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For classical scattering by a central potential that exhibits Coulomb behavior (i.e., that is attrac- 
tive) at small distances, the scattering angle 6' tends to a as the orbital angular momentum L 
decreases. The differential cross section for scattering through angles close to a can be character- 
ized by the power series expansion of the difference 8 (L )-a in small L, only odd powers of L being 
present in this expansion. Expressions are found for the coefficients in the linear (c,) and cubic 
@,)-in L-terms. It is shown that, for a broad class of screened Coulomb potentials, the coeffi- 
cient c, vanishes at some value of the collision energy Eo. At the energy E = Eo the classical cross 
section diverges in the case of backward scattering (the Coulomb glory); in wave mechanics the 
cross section possesses a maximum. The behavior of the cross section for energies close to Eo is 
computed. The application of the theory to electron scattering by atoms, in which the Coulomb 
interaction at small distances is determined by the interaction with the nucleus (charge Z ) and 
Eo = 0 . 0 1 0 3 ~ ~ ' ~  keV, is discussed. 

91. INTRODUCTION 

The main types of singularities occurring in classical 
particle scattering by a central field-rainbow, when the 
scattering angle as a function of the impact parameter p or 
the angular momentum L possesses an extremum, and glory 
(or glow), when for nonzero p and L the scattering angle 0 
vanishes (forward glory or assumes the value a (backward 
glory)-are well known. In both cases the effective differen- 
tial cross section becomes infinite at the classical limit. In the 
semiclassical analysis there arise two-beam-interference-re- 
lated cross section peaks described by the Airy function in 
the case of the rainbow and by a Bessel function in the case of 
glory. 

Here we wish to demonstrate the existence of a new type 
of cross section singularity-a backward Coulomb glory 
that is closely tied with the existence of an attractive Cou- 
lomb potential at small distances and with the behavior of 
the scattering angle asp  or L tends to zero. 

Classical scattering through an angle of a for p 4  al- 
ways occurs in the case of repulsive potentials if the potential 
energy U(r) is greater than the total energy E for some value 
of r. In this case no singularities occur in the backward scat- 
tering in the classical approximation. If we have an attrac- 
tive potential, then the classical limiting scattering angle for 
p-0 depends on the character of the U (r) singularity at r-0. 
If U (r) - - C /4, then, as a result of the scattering, the radi- 
us vector r of the particle turns through an angle"' po = 2a/ 
(2 - E )  (the scattering angle 8 can be expressed in terms of the 
angle p; e.g., for a < p < 3a  we have 0 = 1 p a l ) .  As E-2, 
we obtain po- C O ,  and the "fall-to-the-center" trajectory is 
converted in the limit into a logarithmic spiral. It is interest- 
ing that the geometrically preferred backward (i.e., 0 = a) 
scattering is realized for the physically important case of a 
potential with a Coulomb singularity (the E = 1 case) (thus, 
in the case of the interaction of an electron with an atom, 
such a singularity is due to the attraction to the nucleus). The 
trajectory in this case remains almost a straight line right 
into the region of small r, where it turns sharply through an 
angle -a, rounding the potential center. 

For the purely Coulomb potential U (4) = - Z /r, we 
have a - 8 = 2 arc tan(2pE / z ) ,  and the cross section 
u(0 ) = ( Z  /4E )' /2) for scattering through an angle 
0-a  possesses a smooth minimum (the cross section for 
backward scattering is four times smaller than for scattering 
through an angle of a/2), i.e., as in the case of repulsive 
potentials, no singularity occurs in the backward scattering 
at any value of the energy. 

