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ABSTRACT
The Aquarius satellite has been used for the first time to character-
ize Rossby waves in sea surface salinity (SSS) measurements for the
North Pacific Ocean. Westward propagating wave signals are deli-
neated by the SSS zonal salinity gradients. The phase velocities and
spectral properties obtained from zonal salinity gradients are closely
correlated with corresponding values obtained from the sea surface
temperature (SST) zonal gradient and the altimetry-derived meri-
dional velocity. The westward propagating SSS signals are consis-
tent with Rossby wave advection across the strong meridional
gradients of water characteristics. Following Killworth, we
attempted to provide satellite-based estimates of the contribution
of horizontal Rossby wave advection to the surface transfer of
temperature and salinity in the North Pacific Ocean. Westward
propagating signals in the SST and SSS zonal gradient fields show
that the observed intensity of meridional advection by the ambient
gradients of SST and SSS is less than the intensity predicted by an
analytical solution of the transfer equation for Rossby waves. Our
results extend the previous studies of physical mechanisms of
Rossby wave manifestation at the sea surface and we demonstrate
that Rossby waves are responsible for low-frequency oscillations in
SST and SSS concentration in the North Pacific.
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1. Introduction

The Rossby waves in the open ocean are westward propagating disturbances which owe
their existence to the rotation and sphericity of the Earth. They convey information
westwards, linking processes in the west of ocean basins with other processes that
occurred earlier in the east (see a review by Colin de Verdiere and Tailleux 2005).
Baroclinic Rossby waves are clearly seen from satellite altimetry as the westward propa-
gating signals in time-longitude diagrams of sea level. The signal propagation velocities
are close to the phase speed of long linear baroclinic Rossby waves of the first vertical
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● Rossby waves are observed in Aquarius sea surface salinity (SSS) measurements in the North Pacific.
● Spectral properties of SSS agree with characteristics of meridional velocity disturbances.
● Theory of Rossby waves advection overestimates variability of SSS and sea surface temperature (SST).
● Transport mechanism of the wave signatures in SST with Rossby waves works the same way as in SSS.
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mode with the corresponding wavelength (Colin de Verdiere and Tailleux 2005). This
serves the principal argument for interpretation of westward propagation of the
observed disturbances as Rossby waves (Chelton and Schlax 1996; Killworth, Chelton,
and de Szoeke 1997; Belonenko 2012a; 2012b). Similar signals are observed in satellite
SST and chlorophyll-a measurements, affecting distributions of ocean thermohaline
properties and ecosystems (Cipollini et al. 1997; 2001; Cipollini 2003; Quartly et al.
2003; Killworth et al. 2004; Charria et al. 2008; Belonenko, Koldunov, and Foux 2011).
These anomalies are thought to be induced by horizontal or vertical advection in Rossby
waves and/or by surface/subsurface mesoscale eddies (Quartly et al. 2003; Killworth et al.
2004; Charria et al. 2008; Chelton et al. 2011a; Chelton, Schlax, and Samelson 2011b;
Bashmachnikov, Belonenko, and Koldunov 2013a; 2013b; 2014). A linear theory of this
mechanism has been proposed and tested for SST and chlorophyll-a data (Killworth et al.
2004).

Aquarius satellite sea surface salinity (SSS) measurements, available since 2011, allow
detection of tropical instability waves (Lee et al. 2012) and annual-period planetary wave
(Menezes, Vianna, and Phillips 2014). The effect of Rossby waves on SSS data was
studied for the tropical Indian Ocean with using the HYCOM (Hybrid Coordinate
Ocean Model) numerical model (Heffner, Subrahmanyam, and Shriver 2008). In this
research we document the Rossby waves observed in the Aquarius SSS measurements
in the tropical, the subtropical and the mid-latitudes of the North Pacific (15°–50° N) and
investigate the effect of horizontal advection by Rossby waves on the observed SSS
disturbances.

2. Data and methods

2.1. Sea surface salinity (SSS)

In the present study we use SSS measurements received from the Aquarius/SAC-D
satellite, which is a collaborative effort between NASA and the Argentinean Space
Agency (Comision Nacional de Actividades Espaciales – CONAE). Weekly maps of the
Aquarius SSS fields Level 3, V2.0, from August 2011 to January 2015 and with the spatial
resolution of 1°×1°, are obtained from the PODAAC (Physical Oceanography Distributed
Active Archive Center, http://podaac.jpl.nasa.gov/). After the release of initial version of
Aquarius SSS data, significant updates for the salinity retrieval algorithm have been
made many times, which improves some bias problem found in early version of
Aquarius product (Lagerloef et al. 2015). However, the Aquarius SSS fields Level 3, V2.0
allow identifying the effect of horizontal advection by Rossby waves in the variability of
Aquarius SSS data. See also Kubryakov et al. (2016).

