974)]22. For a typical mesh, the 
incremental incompressibility condition may create too many constraints. 
When there are insufficient degrees of freedom to accommodate the in­
compressibility constraints, a form of locking occurs. This can be avoided 
through the application of reduced integration (quadrature) on the hydro­
static terms and normal integration of the deviatoric terms of the stiffness 
matrix. 

The introduction of selective reduced integration, however, came at a 
price. Hughes [Hughes (1987)]8 noted that continuous pressure elements; 
i.e., those possessing identical displacement and pressure interpolations, 
may exhibit spurious pressure modes. A well-known example of this situa­
tion is seen in the failure of the 8-node linear brick, using selective reduced 
integration, in the patch test [MacNeal and Harder (1985)]14. A cube com­
posed of 7 distorted 8-node elements subjected to uniform strain, should 
develop a uniform stress field. With selective reduced integration, there is 
a variation in the hydrostatic stress although the deviatoric stresses are 
uniform as expected. 

Another concern with the 8- to 26-node hexahedron was noted in 
thermal-elasto-plastic analysis. The element produces temperature or dis­
placement fields which are linear functions of the three Cartesian coor­
dinates. The use of selective reduced integration alone is insufficient in a 
thermal-elasto-plastic analysis if the thermal and transformation strains 
vary over the element [Oddy et al. (1990)]24. For this reason, isothermal el­
ements were typically employed in the stress analyses to produce consistent 
strain fields. 

10.3. A Nonconforming 8- to 26-Node Hexahedron 

The next step in the evolutionary process was to enhance the behaviour 
of the 8- to 26-node hexahedron in the stress portion of the thermal-
mechanical analysis, eliminating the disadvantages discussed above. The 
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nonconforming 8- to 26-node hexahedron was chosen over higher order el­
ements or p-refinement, since the grading capability of the 8- to 26-node 
hexahedron was essential. Typically, to minimize computing costs and still 
achieve reasonable accuracy, the mesh is graded so that small elements are 
used in the vicinity of some localized effect, such as a heat source, and 
larger elements are used further away. 

The 8- to 26-node hexahedron was modified through the introduction of 
nodeless quadratic modes sometimes referred to as bending modes. Three 
nodeless modes, each with three degrees of freedom were associated with 
the centroid of each subelement [McDill and Oddy (1994)]20. The resulting 
element is nonconforming (subparametric); i.e., the displacements are not 
continuous between the elements. 

The geometry of the nonconforming element is described with the stan­
dard basis functions presented in Table 10.1; e.g., 

n 

y = Y^,NiVi> 8 < n < 2 6 . (4) 

It is well known that a single linear element, when subject to bend­
ing, responds in shear. This parasitic shear can be corrected if quadratic 
modes of deformation; i.e., pure bending, are incorporated in the element 
formulation [Hughes (1987)]8, [Chandra and Prathap (1989)]3. 

For the nonconforming hexahedron the displacements are modified to 
include the necessary quadratic modes. In equations (5), (6) and (7), <j>i 
are the new basis functions for bending modes; «$, /%, and 7* are their 
coefficients and the new degrees of freedom. 

£ Ni Ui + J2 4>iOii, 8 < n < 26, (5) 

v = Y,Nivl + J2 <t>iPi\ 8 < n < 26, (6) 

w = Y^Niwl + J2<pat 8<n<26 . (7) 
i=\ i = l 

If there are no optional nodes then 

</>l = l - £ 2 , 02 = 1 - ^ , 03 = 1 - ^ . (8) 
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In practice, optional nodes are essential. Accordingly, a convenient gen­
eral formulation was adopted to avoid dealing with the many possible com­
binations of optional nodes. As optional nodes are added each sublement 
becomes nonconforming and the basis functions become double-humped; 
e.g., 0i = 4|£|(1-|£|) expands to </>i = 4(|£| - 1 ) + 4(1 - | £ | 2 ) . The double-
humped basis function is used only for the Gauss point in the subelement 
of interest and is zero elsewhere. Table 10.2 summarizes the new additional 
basis functions required to convert the regular 8- to 26-node hexahedron to 
a nonconforming 8- to 26-node hexahedron. 

Table 10.2. Additional basis functions — Noncon­
forming hexahedron. 

Nodes present 
1,2,3,4,5,6,7,8 
1,2,3,4,5,6,7,8 
1,2,3,4,5,6,7,8 

9,11,13,15,23,24,25,26 
10,12,14,16,21,22,25,26 

4> 
4>i = i - e 
4>2 = l-rj2 

03 = 1 - C2 

4>i = 4 ( | £ | - l ) + 4 < £ i 
4>i = 4(M - 1) + 4«!.2 

17,18,19,20,21,22,23,24 fo = 4(|C| - 1) + 4<fo 

To allow a distorted nonconforming hexahedron to satisfy the patch test, 
the appropriate strain-displacement matrix terms for the nodeless modes for 
each subelement were modified so that derivatives of x, y, and z with respect 
to £, rj, and £ were replaced by their values determined at the subelement 
centroid. The portion of the B matrix associated with the bending degrees 
of freedom for the first nodeless mode, B\, is: 

B i 

dx 
o 

dy 

0 
d4>i 
dz 

0 0 ' 
^ 0 

0 ^ dz 
^ 0 
ox 
dz dy 
0 dx 

Terms in B\ are replaced as follows: 

_ [Jooo]~ det [Jgp\ 

dz 

det [ J( ooo 
dn 

M i 

(9) 

(10) 

where [Jooo] i the inverse of the Jacobian matrix, is evaluated at the cen­
troid of a subelement. The determinants det [Jooo] and det [Jgp] refer to the 
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determinant of the Jacobian matrix evaluated at the subelement centroid 
and the Gauss point of interest, respectively. 

The displacements associated with the nodeless modes are clearly spe­
cific to each element and are eliminated at the element level using static 
condensation and recovery [Cook (1981)]4. Additional costs are incurred 
with the condensation of the stiffness matrix and recovery of the displace­
ments associated with the nodeless modes. However, integration over the 
volume is less costly for a nonconforming 8-node hexahedron than for a 
20-node quadratic brick since there are fewer Gauss points. Also, with the 
nodeless modes used, the cost of factoring the global stiffness matrix, when 
using a direct solver, does not increase. 

In linear elastic FEA, the basis functions for the nodeless modes should 
not be included when integrating over surfaces or volumes in the calculation 
of consistent force vectors [Hughes (1987)]8. The stress divergence is zero 
for the nodeless modes because no external forces or reactions are permitted 
on these degrees of freedom. 

[ BTacM = Fext=Q. (11) 

In a materially nonlinear FEA the stress state, a, is modified for plastic­
ity [Schreyer et al. (1979)]28 requiring an iterative solution. The modifica­
tion of the stress field means the integral of the stress divergence associated 
with the nodeless modes is nonzero; i.e., there is a residual R. 

I BTa'dft = R, (12) 
Jn 

R was included in the force vector for the nodeless modes during conden­
sation and recovery in all iterations. So, although external forces cannot 
directly excite the nodeless modes, thermal strains and residuals in nonlin­
ear analyses may do so. 

10.4. Nonconforming Elements in Thermal-Mechanical 
Analysis 

The use of nonconforming 8- to 26-node hexahedrons was found to be ap­
proximately 20% more expensive than the use of selective reduced inte­
gration. This is a modest increase when it is considered that replacing all 
the linear hexahedrons with their nonconforming counterparts actually in­
creases the number of degrees of freedom by about two and a half times. 
However, if need be, adaptive techniques; e.g., [McDill et al. (1991)]17 
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[McDill and Oddy (1993)]19 can be modified so that nonconforming ele­
ments are used only in the areas of the mesh in which they would be of 
most benefit. 

The nonconforming element provided a significant improvement in 
thermal-mechanical FEA. It quickly superseded the regular 8- to 26-node 
hexahedron. For example, it was used in the combined experimental and 
FEA investigation of a weaved repair weld on a 2.25Cr-1.0Mo steel. The 
investigation [Oddy et al. (1999)]25 provided an opportunity to validate 
numerical predictions against experimental measurements for a demand­
ing case including complex 3-D thermal fields and stress fields caused by 
the oscillating path of the arc, phase transformations including transfor­
mation plasticity, temperature-dependent material properties and surface 
convection. 

Neutron diffraction measurements of residual stresses for a sampling 
volume of 0.3 cm x 0.3 cm x 0.3 cm were made for three, identical welds 
on plates 25.4 cm x 25.4 cm x 1.9 cm. A fourth welded plate was used 
as a reference for the unstrained lattice parameters for the base metal, 
heat-affected zone and the fusion zone. All plates were taken from a single 
larger plate. The weaved patch was restricted to a rectangle 5 cm long with 
oscillations of 2.5 cm. The arc was on for 60 s with an average welding 
speed of 1.03 cm/s. Measurements of the three normal stress components 
were made on two traverses on the top and bottom surfaces as well as one 
through the thickness at the weld centre. 

FEA of a weaved repair weld on a 2.25Cr-1.0Mo steel plate was then 
performed to compare the FEA residual stress predictions with those de­
termined experimentally by neutron diffraction. In the FEA, creep strains 
were neglected since the time spent at high temperatures was small. Fig­
ure 10.2 shows the 5724-element mesh used for both the thermal and stress 
analyses. The 8- to 26-node hexahedron allowed a rapid transition from 
one element through the thickness at the edge of the plate to four elements 
through the thickness at the center of the plate. The thermal analysis al­
lowed surface convection through 2740 surface elements. The stress analysis 
used nonconforming 8- to 26-node hexahedrons with the equivalent of over 
30,000 nodes. Temperature-dependent thermal and mechanical properties 
were taken from a variety of sources; e.g. [BISRA (1953)][BISRA (1953)]2, 
[Alberry and Jones (1977)]x as well as from dilatometric measurements 
[Oddy et al. (1999)]25. 