2.2. Sea surface temperature (SST)

We use the Reynolds NOAA (National Oceanic and Atmospheric Administration)
Optimum Interpolation Sea Surface Temperature (SST) data (Reynolds and Smith 1994;
Reynolds et al. 2007) for 2011–2015 based on the merged measurements of the
Advanced Very High Resolution Radiometer (AVHRR) and the Advanced Microwave
Scanning Radiometer (AMSR) combined with ship and buoy observations [http://www.
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ncdc.noaa.gov/sst/]. The data has a spatial grid resolution of 0.25° and temporal resolu-
tion of 1 day.

2.3. Satellite altimetry

In this work we use AVISO absolute dynamic topography (ADT) and geostrophic velo-
cities for 2011–2015 constructed from multi-mission merged sea level anomaly (SLA)
and Mean Dynamic Topography (Rio, Guinehut, and Larnicol 2011). The AVISO altimetry
products are produced by Ssalto/Duacs (Le Traon, Nadal, and Ducet 1998) and distrib-
uted by AVISO, with support from CNES (Centre National d’Etudes Spatiales) [http://
www.aviso.altimetry.fr/duacs/]. The spatial resolution of the weekly gridded data is 0.25°
× 0.25°. From the sea-level data, the meridional component of the geostrophic current
velocity (v) is computed as the zonal gradient of ADT: v ¼ g

f
@h
@x ; h means ADT. Here, f is

the Coriolis parameter and g is the gravitational acceleration.

3. Rossby waves observed in SSS measurements

In the open ocean the climatic isolines of SSS are mostly zonal and the mean zonal
gradients are small as compared to the meridional ones. Therefore, the meridional water
advection, induced by waves or eddies is the most pronounced in the zonal gradients of
ocean properties (Chelton and Schlax 1996). Zonal SSS gradients (Sx and the subscript x
means @

@x here and onwards) are analyzed for three latitudes located in the northern
hemisphere. Regular errors of SSS data are excluded in Sx. On time-longitude diagrams
of the Aquarius-derived SSS zonal gradients (Sx), westward propagation signals are
clearly seen (Figure 1(a, d, g)). For comparison, the diagrams of SST zonal gradients
(Tx), (are also presented (Figure 1(b, e, h)). To reduce noise, in Figure 1 the Sx and Tx
longitude-time diagrams are smoothed using the running average with the window size
of 2 weeks and of 1° degree in longitude. Time-longitude diagrams for altimetry data for
the same region and time range are presented in (Belonenko, Kubrjakov, and Stanichny
2016). The spatial scales of Sx and Tx in the time-longitude diagrams and their tilt to
‘x’-axis (the propagation velocity) agree with each other as well as with v (Figure 1(c, f, i)),
and show similar variation with latitude (Figure 1).

The characteristic velocity (c) of the westward propagating signals in Tx and Sx , as well
as in meridional geostrophic velocity v, are estimated using the Radon transform
(Challenor, Cipollini, and Cromwell 2001) with a specific longitude – time running
window for each latitude (Belonenko and Kubrjakov 2014). The theoretical phase velo-
city of the westward propagating signals in SLA are displayed in Belonenko, Kubrjakov,
and Stanichny (2016), where the authors compare it using the baroclinic Rossby defor-
mation radius in the WKB-approximation (named after Wentzel, Kramers, and Brillouin)
and determined by the two-layer fluid model with latitude-mean phase velocity calcu-
lated from altimetry data by the Radon transform. In order to obtain the spatio-temporal
variability of cðvÞ, c ðTxÞ and c ðSxÞ, the Radon transform is applied using Figure 2(a and
b), which shows that there exists a significant variability of c ðTxÞ and c ðSxÞ. Velocity of
the propagating disturbances increases to the south-west, in agreement with the
increase of the first baroclinic Rossby radius of deformation (Chelton et al. 1998). The
transition area between the low and the high velocity values (35° N, 150° E – 20° N,
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250° E) matches with the position of the subtropical frontal zone, which separates the
light upper ocean water of the central subtropical gyre from the denser waters of its
northeastern periphery.

The mean meridional variations of velocity computed from time-longitude diagrams
of v, Tx and Sx are shown in Figure 2(c). Red line shows the speed of westward
propagating signals of the meridional current velocity component, cðvÞ, computed
using altimetry data. The three independent estimates have similar meridional varia-
tions, decreasing from about 0.07–0.11 m s−1 at 15° N to around 0.01 m s−1 at 60° N. The
difference between the propagation velocities, based on altimetry (cðvÞ) and SST data
(c Txð Þ), estimated as the standard deviation of the differences between the c values at
the same latitudes, is only around 0.004 m s−1. In comparison to c ðTxÞ and c ðvÞ, the
SSS-based estimates are biased to lower values at 20°–25° N and higher values at
30°–50° N. We attribute those discrepancies to a stronger spatial smoothing of the
results, computed from SSS data. Precipitation, as well as local variations of the heat
flux across the sea surface, can also influence the local variance of SSS and SST,
increasing noise level of these datasets, as compared to altimetry. However,
Belonenko, Kubrjakov, and Stanichny (2016) demonstrated that the characteristic empiri-
cal propagation velocities, obtained using the Radon transform, closely correspond to

Figure 1. Time-longitude plots of: zonal SSS gradients Sx at 16º N (a), 19º N (d) and 28° N (g); zonal
SST gradients Tx at 16º N (b), 19º N (e) and 28° N (h); v ¼ g

f
@h
@x at 16º N (c), 19º N (f) and 28° N (i).
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the theoretical phase velocity of long linear Rossby waves of the first vertical mode for
the corresponding latitudes. The typical periods of the most energetic oscillations are
from 1 to 3 months. Figure 3 provides a good agreement between empirical and
theoretical phase velocity of the Rossby waves.

Figure 3 presents the spectral densities of c ðvÞ, c ðTxÞ and c ðSxÞ computed using
the 2D fast Fourier transform. Before the analysis, the mean seasonal variations were
subtracted from data. The spectral densities, derived from the three datasets have
similar distributions in (σ; k)-space. Black straight lines in Figure 3 present the phase
velocity of the propagating disturbances, calculated from altimetry data using Radon
transform. The phase velocity estimates obtained corresponds well to the theoretical
phase velocity of propagating long linear baroclinic Rossby waves (Killworth, Chelton,
and de Szoeke 1997; Killworth and Blundell 2003a; 2003b). Following previous
studies, we relate the observed westward propagation of the anomalies to a mer-
idional advection of the predominantly zonally distributed mean climatic state by
westward going Rossby waves or by swirl velocities of mesoscale eddies (Quartly
et al. 2003; Killworth et al. 2004; Charria et al. 2008; Chelton, Schlax, and Samelson
2011b).

Figure 2. Time-averaged map of the absolute value of the Rossby wave velocity c, computed from Tx
(a) and Sx (b). Latitudinal variability of the absolute value of the Rossby wave velocity, computed
from Tx (blue) and Sx (green) and c(v) (red); the vertical colour bars shown at each latitude are 95%
confidence interval. All presented velocities are westwards.
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Figure 3 also shows a significant increase of the noise in the Sx spectrum towards
higher latitudes. The spatial scales of waves and eddies are smaller at higher latitudes
(Chelton, Schlax, and Samelson 2011b), and it seems that the current spatial resolu-
tion of Aquarius SSS (1°×1°) is insufficient to capture the observed variations of
smaller wavelength in the northern part of the study region, leading to the signal
aliasing. Furthermore, accuracy of the SSS derivation algorithm decreases with a
decreasing temperature. This adds noise to the SSS data at high latitudes in the
northern Hemisphere (Lagerloef et al. 2010; Lagerloef et al. 2015; Kao and Lagerloef
2015).

4. Horizontal advection of SSS and SST by linear Rossby waves

In this section we compare the analytical solution for horizontal advection of a passive
tracer (which may be water particles with the conserved SST and SSS) by Rossby waves

Figure 3. Distribution of spectral energy density E in (σ; kÞ space: at 15.5º N cðvÞ (a), c (Tx) (b), c (Sx)
(c); at 18.5º N cðvÞ (d), c (Tx) (e), c (Sx) (f); at 28.5º N cðvÞ (g), c (Tx) (h), c (Sx) (i). The black line shows
the mean phase velocity computed from altimetry data. The ordinate is the frequency σ (day−1).
Black lines are theoretical phase velocity of long linear Rossby waves.
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with observations. The analytic solution is similar to the one obtained by Killworth et al.
(2004) with some modifications.