Fig. 10.3 shows the longitudinal stress distribution computed from the 
top surface on a longitudinal scan along the weld centerline. It includes 
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Fig. 10.2. Mesh used in the thermal and stress analyses of the weaved weld (L - longi­
tudinal direction, T - transverse direction) 

experimental average from three plates with a measurement precision er­
ror bar of 30 MPa equal to plus or minus one standard deviation [Oddy 
et al. (1999)]25. The agreement between the FEA predictions and experi­
mental measurements was found to be good with essential features found 
experimentally, reproduced in the FEA predictions although in the fusion 
zone the magnitude of the predicted stresses differed somewhat from ex­
periment. Concerns raised in the project included the difficulty in finding 
suitable material properties as well as the size of the variations typically 
found in welds made in laboratory conditions. Field welds would presum­
ably be subject to even larger variations. 

10.5. 8- to 16-Node Solid Shell 

The 8-to 26-node hexahedron was noted early on to have limitations in 
applications in which the elements were required to be thin (even just a 
little thin). The through-thickness behaviour of a linear hexahedron when 
used as a shell-like element contributes to a vastly overstiff [K] and leads 
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Fig. 10.3. Longitudinal stress distribution at the weld centerline, top surface 

to results which are near-zero. Linear elements used in this way also have 
problems related to transverse shear and bending. The limitations of lin­
ear hexahedral elements in applications where thinness is needed are well 
understood; e.g., [Hughes et al. (1977)]10, [Parisch (1995)]26. An analyst, 
unfamiliar with this issue using an element aspect ratio, ,47?., of even 5 for 
example, may produce meaningless results in analyses involving bending. 

These problems were less severe when the nonconforming elements were 
used. Nevertheless, it was clear that a solid shell was needed for modelling 
in the far field, away for example, from the severe thermal and stress gra­
dients associated with the weld pool. In keeping with the original goals of 
limiting the number of different element types, special special shell-to-brick 
transition elements were not developed. Instead, solid shell and hexahe­
dral elements were to co-exist within the mesh using the optional nodes to 
make a natural transition. A survey of past thermal-mechanical analyses 
suggested the solid shell required an ATZ of up to about 100. 

Cumbersome rotational degrees of freedom seen in the degenerate 
Hughes and Liu shell [Hughes and Liu (1981)]9 were avoided by using 
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displacement degrees of freedom similar to that of [Parisch (1995)]26 and 
[Kanok-Nukulchai et al. (1981)]11. Displacement degrees of freedom were 
more practical from an implementation point of view. With the selection 
of displacement degrees of freedom, an 8- to 16-node shell as shown in 
Fig. 10.4 was developed from the original 8- to 26-node hexahedron. Eight 
mandatory vertex nodes are accompanied by pairs of midedge nodes on the 
upper and lower surfaces of the shell; e.g., 9 and 13. The optional node 
pairs permit mesh grading and may be used in any combination. As with 
the original hexahedron, a pair of midedge nodes alters the basis functions 
of the corner nodes on two edges and creates smooth (C°° continuous) 
subelements within the element. 

The solid shell is incrementally objective (rigid body rotations do not 
generate strains), it includes finite transverse shear strains, and has a 
through-thickness thinning capability [Gallbraith and Hallquist (1995)]5. 

Fig. 10.4. Nodal positions in the 8- to 16-node solid shell 

In a degenerated shell, the static constraints are usually those of zero-
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normal stress and zero-normal stress rate [Stanley et al. (1986)]31. To ac­
commodate the static constraint in the formation of the stiffness matrix, 
it was decided to use a modified plane stress D matrix similar to that 
of [Kanok-Nukulchai et al. (1981)]11. Compatibilty with the effective stress 
function [Kogic and Bathe (1987)]13 was critical for the analysis of creep and 
other similar phenomena seen in thermal-mechanical FEA; e.g., [Svobda 
et al. (1998)]33. 

The kinematic constraints [Stanley et al. (1986)]31 are those of straight 
normals and incrementally-rigid normals. A fictitious coefficient applied to 
through-thickness term in the elastic stress-strain matrix, D was used by 
[Kanok-Nukulchai et al. (1981)]11. Here, a through-thickness degradation 
factor, df, based on AJZ is applied to the strain-displacement matrix, B. 
This allows the element to be thinner without ill-conditioning of the stiffness 
matrix. Transverse shear locking and membrane locking that also seen in 
thin hexahedral elements, are eliminated by reduced integration. 

The evolution of the solid shell required a smooth integration in the 
existing FEA software. For this reason the element was developed in the 
isoparametric style with the normal global (x, y, z) to isoparametric (£, 77, C) 
relationship preserved through the Jacobian matrix. The shell is initially de­
fined by a reference surface at £ = 0. Laminae are established at the planes 
of the Gauss points parallel to the reference surface. The isoparametric style 
is limited slightly in that £ must be oriented in the thin through-thickness 
direction of the element. 

A local lamina coordinate system is established at each Gauss point. 
The transformation from the global coordinate system to the local (and 
vice versa) is constructed from two base vectors tangent to the lamina and 
the normal. The lamina surface base vectors are as close as possible to the 
£ and 77 directions [Hallquist and Benson (1986)]7, [Hughes (1987)]8. The 
stress and strain are evaluated in the lamina system and rotated back to 
the global system as required. 

A fibre coordinate system [Hallquist and Benson (1986)]7, [Hughes 
(1987)]8 is also required for the application of df. A fibre is a line in the £ 
direction for a fixed £ and r\. At each node pair a unique local coordinate 
system is constructed in which one direction coincides directly with the 
fibre direction. 

The displacement of a point is simply the displacement of the refer­
ence surface plus the displacement relative to the reference surface [Surana 
(1980)]32, [Kanok-Nukulchai et al. (1981)]11. Modified relative displace-
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ments [£/* ] improve the through-thickness behaviour of the element: 

[U] E Ni{£,ri,0) Pi. E 
t= i 

Ni&vMUi; (13) 

Ni(i = 1. to n, for 8 < n < 16) extracted from Table 10.1 for nodes 1 
through 16 are evaluated at the reference surface (£ = 0). 

The degradation factor is applied in the fibre direction to the relative 
displacement, Ui. There is a rotation using [5ft], a 3 x 3 rotation matrix, 
into the fibre system, followed by the application of the degradation factor 
using X, followed by a a rotation back to the global system [Hallquist and 
Benson (1986)]7, [Hughes (1987)]8. 

pi\=l^Ji\, (14) 

where: 

10 0 
\Ui 

1 
W top 

un\ m? 0 1 0 

OOdf 
m- (15) 

The value of df is based on ATZ which depends on the characteristic di­
mension, h, and the thickness, t. The latter are extracted from the Jacobian, 
evaluated at the element centroid [Kerlick and Klopfer (1982)]12. Standard 
tests [MacNeal and Harder (1985)]14 provided the relationship between df 
and ATI [McDill et al. (2001)]21. It is helpful to note that a well-formed 
element with the fibre coordinate system aligned with the global axes will 
have df = 1 and Zi = / , the identity matrix. 

df = 2500 x ATI'2 (0 < df < 1). (16) 

Therefore, 

P] = X>i&77,o) [ut] + J2m,v,o)^U(u?p-u?ot)] (17) 

The next step is the development of the strain-displacement relation­
ship. For a linear 8-node brick, [B] for node 1 for strain as a vector with 

(18) 

€yy ^zz 'Jxy lyz TzxJ IS. 

Bi = 

- dNi 
dx 
0 
0 

diVi 
dy 

0 

dNxdz 

0 
gJVi 
dy 

0 
dNi 
dx 

dNi 
dz 

0 

0 
0 

dNi 
dz 

0 
dNi 
dy 

dfti 
dx 
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Collecting all relevant terms from nodal pairs; e.g., nodes 1 (top) and 5 
(bottom), and those contributed by X gives B for the 8- to 16-node solid 
shell: e.g., the first column in B\ is: 

3 N i , a ( J V i C ) T 

dx "•" dx X H 
d(NtC), 

dy 
^ 2 1 

dz 

dy 
a ( J V i Q T 

9y M l 
a(JViC) 

dx Z21 

0 y
 2 3 1 H fl^^-21 

02 
O(iViC) 

1 1 1 ^ f ^ 

(19a) 

Similarly the second and third columns in B\ are: 
d(NlC) X12 

3(JViC) T -£-22 

0a: 
OJVi 
9y ' Oy 

a(JViC)T . 
a.- x-

dN± 

3iVi , awe) 
3z "•" dz 

L32 
9 ( J V i O T 

222 + 

^ M ) X l 2 + a (^C) l 3 2 

3l/ X 32 

ax 

dx 13 
a(JViC) 

dy 

az 

I 

+ 
23 

a(iViC) 
dz 

Sy I c i ax 
aiVi , a(JViC)T 
8y """ 3y 3 3 

ajv j , a(JViC) 

-2-33 

< W ) j 2 3 

a ( ^ i C ) 

Ox + dx ^ 3 3 

az 
(Ni 
8z 

a ( A / i Q j 
I 2 3 

13 

(196) 
The modified plane stress 1? matrix is in the lamina system. Since B 

is in the global system, D is rotated from the lamina coordinate system to 
the global coordinate system when the stiffness matrix is calculated: 

D = 

Ev 
l - i / 2 

E 
1 - i y 2 

l - i / 2 

0 
0 
0 
E 

2(1+1;) 

symmetric 

0 
0 
0 
0 
E 

2 ( 1 + J ; ) 

0 

0 

0 

0 

0 
E 

2(1+1/) 

(20) 

Selective reduced integration [Hallquist and Benson (1986)]7 alleviates 
any transverse shear and membrane locking. Unlike typical shell formula­
tions, here B is in the global system. Hence only those terms in the lamina 
which require reduced integration are considered. The transverse shear and 
membrane strains in the lamina system are treated as components of the 
strains in the global system. 