We consider the transport equation of heat/salt balance, where we neglect forcing
and the vertical component of the current velocity (LeBlond and Mysak, 1978):

@ G
@ t

þ u
@ G
@ x

þ v
@ G
@ y

¼ 0 (1)

Here G is either SSS or SST, u and v are the eastward and northward current velocities,
respectively. We further decompose the signal into the mean background state (�u; �v; �G)
and the wave perturbations (u0; v0;G0). Assuming that (1) also holds for the mean
parameter distribution and neglecting the products of perturbations, as compared to
the products of perturbations and the mean fields, the equation is reduced to

@ G0

@ t
þ �u

@ G0

@ x
þ u0

@�G
@ x

þ �v
@ G0

@ y
þ v0

@ �G
@ y

¼ 0 (2)

In the open ocean, mean currents are mostly zonal, and we set �v ¼ 0. Also, we assume
that the SST/SSS fields predominantly change in the meridional direction, and the mean
zonal gradients of SST/SSS are significantly less than the meridional ones. Therefore,

u0 @�G@ x<<v
0 @ �G
@ y . For the periodically oscillating disturbances, we write v0 t; x; yð Þ ¼

A yð Þ ei σt�kxð Þ; where AðyÞ is the wave amplitude, σ > 0 is the wave frequency and k is
the zonal wavenumber. Equation (2) becomes:

@ G0

@ t
þ �u

@ G0

@ x
¼ �AðyÞ eiðσ t�k xÞ @ �G

@ y
: (3)

For a constant mean zonal flow �u the full solution of equation (3) is (Polyanin and
Zaitsev 2012):

G0ðt; x; yÞ ¼
�AðyÞ@ G@ y
i ðσ��u kÞ e

i ðσ t�kxÞ þ Φ ð�u t � xÞ; σ � �u k � 0;

�AðyÞ @ G@ y t ei ðσ t�kxÞ þ Φ ð�u t � xÞ; σ � �u k ¼ 0

8<
: (4)

Here Φ is a self-similar solution of equation (3). For t ¼ 0 ; x ¼ 0, the function Φ ð0Þ ¼
G ð0; 0; yÞ ¼ G0ðyÞ describes an initial mean meridional profile of the function G.
Expression (4) shows that the dominating frequencies, wavenumbers and phase velo-
cities of the disturbances of G0ðt; x; yÞ agree with the corresponding spectral character-
istics of the meridional component of the current velocity v’ which characterizes the
Rossby waves (see also Belonenko, Koldunov, and Foux 2011; Belonenko, 2012b). The
lower line in expression (4) presents a particular case of the resonant wave-current
interaction, when the mean zonal current velocity (�u) is close to the phase speed of a
Rossby wave (c ¼ σ=k). The predicted linear growth of the amplitude will certainly take
place only at the initial stages of the resonant interaction, as further on the non-linear
terms, neglected in equation (2), will limit the growth. The first term in expression (4) is a
particular solution, which shows that temperature/salinity perturbations are related to
the amplitude of the meridional velocity of the oscillations as well as to the background
meridional gradients of the SST/SSS fields. To obtain spectral evaluation, we get after
differentiating expression (4) in x and neglecting Φ:
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@ G0

@ x
¼

AðyÞ @ �G
@ y

ðc� �u Þ e
i ðσ t�kxÞ:

Then the squared amplitude is:

@ G0

@ x

� �2

¼ AðyÞ2 @ �G
@ y

� �2

=ðc� �u Þ2 (5)

The left-hand side of expression (5) is proportional to the spectral energy density of Tx or
Sx at a selected (σ; k), as the one obtained from observations (Figure 3).

The right-hand side, FðGÞ ¼ AðyÞ2 @ �G
@ y

� �2
=ðc� �u Þ2, provides an impact of meridional

velocity v0, induced by a Rossby wave, on mean state of the variable G with the mean

zonal gradient @ �G
@ y .