A local abc system is established in each lamina so that j a c and 7bc are 
transverse shear strains and ^ab is the membrane strain. Consider a lamina 
transverse shear strain of interest; e.g., 7(,c. 
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In the B approach this strain is replaced by 76c where 00£ refers to 
the lamina centroid. 

The global strain tensor is converted to find the tensor shear strain in 
abc. Consider the scalar e{,c. 

Ebc [P]: -xyz\i (21) 

where: [P] and [exyz] are 3 x 3 tensors and : is the scalar product notation. 
Since [P] involves [b] and [c], it describes the direction of e(,c in the strain 
space. 

1 
[P] ([ci c2 c3] [6i b2 b3] + [6i b2 b3] [a c2 c3] 

where, e.g, c\ is the x component of [c], exz — 'jxz/Z and 

-xx ^xy ^xz 

~xy ^yy ^yz 

After expansion it can be shown that: 

Jbc 2[Pll Pl2 -P33 Pvi P23 P3l][£xx eyy ezz Ixy lyz Izx] 

(22) 

(23) 

(24) 

7bc is the magnitude of the component of the global strain in the be direction 
and should be removed from [e] and replaced by 7bc • 

The tensor (or direction) of 7(,c is now required, 

cxyzl [Ph be-

A further expansion gives: 

cxx cyy zz Ixy lyz IzxY = [Sbc] [B] [U]. 

(25) 

(26) 

Si)C is a 6 x 6 matrix which takes the strain in xyz, finds the magnitude of 
the component of the global strain e in the 7(,c direction; i.e., the direction of 
•jbc in the strain space, and then creates the tensor for the strain component 
that should be removed from the global strain e. 

From the Gauss point strain in xyz; i.e., [S][(7], remove the local con­
tribution of 7(,c and add 7bc : 

[e] = [B][U] - [Sbc}[B}[U] + [S°b
0J}[B0°i][U], (27) 

[e}=\[I]-[Sbc}[B} + [S0
b°c'

:}[B^]\lU}. (28) 

In effect [e] = [£?][[/]. This approach is repeated for the other transverse 
shear strain and the membrane strain. 
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For the FEA implementation, [a], [b] and [c] are constructed at the 
lamina centroids and [<Sbĉ ], [iS™1"], [Sab ] and [B00^] are evaluated. [<Sbc], 
[<Sac], [Sat] and [B] are evaluated at each Gauss point. 

The final step in the development of the solid shell was its incorporation 
with the effective stress function (EFS) [Kogic and Bathe (1987)]13. Given a 
set of displacements calculated by a frontal solver or the conjugate gradient 
solver, strains, stress, internal loads and residual loads can be determined. 
In this case the algorithm uses a temperature-dependent yield criterion 
(von-Mises) with isotropic-kinematic work hardening. From an estimate of 
the deviatoric total strain increment, the deviatoric stress is found using 
the ESF for standard elasto-plasticity and creep. For finite deformation, all 
plasticity correction is done in the initial orientation and then transformed 
to the final orientation. For the 8- to 16-node shell, there is an iteration 
[Hallquist and Benson (1986)]7 around the ESF routine to satisfy the static 
constraint related to plane stress. The strains are determined in the laminae 
and the stresses are calculated. These stresses are then rotated back to the 
global system. Then, finally, the stress, incremental strain, and plastic strain 
are rotated forward onto the final orientation. 

An addition to the ESF detects whether the problem is materially linear 
or materially nonlinear. In a linear problem; e.g., when there is no plasticity 
or creep, the through-thickness stress from the ESF is modified using the D 
matrix (eq. 20) and the through-thickness strain. This stress is then used in 
the calculation of the stress divergence (see eq. (11)) and in the convergence 
of the increment. If the problem is materially nonlinear, the stress is based 
on guesses of strain which are bounded by the through-thickness strain, €33, 
for a fully elastic step and a strain based on a fully plastic step. Iterations, 
j , around the ESF proceed with convergence checked using a strain-based 
limit similar to that of Hallquist [Hallquist and Benson (1986)]7. 

KA^-Aefc1! 1Q_5 

|A4fl 

In a strict shell, the normal stress must be zero but in a thermal-mechanical 
problem this may not be the case if material is restrained by adjacent 
material. For this reason an additional check based on the change in stress, 
CT33, is also implemented and is placed just before the strain-based check. 
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10.6. Solid Shell Elements in Thermal-Mechanical Analysis 

The solid shell element has been useful in linear, geometrically nonlinear 
and material nonlinear problems. The plate patch and rectangular plate 
tests [MacNeal and Harder (1985)]14 have been successfully tested to aspect 
ratios of 1000 or more. However, the solid shell will be used most frequently 
in applications requiring 4̂7?. of up about 100. The Sordelis-Lo Roof and a 
uniaxial tensile test are used here to illustrate the capability of the element 
for use in the far field with aspect ratios in this range. 

Fig. 10.5. Characteristics of the Sordelis-Lo Roof 

The Scordelis-Lo Roof is a challenging problem which incorporates as­
pects of extension, in-plane and out-of-plane shear, twist, bending and 
higher order stress gradients [MacNeal and Harder (1985)]14 and involves 
complex states of membrane stress [Simo et al. (1990)]29. Fig. 10.5 shows 
some of the conditions for the test. The radius of curvature, R, and the 
length, L, are 25.0 and 50.0 respectively. The angle from the apex of the 
roof to the free edge is 40° while t is 0.25. One quarter of the roof is mod-
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elled with 8-node elements (linear hexahedron, nonconforming hexahedron 
and solid shell). The elastic modulus is 4.32 x 108 while Poisson's ratio is 
0. 

A downward load of 90/unit area was applied. Mesh densities of 4 x 4, 
6 x 6, 9 x 9 and 30 x 30 are used for meshes one element thick. 

The accuracy of the solution is based on the displacement at the midside 
node on the free edge. Fig. 10.6 shows the results normalized by 0.3086, the 
classic linear solution. Normalization by 0.3024 is common [MacNeal and 
Harder (1985)]14. Results reported by Simo [S imo et al. (1990)]29 are shown 
for comparison. Locking of simple 8-node bricks is clearly evident at even 
small aspect ratios (less than 5). The nonconforming elements perform well 
to an A1Z of about 10. The new shell does not lock for AH less than 20 
which is associated with a 4 x 4 mesh. The geometry of the problem cannot 
be captured by fewer elements. 

The Scordelis-Lo Roof can also be treated as a geometrically nonlin­
ear (large deformation) problem [Kanok-Nukulchai et al. (1981)]n. In the 
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FEA, the regular hexahedrons and the nonconforming hexahedrons used 
a full Newton-Raphson technique while the solid shell elements required 
a modified Newton-Raphson approach in combination with line search. 
Fig. 10.7 shows locking of regular bricks while nonconforming elements 
perform well for A1Z less than 10. In this case, the results were normalized 
to a displacement of 0.2613, the solution obtained by a very dense mesh of 
nonconforming elements with .47?. less than 2. The new shell element did 
not exhibit locking for .472. less than 20. 

A simple bar fixed at one end with either prescribed loads or prescribed 
displacement applied to the free end in the plane of the shell illustrates the 
use of the shell in a materially nonlinear problem. Several cases including 
low and high hardening modulus, with and without mesh grading and with 
various aspect ratios were all tested with good results. For cases with low 
hardening modulus, Considere's condition, or plastic collapse, was observed 
for A1Z of about 25. In this condition, thinning reduces the load capacity 
more rapidly than strain hardening increases the load capacity. 

Figure 10.8 shows the results for the case with a high hardening modulus 
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and ATZ of about 15. It uses an elastic modulus, E, of 0.2 x 1012; Poisson's 
ratio of 0.3; a uniaxial yield strength of 5.5 x 108 and a hardening modulus; 
i-e-> E-E* w r i e r e the tangent modulus, Et = 0.1E. 

The prescribed load of 750 MPa was applied over 12 increments. Al­
ternatively, the total prescribed displacement was 0.025 applied over 20 
increments. A modified Newton-Raphson technique (without line search) 
was used. The analytical solution is e for a < oy and e 

E , " " ^ _: " y " " " ^ — E -r Bf , 

for a > ay where ay is the yield strength. The three cases show excellent 
agreement. 

In the thermal-mechanical analysis of large structures, the principal ben­
efit of the 8- to 16-node shell will be in the far field in combined hexahedral-
solid shell meshes. The solid shell elements have been used in tandem with 
the hexahedral elements in complex thermal-mechanical fields particularly 
in the far field; e.g., [McDill et al. (2001)]21. The 8- to 16-node shell is 
computationally as expensive as a nonconforming hexahedral element; i.e., 
about 20% more expensive than a regular linear hexahedron. However, there 
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is a substantial improvement in performance. In geometrically and mate­
rially nonlinear problems, the shell is more expensive, requiring more iter­
ations but converging to a superior answer justifying the increased costs 
for high aspect ratio areas of the mesh. In the future, the development 
of a nonconforming 8- to 16-node shell is expected to further improve the 
behaviour of these elements when they are used in the far field. 

10.7. Contributions 

An evolution of solid elements for use in 3-D thermal-mechanical FEA of 
manufacturing processes such as welding has been illustrated. The first 
element, an 8- to 26-node linear hexahedron, was initially developed to 
allow rapid mesh grading in both thermal and stress analyses. This ele­
ment was essential in early analysis although selective reduced integration 
was needed in the stress portion for plasticity as was the use of isother­
mal elements to provide consistent strain fields. Limitations in the element 
particularly those just mentioned, combined with a problem of parasitic 
shear in linear elements subject to bending, led to the evolution of the 8-
to 26-node nonconforming hexahedron. This element removed the need for 
selective reduced integration and allowed the full thermal field to be used 
in some cases. The nonconforming version was computationally more ex­
pensive that original element but provided nearly two and a half times the 
number of degrees of freedom. The 8- to 26-node linear hexahedron was also 
subject to locking and ill-conditioning of the stiffness matrix when used in 
applications requiring thinness. The nonconforming version was less sensi­
tive to these problems but it was clear that a solid shell element with the 
capability to grade without the need for special transition elements would 
be beneficial. The evolution of the original hexahedron to an 8- to 16-node 
solid shell element followed. This element has been shown to perform very 
well in difficult tests and integrates smoothly with both the original and 
nonconforming hexahedrons. The next stage in the evolutionary process is 
the extension of the solid shell to a nonconforming version that may of­
fer advantages in problems with applications in which a higher order thin 
element might be beneficial in the far field. 
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N o m e n c l a t u r e 

a, b, c local axes 

A1Z the aspect ratio; e.g, h/t of the element 

B maps the nodal displacement vector into strain a t a given point 

B\ portion of the B matr ix associated with the bending degrees of 

freedom for the first nodeless node 

C° the function is continuous, its first derivative is not 

C°° the function and all its derivatives are continuous 

Cf cost of factoring (reduction and back-substitution) of K 

Cr cost ratio of uniform to graded mesh 

df number of degrees of freedom in the problem 

df the degradation factor applied to the through-thickness direction 

of the element 

D the stress-strain (elastic) matr ix used in the determination of the 

stiffness matr ix on the first iteration 

E elastic modulus 

Et the tangent modulus 

h the characteristic dimension of the element 

fw frontwidth of the problem 

Fe x t external forces 

gp subscript for the evaluation of a quanti ty a t the Gauss point 

i subscript for a Gauss point, node or nodeless mode 

/ the identity matr ix 
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X a 3 x 3 matrix which incorporates the degradation factor 
j coordinate subscript associated with node j or superscript for 

ESF iterations 
J Jacobian matrix 
K stiffness matrix 
L longitudinal direction or length 
m number of elements on an edge of a uniform mesh 
n the number of nodes in the element 
N{ basis function for node i 
P 3 x 3 tensor which describes the direction of e in the strain space 
R residual or stress divergence 
R radius 
J? a 3 x 3 rotation matrix 
S a 6 x 6 matrix used to find the magnitude of a component of the 

global strain 
t the thickness of the element 
T transverse direction 
u,v,w the x, y, and z displacements, respectively 
U the global displacement vector [u v w)T 

Ui the relative displacement vector 
Ui the modified relative displacement vector 
x, y, z coordinates in the physical domain 
a, /?, 7 coefficients of and new degrees of freedom for fa 
7 shear strain 
e direct strain 
5 Kronecker delta 
£, £' coordinate in the computational domain 
-q, rj1 coordinate in the computational domain 
£, £' coordinate in the computational domain 
fa basis functions for the nodeless modes 
a stress state 
a' modified 
<jy uniaxial yield strength 
v Poisson's ratio 
f2 the domain for integration over the volume 
000 subscript for the evaluation of a quantity at the subelement 

centroid 
00£ subscript for the lamina centroid 
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Few researches have characterized the vibrational behavior of shallow 
powder beds by analysis and simulation. Even fewer have pursued an 
experimental approach. Simulations of vertical vibrations to date de­
scribe a phenomenon that is mostly chaotic in nature, though a few 
periodic, yet unstable, modes have been identified. Experimental results 
mostly agree, but also point out some unexplained singular modes with 
remarkable stability that our experiments confirmed. These modes can 
be explained if we assume that the laws of elastic collisions do not hold 
at very low impact velocities so that a minimum "quantum" of kinetic 
energy be exchanged between the particle and the vibrating plate. A 
new impact model that matches classical laws except when approaching 
minimum impact velocity is introduced. This minor chink in the laws 
of elastic rebound has a profound effect on simulated behavior. It forces 
particle motion from a chaotic state into discrete, yet complex, but finite 
"allowed states". Transition between states is akin to a random walk. 

1 1 . 1 . I n t r o d u c t i o n 

Vibrations of bulk material are a poorly understood, yet often used empiri­

cal mechanism to induce fiuidization or flow of powders when fluid t ransport 

is not indicated. For analytical purposes, the rather sparse li terature on the 
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subject often relies on the similarity between the vertical oscillations of a 
shallow granular bed and that of a single particle bouncing elastically off 
a sinusoidally oscillating rigid plate. This apparently simple model can be 
quite deceptive, as it exhibits an amazingly rich variety of behaviors pre­
sumed to be chaotic with occasional bifurcations, interspersed with families 
of periodic motions. Periodic motions identified in the literature consist of 
repeated patterns of one or more parabolic trajectories. The number n of 
successive parabolic trajectories before a pattern is repeated is used as a 
qualifier to characterize the motion, thus called period-n motion. When 
needed, the number k of plate periods needed to account for one period of 
the ball motion will be used as a subscript. For example in [Holmes (1982)]1 

(figure l.b) one sees a period - 2i motion consisting of a periodic succes­
sion of 2 parabolic trajectories over 2 plate periods. If multiple period-rik 
motions are presumed to exist on the same k plate periods interval, we 
may have to refer to the order m of the motion as the order in which the 
first bounce occurs. If needed, this order will be indicated by a superscript 
period-n™ motion. For the most part, these period-n motions are surmised 
to be unstable. 
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Fig. 11.1. Example of a period—s^is motion corresponding to the pattern detailed in 
Figure 11.13 (Amplitude: 2mm, frequency: 65 Hz, coefficient of restitution: 0.5.) After 
3 rebounds, the particulate lands on the plate with matching velocity, is caught, and 
ejected again to repeat the pattern. 

Following a synopsis of published research, and a discussion of methods 
and results in light of our discoveries, this articlea identifies a new class of 

a J P : This manuscript is a labor of love dedicated by the first author to the memory of 
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period-n motions where the last impact happens with zero relative velocity. 
To our knowledge, this class of phenomena has never been investigated, let 
alone identified in the literature. Yet they appear to constitute a funda­
mental pattern of behavior, which is at the core of our research on powder 
bed vibrations. We shall refer to these motions as period-sn motions, with 
appropriate subscripts and superscripts as needed to explicitly describe a 
period-sn^ motion. The prefix subscript "s" is meant to indicate "soft-
landing", In a period-sn motion, the particle exhibits a series of zero or 
more elastic bounces before landing on the plate with matching velocity. 
The particle then rides on the plate until it is thrown off again and the pat­
tern repeats. To illustrate the difference between period-n and period-sn 
one should compare Figure 11.1 to [Holmes (1982), figure l.b]1. 

The defining characteristic of period-sn motions is their terminal zero 
relative velocity landing before being re-launched at a well-defined phase 
of the plate oscillation. Such low velocity impact, however, fails to be ad­
equately represented by existing models of elastic collision. Indeed such 
model is but an approximation as it is well known that a ball bouncing off 
the floor will not keep bouncing forever, even in the absence of air. As com­
mon sense experience indicates, a ball will fail to bounce back when dropped 
from below a certain height. The consideration that a minimum amount of 
kinetic energy needs to be exchanged between colliding bodies—or equiva-
lently, that a minimum relative velocity is required for rebound—leads to a 
new collision model relating incoming and outgoing velocities. Interestingly, 
this approach leads to an equation for velocity transformation that is very 
similar to that of relativistic velocity transformation. Like its relativistic 
counterpart, which closely represents Galilean kinematics up to nearly the 
speed of light, our new model is nearly identical to existing elastic collision 
models until the impact velocity becomes almost as small as the critical 
minimum required for rebound. 

This apparently benign modification of the laws governing elastic col­
lisions has a profound effect on the problem at hand. Indeed, the state of 
each bounce can be represented by two variables that are initial position 
and particle velocity, or equivalently initial plate acceleration and particle 
velocity. Successive impacts can thus be represented by a series of points in 

an exceptional woman, friend, companion, confident, and mentor. No amount of work 
can ever repay her kindness, love and attention. No words but silent cries from the heart 
can ever pay tribute to her courage and strength. To Eliza Maria Haseganu who gave so 
much of herself in this life, may your next bring you the happiness and fulfillment you 
so much deserve. 
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the plane. Under the classical assumption of elastic impact, representative 
points for successive bounces form a cloud covering region of the plane. Un­
der the resulting chaotic assumption, any velocity-acceleration combination 
is likely to happen. In contrast, when the new model for low-velocity impact 
is taken into account, it forces a quantization of the allowed states. For a 
given amplitude and frequency combination, only one pattern of discrete 
states is allowed. Representative points for successive bounces form a dis­
crete and finite collection. This quantization effect can be understood as the 
effect of the new model expanding the soft landing conditions from a single 
phase to a continuous range. This will effectively allow the steady state 
pattern to occur after a series of apparently random transitional bounces. 
As soon as the particle impacts the plate with a low enough relative veloc­
ity, it will be captured by the plate and launched back at a precise phase 
corresponding to the plate deceleration greater than g. This will effectively 
lock the particle into a pattern of rebounds that will repeat ad-infinitum. 
Moreover, a perturbation of the particle motion will either have no effect, or 
will result in an apparently random pattern of bounces eventually returning 
to the stable pattern of allowed states. A perturbation of the plate motion 
will either have no effect if the non-dimensional acceleration is preserved, 
or will force the particle into a new "allowed state." 

If such a minor chink in the constitutive laws of elastic collision does 
indeed exist, its consequences on the quantization of a bouncing particle 
should be noticeable by careful observation. To this end a series of ex­
periments are to be conducted in which a spherical bead bounces off an 
oscillating platform. The experiment and its results however are outside 
the scope of this paper. 