Figure 4 presents latitudinal variability of spectral energy density of Tx and Sx zonally
averaged from 160° to 200° of longitude, estimated from satellite data in the North Pacific
(the black lines). For estimating the right-hand side of Equation (5), the zonal velocity of the
background flow �u is obtained from the period 2011–2015 mean zonal velocities, derived

from AVISO altimetry, @�G
@y is computed as the mean meridional gradient of Tx and Sx . AðyÞ2

is the peak value of spectral energy density of the zonal gradient of ADT (v ¼ g
f

@h
@x , see

distributions in (σ; k) in Figure 3(a, d, g)), averaged over the selected longitude range at
each latitude. In these limits the assumptions of the predominantly zonal mean flow and
the meridional direction of the mean gradients of SST/SSS hold relatively well. For Tx ,

spectral energy densities, derived from observations, @ G0
@ x

� �2
, as well as their theoretical

estimates AðyÞð Þ2 @ �G
@ y

� �2
=ðc� �u Þ2, both increase towards the subpolar frontal zone at

35°–45° N, where the meridional SST gradients are the largest. For Sx , two maxima of

AðyÞð Þ2 @ �G
@ y

� �2
=ðc� �u Þ2are observed in the areas of the subtropical front (30°–35° N) and of

Figure 4. Latitudinal variability of spectral energy density @ G0
@ x

� �2
averaged over 160°–200° of

longitude over the whole frequency-wave number domain for (a) @ G0
@ x ¼ Tx (°C m−1); (b) @ G0

@ x ¼
Sx (m

−1); grey lines show @ G0
@ x

� �2
, black lines indicateAðyÞ2 @ �G

@ y

� �2
=ðc� �u Þ2.
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the subpolar front (40°–45° N). The spectral energy densities of Sx , @ G0
@ x

� �2
, show a pro-

nounced peak only in the area of the subpolar front, although the subtropical front is
marked with a certain increase between 25° N and 30° N as well.

However, around their maxima, the spectral energy densities of Tx and Sx , derived from
satellite data, are 2–4 times less than those, expected as a result of the advection by long
linear Rossby waves predicted by expression (5). The results agree with those by Killworth
et al. (2004), who showed that the amplitudes of the meridional advection of chlorophyll-a
observed are 1–3 times less than those predicted by the theory of long linear Rossby waves.
The reason for the discrepancies can be related to a non-conservative behavior of SST, SSS
and chlorophyll-a fields in the real ocean. It can be also attributed to the effects of horizontal
and vertical turbulent diffusion or of other nonlinear terms, neglected in expression (5).
Finally, non-linear character of Rossby waves or the dominance of mesoscale eddies
(Chelton, Schlax, and Samelson 2011b) would result in less efficient meridional transport
of the tracers, as compared to that, predicted by the linear theory of Rossby waves.

5. Conclusions

The Aquarius satellite salinity measurements give a possibility to observe an impact of
Rossby waves on the ocean surface salinity, as the corresponding SSS zonal gradients
significantly exceed the zonal gradients of the mostly zonally aligned climatic salinity
fields. Our analysis shows that the SSS zonal gradients in the North Pacific are forming
wave-like structures in Hovmoller diagrams, similar to those in the SST zonal gradients or
altimetry derived meridional current velocities. The spectral density maxima of westward
Sx in (σ; k)-space are found to follow the dispersion relation for linear baroclinic Rossby
waves of the first vertical mode. The dominating frequencies, wavenumbers and phase
velocities of the SSS disturbances essentially agree with the corresponding spectral
characteristics of the SST disturbances, as well as with those of the meridional current
velocity. This seems to indicate that the anomalies are formed via meridional advection
of water properties by long Rossby waves.

The linear theory of Rossby waves allows a quantitative estimate of the intensity
of the meridional advection, and is further compared with the spectral density of
the zonal gradients of SST and of SSS. The expected meridional advection intensity
by linear Rossby waves is found to be 2–4 times higher than the observed one for
both tracers at 35°–45° N. Sharp peaks show up at 28°, 36.5°, 41.4° and 43.5° N for
SST, and 32°, 41.4° and 43.5° N for SSS. Previously, similar results were obtained by
Killworth et al. (2004) for chlorophyll-a data. In the zonally averaged values of the
predicted and modelled spectral densities of Sx and Tx , the highest differences are
detected in the areas of strong eastwards mean zonal currents. Non-linear behavior
of Rossby waves or enhanced horizontal diffusion in the regions of the strong
horizontal mean current shear may be the reasons for the observed discrepancies.
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