11.2. Review and Discussion of Prior Works 

Our work is concerned with the vibrational response of shallow powder 
beds. In the behemoth field of vibrations and acoustics, the body of works 
dedicated to our aim is almost infinitesimal. This disproportion does not 
prejudice the relative importance of the topic. Rather, it bears witness to 
its difficulty. This review has a two-pronged objective. First, we intend to 
draw an objective portrait of the state of the art, this will be the topic of 
Section 11.2. Second, our theoretical and experimental advances enable us 
to revisit prior works and evaluate their methods, assumptions, and results. 
These remarks will be consigned in Section 11.3. Prior to that however, it 
is advisable to put some order in the presentation of the main concepts 
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and notations. The formulation of the problem is rather trivial, though its 
solution is not. However each author uses a different notation and formalism 
which makes it difficult to compare all publications on an equal footing. In 
order to compare objectively all works and insert our contribution as well, 
we shall start in Subsection 11.2.1 with an introduction of the topic and 
the notations used in modeling it. 

11.2.1. Notation 

In this section, we introduce the notation that will be used throughout this 
article. This early introduction will allow us to cover the existing body of 
prior works in a uniform and consistent manner. Although the notation and 
graphical representations used here to discuss prior works may be different 
from the original, every effort was made to preserve the intended meaning. 

Representation of the plate kinematics: 
Let Zp/a(t), Z'p,G(t) and Zp,G(t) respectively represent the plate displace­
ment, velocity, and acceleration along the vertical axis measured in the 
ground frame. Without loss of generality, we can represent the oscillatory 
motion of the plate by a cosine function of amplitude P and pulsation u> 
(or, equivalently, period T = 2TT/OJ). 

ZP/G{t)=Pcos{L0t). (1) 

It will be useful for the rest of this argument to write the first and second 
derivatives in forms that eliminate time: 

Z'P/G(t) = -Pwsin(a;t), (2) 

ZP/G{t) = ~PLQ2 cos{ut) = -uj2zP/G. (3) 

A few researchers have characterized the motion in terms of non-
dimensional parameters. This is also the convention we shall adopt in this 
article whenever applicable. Letting g stand for the acceleration of gravity, 
the non-dimensional position, velocity and accelerations are respectively 
defined as: 

Zp/G{t) = ^ y ^ - = cos(u;t), (4) 

eP/G(t) = ^ ^ = ±^i-eP/G(t), (5) 

# /G(t) = ^ = -P-ftP/c. (6) 
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An important parameter in this and other articles is the non-dimensional 
acceleration 7: 

Puj2 m 
7 = • (7) 

9 
Representation of the particle kinematics: 
In this article, we shall denote by ZB/G and ZB/p the particle position 
relative to the ground and plate frames, respectively. The corresponding 
velocities and accelerations will be denoted by Z'B,G, ZB/p , Z'B,G and 
Z'L,p. In order to be consistent with the rest of the literature, we also 
define the non-dimensional counterpart to these entities as: 

ZB/G C ZB/P , , 
SB/G = p 1 ZB/P = p . W 

, _ ZB/G _ ZB/P 

4 B / G " PU ' KB'P~ PUJ ' l ' 

CB/G = ^ and i'B/P=ZfL- (10) 

Representation of impact kinetics: 

All published articles consider the plate to be perfectly rigid and of large 
mass. In effect, this hypothesis allows us to consider the plate motion to 
be unaffected by the particle impact. The relation between incoming and 
outgoing relative velocities is thus governed by the law of elastic impact 
with a coefficient of restitution 77. Let us denote by it the time of the ith 

impact.As a lexicographic rule, whenever a function / of time is expressed 
at it, we shall use the following shorthand: 

if = f(it). (11) 

The time of flight interval between the (i — l)th and the ith impacts will be 
denoted by JT: 

iT =t t ~(i_l) t. (12) 

The incoming and outgoing velocities at the ith impact will be denoted 
respectively with a "+" or "-" prefix superscript. The law governing the 
velocity transformation relative to the plate is thus: 

tZB/p = ~VrZB/p (13) 

or equivalent ly 

H'B/P = -V'^B/P- (14) 
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This relations (13) and (14) expressed in the ground reference frame 
becomes: 

Z,BiG = -ViZ'BIG + (l + TJ)iZ'P/G (15) 

which, when expressed in non-dimensional form becomes: 

{.'BIG = -ikZ'B/G + (1 + VWP/G- (16) 

Poincare diagrams: 

Each bounce can be represented by two variables, initial phase (or equiv-
alently initial plate acceleration, or initial particle position) and velocity. 
This leads to a representation of the particle motion as a series of represen­
tative points in the plane, called a Poincare diagram [Hjelmfelt and Allen 
(1989)]3. Under classical models of chaotic behavior the Poincare diagram 
will appear as a cloud of points covering an area of the plane. This phe­
nomenon is illustrated in Figure 11.2, which records the first 300 bounces 
of a particle dropped from a 2 cm height onto a plate vibrating at 68 Hertz 
with 2mm amplitude. 

0.5 

0.4 

0.3 

0 . 1 

- C . l 

Fig. 11.2. Example of Poincare diagram. Each point represents the phase angle and 
absolute non-dimensional velocity associated with each impact of a particle dropped 
from a height of 2 cm onto a plate vibrating at 68 Hz with 2mm amplitude. The first 
300 bounces are plotted. 

11.2.2. Literature survey 

In the broad field of vibrations and acoustics, the body of published works 
dedicated to the study of granular material response to vibrations is minute. 
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Rather than pointing out a relative unimportance however, this disparity 
speaks to the difficulty of the subject matter. Among the few researchers 
to venture in this field, most have attempted an analytical approach or 
computer simulation. Our bibliography search turned up only a handful 
of experimental research papers. As our work is primarily concerned with 
shallow beds, the following review will be even more selective, highlighting 
the major theoretical approaches, and the one experimental work relevant 
to ours. 

Analysis and simulation: 
The seminal works in this field can be traced back to Wood and Byrne 
[Wood and Byrne (1981)]2, who established the impact governing equation 
(15), and [Holmes (1982)]1 who proposed an analytical solution. In order 
to solve the rather complex computational problem formulated by Wood 
and Byrne [Wood and Byrne (1981)]2, Holmes [Holmes (1982)]1 introduced 
a simplifying assumption by neglecting the plate position in computing the 
time of flight. In effect, only the plate velocity is accounted for in computing 
the rebound. Under this assumption, the time of flight becomes that of 
a particle in free fall departing from the plate's average position with a 
velocity imparted by the rebound. Hence the time of flight was given by 
the following equation: 

Although this simple approximation allows solving for velocity transforma­
tion from one impact to the next, the phenomenon still remains highly com­
plex, exhibiting irregular non-periodic solutions, as well as harmonic and 
sub-harmonic responses. In order to conduct a computationally tractable 
stability analysis, in [Holmes (1982)]x it is further assumed that the collision 
is perfectly elastic (coefficient of restitution e=l.) Under these conditions, 
[Holmes (1982)]1 identifies transition from harmonic to stochastic responses. 
It is interesting to note that the patterns of responses are qualitat;vely sim­
ilar to those obtained by other researchers, including ourselves, who did not 
resort to Holmes's simplifying assumptions. The appropriateness of theses 
assumptions and their results will be subjected to a critical analysis in our 
forthcoming discussion in Section 11.3. 

Another analytical investigation of this phenomenon by means of sim­
ulations is due to Hjelmfelt [Hjelmfelt and Allen (1989)]3. In contrast to 
[Holmes (1982)] *, Hjemfelt did not resort to a simplified kinematics but 
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used iterative marching methods to detect impacts between plate and par­
ticle. In this case the author points out that his approach is more repre­
sentative of the actual physics of the phenomenon. In particular, Holmes 
model can occasionally produce negative rebound velocities. Such negative 
rebound velocities are perfectly valid physical solutions that can be han­
dled by Hjemfelt, but are not compatible with Holmes's assumption since 
the particle would find itself below the table. Numerical experiments were 
conducted by Hjelmfelt with a coefficient of restitution of 0.4 and focus on 
a range of non-dimensional acceleration 0 < 7 < 10. These values are the 
same as used for simulation in prior works. 

Fig. 11.3. The impact between the particle and the plate must occur during the interval 
when the particle trajectory intersects the plate's range of motion. Therefore the time 
of impact is bounded above and below by L and J respectively. Holmes' assumption 
would set the impact time at K, i.e. at the particle crossing height zero. Clearly, in the 
case illustrated here neither the velocity nor the position varies notably during the time 
interval (L-J). Hence Holmes' approximation would hold. 

Hjelmfelt [Hjelmfelt and Allen (1989)]3 did not identify any of the peri­
odic motions stressed by other researchers. Yet, and despite using a differ­
ent approach than [Holmes (1982)]l, he eventually confirmed qualitatively 
a number of characteristics from prior studies with estimated measures of 
stability. Simulations show regions of transition to chaotic behavior, which 
are qualified by experimental estimation of their associated Lyapunov ex­
ponents. 

The latest instance of simulated behavior studies is due to Luo and Han 
[Luo and Han (1996)]4 who focused on period-1 motions and their stability. 
In essence, the conditions for period-1 motions identified by Luo and Han 
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Particle Trajectory p l a t e 

trajectory 

Fig. 11.4. For the same conditions as in Figure 11.3, but shorter period, the impact 
time and velocity are altered significantly. Holmes' approximation would yield time K for 
the impact, which is obviously off by many periods and occurs with a radically different 
velocity than the actual impact. 

[Luo and Han (1996)]4 reduce to [Holmes (1982)] \ in the case of perfectly 
elastic impacts (rj = 1.) For non-elastic collision, Luo and Han formulate a 
closed form expression of Eigenvalues of the differential mapping between 
impacts. With a few exceptions, periodic motions are shown to be unstable. 

Experimental investigations: 

Our only reference on these matters is [Brennen(1996)]5. This article pro­
vides a good overview of prior research, and the results of their original ex­
periment concur with other reports as well as our own. Brennen et al.'s setup 
uses a transparent rectangular box filled with shallow beds of <j> 2.85mm 
spherical beads. The size of the beads allows them to neglect the effect of 
interstitial air flows. To observe the dynamic behavior of the bed, Brennen 
et al. top the bed with a light weight lid, and observe the bed expansion 
under a stroboscope. 

The main remark from this experiment is that no significant expansion 
occurs for values of the non-dimensional acceleration 7 between 1 and 2. 
Observations during this phase indicate that the flight time of the beads 
is less than 0.6 period and that the particles are riding on the plate for 
the rest of their periodic motion. Then at value of 7 near 2, the bed ex­
periences a sudden expansion, expanding gradually further afterward. In 
order to explain this phenomenon Brennen et al. surmise that the particles 
experience a period-1 motion. Using Holme's expression [Holmes (1982)]1 
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for the period-1 non-dimensional acceleration, Brennen infers a coefficient 
of restitution of the order of 0.25 for such motion to occur. 

11.2.3. Discussion 

Assessment of Holmes' model: 

Holmes' contribution [Holmes (1982)]* rests on the approximation that the 
plate displacement does not affect significantly the impact time and re­
bound velocity. This approximation holds exactly in the case of period-1 
motion since impact always occurs at the same phase angle of plate dis­
placement. In this case [Holmes (1982)] x rejoins that of Luo and Han [Luo 
and Han (1996)]4. In most circumstances however our results concur with 
earlier criticisms by Luo and Han [Luo and Han (1996)]4 concerning the 
appropriateness of Holmes' approximation. First, we found that Holmes's 
only holds when the plate period is large compared to the particle travel 
time through the plate trajectory. Second, Holmes approximation requires 
that the particle velocity reverse course after impact, this often is not the 
case as judicially pointed by Luo and Han [Luo and Han (1996)]4. Finally, 
we repeated Holmes' experiments and found that the assumption affects 
the Poincare distribution. Yet, the qualitative results obtained by Holmes 
are strikingly similar to ours; most notably the horseshoe pattern of the 
Poincare diagram and the existence of strange attractors. 

Fig. 11.5. When the particle time of flight is short with respect to the period, Holmes' 
approximation fails to capture the phenomenon accurately. 
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The first count is illustrated by Figure 11.3 and Figure 11.4. They show 
that Holmes' assumption does not hold when the particle transit through 
the plate's range of motion lasts more than a period. Another instance 
where Holmes approximation fails to capture the phenomenon is when the 
period is much longer than the time of flight. This is illustrated by Fig­
ure 11.5. 

The second point was already discussed by other researchers [Luo and 
Han (1996)]4 and is illustrated by Fi gure 11.12. The third point concerning 
impact distribution is an original finding of our research that is illustrated 
further on in this article when we discuss strange attractors and point 
distribution in Section 11.4. Whereas Holmes' approximation yields a nearly 
uniform distribution of Poincare points, our model shows an accumulation 
near phase zero (modulo 2ir). This result is illustrated in Figure 11.10 and 
Figure 11.11. 

Periodic motion and stability conditions in [Holmes (1982)] * and 
[Luo and Han (1996)]4: 

To our knowledge, all prior works consider only elastic impact, regardless 
of approximation used. In all instances, the elastic impact assumption leads 
to chaotic models with occasional domains where the motion becomes pe­
riodic. Having identified such periodic modes, a few authors have sought to 
characterize their stability. Typically periodic modes are identified through 
fixed points {(p, v) of the mapping (ipi+i, Vi+i) = fifi + Vi) yielding phase 
angle <pi+i and velocity z^+i from the prior bounce conditions. 

f$,V) = $,V). (18) 

As rightfully pointed out in [Holmes (1982)]1, focusing on fixed points alone 
will only yield period-1 motions. Other periodic modes may exist however 
when the motion cycles through a series of n points, thus experiencing 
period-n motion. Holmes' approximation allowed him to develop a recursive 
formulation relating the bounces. However, Holmes and other researchers 
that followed him failed to capture the conditions for period-n motion. 
Period-n motion occurs when the representative point on the Poincare dia­
gram cycles through n points. Hence, in order to characterize such period-n 
motion, one must identify the fixed point of an n-dimensional mapping. Be­
low is an original finding of our research that formulates this fixed point in 
terms of Holmes' approximation. Letting Xi represent n successive bounces 
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on the Poincare diagram, 

X,; 

^Pi+n-

Vi+n-

fi+n-

Vi+n-

H>i 

Vi 

-1 

-1 

-2 

-2 (19) 

fi+n-

Vi+n-

fi+n-

Vi+n-

fi 

Vi 

-1 

-1 

- 2 

-2 

the fixed points of the n-dimensional mapping corresponding to period-n 
motions must satisfy the following equation, which is obtained by applying 
the mapping and rotating the points: 

¥>; + Vi 
~/Vi - acos((pi +Vi) 

<fii+n-l + vi+n-l 
ivi+n-i - acos(99 i+n_i +vi+n-i) 

Xi = Vi+n-2 + Vl+n~2 = Xi= Vi+n_2 • (20) 
JVi+n-2 ~ aCOs(<pi+n_2 + Vi+n-2) 

ipi+l + Vl+i 
7Ui+i - acos(<pi+i + vi+i) 

Unfortunately, as we saw earlier, Holmes' approximation fails to adequately 
model but periodic motions that all land at a same plate height. For prac­
tical purposes, this limits Holmes to period-1 motions. 

Armed with a fixed point formulation that characterizes period-n mo­
tions, one can now address the issue of stability of such periodic modes 
by studying the Jacobian of the mapping. This is what was achieved by 
Holmes [Holmes (1982)]1 and by Luo and Han [Luo and Han (1996)]4 for 
respectively approximated and numerically simulated period-1 motions. A 
corresponding stability analysis for period-n would require a similar anal­
ysis on the Jacobian of the mapping for Holmes, or a numerical equivalent 
for Luo and Han. 

Compared to our research, the results in [Holmes (1982)] * and [Luo and 
Han (1996)]4 appear to be an artifact of the elastic model. With the low 
velocity impact model that we introduce in Section 11.3, period-n motions 
are a necessary outcome. The proof of this assertion is not included here, 
but its outlines will be discussed in Section 11.5. 
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Observations of chaotic behavior by Hjelmfelt: 

Hjelmfelt's research occupies a unique position in the field for its extensive 
analysis of chaos, using numerical simulation to estimate the Lyapunov 
exponent of the mapping. Without going into the numerical estimation of 
Lyapunov exponent, we repeated Hjelmfelt's experiments and compared his 
conclusions to ours. 

Hjelmfelt's simulation [Hjelmfelt and Allen (1989)]3 concurred with 
prior observations of strange attractors by Holmes [Holmes (1982)]1, with­
out resorting to approximations. He observed the phenomenon of the 
bounces being attenuated during plate downswing and the motion dying 
out on the plate upswing. This observation also concurs with ours, as Hjelm­
felt's figure 1 should be compared to our Figure 11.12. 

In plotting the non-dimensional impact velocities versus non-
dimensional acceleration, Hjelmfelt [Hjelmfelt and Allen (1989)]3 identi­
fied downward parabolic shaped patterns that were assumed to be artifacts 
of the phenomenon. Our implementation of Hjelmfelt's approach [Hjelm­
felt and Allen (1989)]3, illustrated in Fi gure 11.6, found these patterns to 
be characteristic of the initial conditions, and not of the ensuing chaotic 
behavior. Our simulation reproduced the patterns observed by Hjelmfelt 
[Hjelmfelt and Allen (1989)]3 even when the low velocity impact model in­
troduced in Section 11.4 is used. The same parabolic patterns are observed 
corresponding to the first bounce off the plate. 

11.3. Periodic Response with Soft Landing 

Experiments indicate that amongst the apparently chaotic motion of a par­
ticle bouncing on a vibrating plate, there are small regions that are well-
behaved with characteristically higher jumps. This can be explained in first 
approximation if we consider the case of a ball at rest on the plate at the 
origin. In such a case, if the plate's downward acceleration was ever to de­
crease below —g, then the plate and particle would separate, with the ball 
continuing on a parabolic trajectory in the ground frame until the next 
impact. This case is illustrated by Figure 11.7. 

Particle initially at rest on a vibrating plate: 

Using the non-dimensional notation introduced in Subsection 11.2.1, let us 
consider the initial condition of a particle riding on the plate. As illustrated 
in Figure 11.7, particle and plate trajectories will separate when the plate's 
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Fig. 11.6. Non-dimensional absolute impact velocities for the first five bounces off an 
oscillating plate with a lmm amplitude. The graph shows the same characteristic down­
ward parabolic pattern as Hjelmfelt [Hjelmfelt and Allen (1989)]3, which we found to be 
an artifact of initial conditions. The non-dimensional acceleration ranges from 4 to 64. 
The particle is dropped from an initial height of 2 cm at time 0. 
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Fig. 11.7. Illustration of the case where the particle is initially at rest on a vibrating 
plate. The sine wave represents the vibrating plate trajectory. The parabolic, curve shows 
the particle trajectory after it separates from the plate. The horizontal lines show the 
amplitude at which the plate acceleration is equal in magnitude to gravity. 

non-dimensional acceleration reaches -1; at which point the plate must have 
respective height and velocity: 

g£=-, and g£' = ^ l _ _ . (21) 

The time at which this separation will happen is during the upward motion 
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of the plate, that is at time 

gt=-(-acos(g^)+ 2rnr), n <G Z. (22) 

From this time and until the next impact, the particle then follows a 
parabolic trajectory with non-dimensional position and velocity respec­
tively equal to: 

Y —(t-gt) 2+uj-ge(t-gt) + -, 

?B/G(t) = -^t-at)+gZ'- (24) 

The particle will reach its maximum height at time: 

where the height is 

ZB/GV) = --.—(t-g tf + u-g d'(t -g t) + - , (23) 

ht=1-g ? +g t, (25) 

tB/G(ht) = j-g£2+gt- (26) 

Boundary conditions so no bounce will occur: 

The case studied above will, in most circumstances lead to the particle 
bouncing chaotically off the plate. There are however, instances where the 
particle will land on the plate with matching velocity, hence its motion will 
not be governed by the laws governing elastic impact. Rather, the ball will 
lift from the plate, follow a parabolic trajectory and meet the plate again 
at the only place where velocities can match, that is when the plate is at 
height g£ during its downswing. Assuming, without loss of generality, that 
the particle separates from the plate at time 

gt = acos(g£), (27) 

then the particle may only land at times 

i t = - ( a c o s ( 9 0 + 2mr), n = 0 ,1 ,2 , . . . , (28) 
to 

or, equivalently, 

it = -gt + nT. (29) 

From time it until gt' =it + 2gt + T the particle will then be stationary on 
the plate. Then at time gt' it will lift again from the plate and follow the 
same parabolic trajectory as before. We can see therefore that the particle 
will then adopt a periodic motion composed a section of free fall and a 
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section of vibratory motion. The period of the particle's motion is thus a 
multiple of the plate's period. 

BT=(n + l)T, n = 0 , l , 2 , . . . (30) 

Classes of parabolic trajectories meeting boundary conditions: 

In order not to experience an elastic impact, the particle must terminate its 
parabolic trajectory with matching plate position and velocity. Given that 
the particle time of flight to return to altitude g£ with velocity — g£ is: 

gr = 2co7-ge, (31) 

it must be that gT corresponds to the time interval between gt and it. 

gT = -2-gt + nT. (32) 

Given that gr and gt have explicit definitions in terms of the plate kinemat­
ics (31) and (27), respectively) we can establish a relation between plate 
amplitude and frequency: 

2 1 n 
2w7-QC' = - a c o s ( - ) + 2n_ . (33) 

ui 7 ui 

Using (21) to eliminate g£' we find that the plate amplitude and frequency 
must satisfy the following relation: 

V7 2 — 1 — a cos — = mr. (34) 
7 

Note that the first four roots of (34) are 1, 4.60334, 7.78971, and 10.9499. 
After that the roots become large enough that we can approximate V7^ — 1 
and acos(l/7) with 7 and TT/2, respectively, so the roots become uniformly 
spaced in first approximation: 

7r 
7 « w r - - , ( n > 5 ) . (35) 

At this venue, it is important to note that period-sn phenomena are purely 
kinematic and independent of the coefficient of restitution 77, as opposed to 
period-n motions identified by Holmes [Holmes (1982)] * and Luo et al [Luo 
and Han (1996)]4. 

Conclusion: 

It is known that the problem of a particle bouncing elastically off a plate in 
sinusoidal motion will be chaotic. However, we have found that there exist 
domains in which, while we cannot talk of resonance proper, there will be 
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a definite well-behaved response. The modes at which such response will 
occur are such that the non-dimensional acceleration is a solution of (34). 

Example 1: Consider a plate vibrating at 50 Hz (Pulsation u> = 1007T 
radian/second). The corresponding first five amplitudes that will lead to 
the ball bouncing off the plate in singular mode are: 0.099, 0.457, 0.774, 
1.088, 1.401 mm. The height zg at which the particle and plate separate 
is the same for all amplitudes, in accordance with (21). For a frequency of 
50 Hz, the value of zg is 0.099 mm. Note that this is the same as the first 
mode amplitude, meaning that the parabolic arc reduces to a point which 
is the crest of the sine wave. Modes 2, 3, and 4 are shown in Figure 11.8. 

Example 2: We consider now the case of a constant amplitude vibration 
of magnitude P = 0.000774 meters. The corresponding first five frequencies 
that will lead to the particle bouncing off the plate in singular mode are 
17.9147, 38.4367, 50, 59.2808, and 67.2737 Hertz. Note that as before the 
first mode consists only of the crest of the sine wave. Modes 2,3, and 4 are 
shown in Figure 11.9. 

11.4. Low Velocity Impact Model 

The typical model of elastic impact considers only kinetic losses propor­
tional the velocity. Letting ~v and +v stand respectively for incoming and 
outgoing impact velocities, the elastic model translates into the well-known 
formula: 

+v = —T) ~ v. (36) 

This model is problematic however when the impact velocity becomes small 
and the kinetic energy assumed to be dissipated decreases without ever 
reaching zero. This model dictates that, contrary to experience, a particle 
bouncing elastically on a fixed plate will continue to bounce ad infinitum 
without ever coming to rest. Note that even the addition of linear damping 
would not resolve this quandary. We know that no matter the elasticity of 
the materials involved, a spherical object left to free fall will not bounce 
back if dropped from below a certain height h. Letting m stand for the mass 
of the particle, the height h gives us a measure of the minimum energy e 
dissipated in the impact: 

e = mgh. (37) 

Equivalently, this experiment dictates the minimum impact velocity v re­
quired for elastic bounce: 
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Fig. 11.8. Illustration of the second, third and fourth singular mode at 50 Hz. 

For low velocity impact, we shall therefore consider that part of the kinetic 
energy corresponding to 

e = -mi,2 (39) 

is lost before the elastic bounce can even occur. In addition to incoming 
and outgoing velocities ~v and +v, we now need to introduce the equivalent 
incoming velocity °v after £ of the incoming kinetic energy is dissipated. 
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Fig. 11.9. Illustration of the second, third and fourth singular mode for constant am­
plitude of 0.774 mm. 

We can relate °v to v through a simple energy balance: 

°V=~ U\ 

°v = 0, 
A- - < ^ ) 2 , V > V, 

~V < V. 
(40) 

Note the similarity of this law to that governing coordinate transforms in 
special relativity. Just like it, it will reduce to °u RS~ v in most instances. 
The incoming velocity ~ v will have to come within twice of v to even have 
a 10% influence o n V . Nevertheless, it is an effect that we must account 
for if we are to model the bouncing of a particle on a vibrating plate. 

Once the effect of dissipation for low velocity impact has been accounted 
for, we can return to the elastic model and assume the kinetic losses. This 
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leads us to the following formula to model both elastic and low velocity 
impact losses. 

f + v = _ ^ . 0 I / = _ ^ . - I / v / l _ ( ^ . ) 2 ) -v>0i ^ 

l + i / = 0, ~v < v. 

11.5. Quantization Effects 

Accounting for low velocity impact has a remarkable effect on the observed 
results. Comparative simulations were conducted with and without the low 
velocity impact model. They led to the discovery of a quantization of the 
particle states. For a given non-dimensional acceleration, a particle initially 
dropped at random on the plate will experience a series of apparently ran­
dom bounces until it lands softly on the plate. From that point on, the 
particle will be locked in a complex pattern of bounces that repeats period­
ically. Perturbation of the plate motion will either have no effect, or result 
in a transition to another quantized state. The transition will be operated 
through a series of bounces akin to a random walk. 

11.5.1. Digital experiments 

A series of digital experiments were conducted whereby a particle is dropped 
from a given height at time zero, with zero initial velocity. Computation 
of the successive impacts relies on finding the first root of a rapidly os­
cillating function. As stated in prior works cited in Section 1.2, classical 
numerical methods are notedly unreliable for the purpose of finding such 
roots. In order to have a reliable solution, we have developed an ad-hoc 
approach involving recursive symbolic Taylor expansion and root isolation 
in Mathematica™. This method will not be exposed here and is the topic 
of an upcoming publication [Zhu and Pegna (2003)]6. 

The particle under consideration is assumed to be a point, so that ro­
tational inertia is negligible. For the purpose of this model, air resistance 
is also neglected. The resulting pattern of bounces was simulated under 
the classical and the low velocity impact models. Initial states are nearly 
identical, showing a motion akin to a random walk until the relative ve­
locity of the particle with respect to the plate becomes small enough to 
trigger the low velocity impact model. The two model responses separate 
from that point on. In the case of the classical impact model, the particle 
appears engaged in a chaotic motion, while the low velocity impact results 
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in a quantization of the states. Once the particle is captured by the plate, 
it will repeat a periodic, albeit complex, pattern of bounces. 

11.5.2. Classical elastic impact model 

Fig. 11.10. Poincare diagram for the same conditions as in [Holmes (1982), Figure 7-d]1, 
same acceleration ratio of 10 (amplitude 2 mm, frequency 35 Hz, coefficient of restitution 
0.8) same number of representative points (5000). 

A typical sample experiment conducted using this model was shown 
in Figure 11.2. The results concur with those of prior published research. 
In particular, one can observe the typical horseshoe pattern identified by 
Holmes [Holmes (1982)]1, even though his model neglected the influence of 
plate height. The experiment conducted by Holmes [Holmes (1982), Fig­
ure 7-d]1, showing 5000 representative points was repeated and the result 
is shown here as Figure 11.10. Observe that even though the general horse­
shoe pattern is preserved, the point density found in our simulation is not 
as uniform as Holmes'. There appears to be a higher density towards the 
2-7T ends of the phase. The lowest density is found near phase ir. Physically, 
this corresponds to an accumulation of points near the plate peak position. 

Likewise, Holmes identified the existence of strange attractors near the 
27T phase. The same feature is exhibited in our results. It can be explained 
however by noticing that it corresponds to a series of small bounces oc­
curring from the damping on the plate downswing and continuing on the 
upswing until the particle is ejected. This phenomenon was already encoun-
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Fig. 11.11. Density plot for the data in Figure 11.10 (white = zero density) showing the 
accumulation of points on the plate downswing and upswing. The two vertical lines mark 
the phases at which the plate acceleration becomes greater than gravity. It clearly shows 
that accumulation occurs when the plate acceleration is less than gravity. As shown in 
Figure 11.12, the point accumulation corresponds to a dampening of the bounces during 
the downswing, followed by a succession of rapid small bounces on the upswing. 

tered in Figure 11.5 and is repeated for an instance of Holmes' experimental 
conditions in Figure 11.12. It is however an artifact of the model. As we 
shall see in Section 11.4, it disappears ¥/hen quantization of impact velocity 
is taken into account. 

11.5.3. Low velocity impact model 

Using the same conditions as in Figure 11.2, but accounting for what hap­
pens at low relative velocity alters the results in a significant manner. Fig­
ure 11.13 shows the Poincare diagram for conditions that are identical to 
Figure 11.2, modified to account for a .minimum impact relative velocity of 
0.4625 m/s. Observe that even though the number of computed bounces 
is the same as in Figure 11.2 (300), the number of representative points is 
significantly lower. Indeed most points are representative of an initial tran­
sition akin to a random walk. This transition period is nearly identical for 
Figure 11.2 and Figure 11.13. The two phenomena however part as soon 
as the relative impact velocity becomes small enough to be affected by the 
low velocity impact model. From that point on, the pattern of bounces in 
Figure 11.13 locks into a period-84 motion while the pattern in Figure 11.2 
continues into chaotic motion. 
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Fig. 11.12. Illustration of the particle trajectory near a strange attractor in Holmes' 
experiment [Holmes (1982)]1. The particle bounce is dampened when landing during the 
plate downswing. A series of small bounces (6 in this instance) ensues until the particle 
is ejected again from the plate surface. To clarify the relation to Figure 11.11 the phase 
angle (in radians) is shown below the time scale. 
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Fig. 11.13. Poincare diagram accounting for low velocity impact for the same conditions 
and number of points (300) as in Figure 11.2. The non-dimensional critical impact rel­
ative velocity is 0.541 (corresponding to 0.46 m/s) . After a series of apparently random 
bounces, represented by the collection of isolated points, the particle locks into a period-
motion represented by the arrowed polygon. The corresponding pattern of bounces was 
shown in Figure 11.1 
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A similar experiment was conducted for the conditions in [Holmes 
(1982)]1 that were reproduced in Figure 11.10, but with a minimum im­
pact velocity of 0.5 m/s. The resulting Poincare diagram is in Figure 11.14. 
It shows that after an initial series of random bounces, the particle mo­
tion locks into a period—s6 pattern, the trajectory of which is shown in 
Figure 11.15. 
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Fig. 11.14. Poincare diagram accounting for low velocity impact for the same conditions 
and number of points (5000) as in Figure 11.10. The critical impact relative velocity is 
0.5 m/s . After a series of apparently random bounces, represented by the collection 
of isolated points, the particle locks into a period- motion represented by the arrowed 
polygon. The trajectory corresponding to this diagram is shown in Figure 11.15. 

11.5.4. Quantum influence 

The main contribution of this work is the introduction of the low velocity 
impact model and the discovery of its quantization effect on the motion. If 
one omits to account for it, as was done in prior works, the motion gen­
erally appears to be chaotic. Hence, as one increases the number of simu­
lated bounces, one also observes an increase in the number of representative 
points on the Poincare diagram. As the minimum impact velocity is raised 
from zero, and the low velocity impact model is enabled, one observes that 
the motion will become periodic. Moreover the number of bounces in a pe­
riod (i.e. number of cyclic points on the Poincare diagram) will decrease as 
the minimum relative impact velocity increases. This effect is illustrated in 
the series of experiments shown in Figure 11.16. The figures illustrate the 

r 
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Fig. 11.15. Particle trajectory for the Poincare diagram of Figure 11.14. Each bounce is 
represented as a point on the Poincare diagram. The trajectory shows an initial seemingly 
random bounces followed by periodic patterns. 

Poincare diagrams for a range of non-dimensional acceleration from 4 to 53. 
For each value of the non-dimensional acceleration, the first 30 bounces are 
computed. As the minimum relative impact velocity is increased, the num­
ber of representative points decreases, indicating the presence of a periodic 
motion. 

11.5.5. Existence and uniqueness of quantized states 

The question of existence and uniqueness of quantized states remains open 
to further research. One can observe however that the chaotic nature of the 
classical model dictates that each point on the Poincare diagram will be 
visited exactly once, for else the motion would engage in a repeating pat­
tern from that point onward. The Poincare diagram for the classical model 
of elastic bounce thus produces a region covered by a cloud of points. Since 
no points can be repeated, the diagram becomes denser as the number 
of bounces increases as indicated by the graphs in Figure 11.2 and Fig­
ure 11.10. Assuming that the point distribution is stable as the number 
of sample increases, one can assume the existence of a probability density 
function over the Poincare diagram and produce an experimental measure 
such as the one in Figure 11.11. 

If one accounts for the low velocity impact model, the behavior of the 
particle will match that of the classical model almost exactly during the 
initial series of seemingly random bounces. That is, until the relative impact 
velocity happens to be small enough that the particle will remain on the 
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plate. From that point on the particle will engage in a periodic motion. 
It is therefore legitimate to ask (1) if such low velocity impact will indeed 
occur and (2) if such impact were to occur, would the repeating pattern be 
indeed unique. 

On the first count, one can surmise, on experimental grounds illustrated 
by Figure 11.11 that a low velocity impact is bound to occur unless the 
random bounces diverge away from zero velocity. Indeed, the probability 
of a bounce occurring with less than critical velocity is the integral of the 
probability density function (Figure 11.11) over a strip of height v. If the 
phenomenon is indeed chaotic, the probability of such an event will not be 
zero, hence the particle will eventually be captured by the plate. 

While the above argument in the legitimacy of low velocity impact does 
not constitute a mathematical proof, it does however support the physics of 
the phenomenon. On that basis, we can answer on the second count, that of 
uniqueness. Once the particle is captured, the plate motion uniquely deter­
mines the boundary conditions for subsequent bounces. Since the mapping 
relating successive bounces is one to one [Holmes (1982)]1, it means that 
the periodic mode is uniquely determined. 

11.5.6. Stability of quantized states 

Assuming that quantized states exist and are unique for a given plate mo­
tion (frequency & amplitude) the next open research question is that of 
the stability of such states. While a formal analysis is not on the order 
of this article, one can nevertheless draw some conjecture on experimental 
grounds. The best illustration in that regard is that of Figure 11.16. 

As the minimum critical impact velocity v increases, so does the range 
of phase and impact velocities that will lead to the particle being captured. 
Hence, a small perturbation of the motion will simply have no effect on 
the observed bounces. Once the perturbation becomes large enough that 
the next impact will lie outside the permitted range, then the particle will 
engage in a random bounce pattern either returning to the initial pattern of 
settling into a pattern characteristic of the perturbed mode. As Figure 11.16 
clearly shows, the order n of a period—sn motion decreases as the minimum 
critical impact velocity v increases, resulting in increased stability. On the 
other end of the spectrum, Figure 11.16 also shows that as the order n 
becomes larger with decreasing velocity D, the number of random bounces 
before a periodic mode is reached also becomes larger. This indicates a 
greater sensibility to perturbations. Eventually, as v goes to zero (classical 
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Fig. 11.16. Each figure shows the collection of Poincare diagrams representing the first 
30 points for an acceleration ratio between 4 and 53. The minimum impact velocity 
varies from 0 (a: classical model) to 0.2 m/s (b), 0.4 m/s (c), 0.6 m/s (d), 0.8 m/s (e). 
Note that the number of representative points decreases as the minimum impact velocity 
increases, denoting the occurrence of periodic bounce patterns over a decreasing number 
of points 

elastic model) the number of random bounces increases without bounds, 
leading to chaos. 

From an experimental standpoint, one must acknowledge that detecting 
periodic modes becomes extremely difficult in practice. As the phenomenon 
becomes more unstable as v decreases, the motion will appear more and 
more chaotic. Moreover, experimental observations become ever less likely 
as the slightest perturbation will induce a chaotic response. 

11.6. Conclusion 

The question of the vibrational response of shallow powder bed arises in 
the context of powder mechanics. Typical theoretical analysis is conducted 
on the basis of the response of a single particle bouncing off a sinusoidally 
excited plate. The research presented here derives from an attempt to model 
experimentally observed, yet heretofore unexplained powder behavior in 
a novel dry powder nozzle. While experimental research is still ongoing, 
the model developed here is original and presents some striking features 
reminiscent of quantum mechanics. 
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The main contribution of this paper hinges on a heretofore undetected 

vibrational mode in which a particle bouncing off a vibrating plate lands 

with low relative velocity and is captured by the plate. In order to bet ter 

model low velocity impact, a new model of elastic bounce is introduced 

whereby the particle is forced to exchange a minimum "quantum" of ki­

netic energy with the plate. The velocity transformation equation resulting 

from this model strikingly resembles velocity transformation in relativistic 

mechanics. 

The main consequence of this model is the discovery tha t , contrary 

to most published results to date, the particle behavior is not chaotic. In 

fact, every plate vibration mode is associated to a "allowed" state. A par­

ticle bouncing off such plate will experience an apparently random series of 

bounces until it becomes "trapped" in this allowed state. A perturbat ion of 

the motion will either have no effect, or result in a random walk transition 

toward another allowed state. 
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