If the deviation of the potential U(r) from the Coulomb 
potential does not possess a singularity at zero, then a-0 (or 
2 a q )  is an odd function ofp (or L ), and can be expanded in a 
series in odd powers of this variable. The fundamentally im- 
portant result of the present paper is the discovery that the 
linear-in p or L-term in this expansion vanishes at some 
energy Eo for a broad class of screened attractive Coulomb 
potentials. For E > Eo the cross section is regular at all an- 
gles. At E < Eo the angle p of deflection at small p values is 
greater than 2a, after which is decreases, and we have a com- 
bination of a rainbow at an angle close to a and a backward 
glory at small values of the impact parameter. At E = Eo we 
obtain in the classical cross section a singularity for back- 
ward scattering, that is proportional to (a - 0 )-413. A semi- 
classical treatment leads to the conversion of this singularity 
into a maximum; if we limit ourselves to the cubic term in the 
expansion of a-8, then the semiclassical expression for the 
scattering amplitude is a universal function of the reduced 
deviation of the angle from a. As the energy is increased (in 
the region E > E,), the cross section peak decreases and then 
disappears. As the energy is decreased, the joint action of the 
glory and the rainbow at first somewhat enhances this peak, 
and leads to an increase in the total scattering cross section 
for some scattering-angle range a/2 < 8, < 0 < a in the rear 
hemisphere. There also arises in the E < Eo region a six-beam 
complex interference structure in the scattering cross sec- 
tion. 

The combination of the glory and rainbow effects is pos- 
sible also for nonzero impact parameters. We obtain here as 
well a sharp enhancement of the backward or forward scat- 
tering,4 but in this case the condition for the function a-0 to 
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be odd is not fulfilled, and we can limit ourselves to the consi- 
deration of the quadratic term of the power series expansion 
of n-8 inp. The interference structure in this case will be a 
four-beam one. It is evident from the foregoing that the case 
considered here is not simply a formal combination of the 
rainbow and glory phenomena, but is closely tied with the 
specific nature of the Coulomb scattering, and can be regard- 
ed as a new type of quasiclassical singularity in scattering 
theory. 

The question of the possibility of a specific observation 
of this effect is discussed in $4 and in the Conclusion. 

42. CLASSICAL BACKWARD SCAlTERlNG IN THE CASE OF 
COULOMB INTERACTION AT SMALL DISTANCES 

Let us investigate the behavior of the function 8 ( L  ) in 
the neighborhood of the point L = 0 and the corresponding 
scattering cross section singularity as a function of the form 
of the potential, which we represent as 

U ( r )  =-Z/r+V ( r )  , 

where V (r) is the non-Coulomb part ofthe potential [r V(r)+O 
as r-tO]. The basic expression for the analysis is the well- 
known expression for the scattering angle or the correspond- 
ing formula for the angle p of deflection of the trajectory5: 

1 " Ldr 
[E-L2/2mr'-U(r) ] I h  

( 1 )  
ro 

where m is the particle mass and ro is the distance of closest 
approach of the particle to the potential center: 

The power series expansion of ro(L ) in small L can easily 
be obtained by solving Eq. (2) with the aid of the iterative 
method: 

or, assuming that V ( r )  is finite at r = 0,  

It is convenient to go over to the variable x = l/ry, 
( y o  = l /ro)  in the integral ( 1 ) :  

The investigation of the expression (5) together with (3) 
yields significantly different results, depending on the nature 
of the growth of V ( r )  as r+O. In the Appendix we briefly 
consider the case of potentials that increase as r+O faster 
than r- ' I 2 .  Here we shall discuss in greater detail the simpler 
and physically more interesting case of potentials for which 
V(r)r112-0 as r 4 .  If V (r) is analytic in the neighborhood of 
the point r = 0, then the function 8 ( L  ) can be expanded in 

integral powers of L ,  and, because p-2n is an odd function, 
the expansion contains only odd powers of L, i.e., 

8 ( L )  =n+clL+csL3+ . . . . (6) 

The expansion coefficients c, can be computed directly by 
differentiating the integrand in (5)  [with allowance for the 
dependence yo(L ) I .  Below we shall need the expressions for 
the first two expansion coefficients: 

2 '18 - V(r)+rVT(r)-E 
(G) S f (E +Z/r- v (r)  ) y2 dr 

2 '11 U ( r )  +rUf (r)  -E =(A t ( ~ - c i ( r ) ) ~  dr , 

2 '12 1 2 "2 (E-V) -rV1 
c s = - ( m )  - [ ( V ( O ) - E ) ( ~ J  a f ( E - U ) %  dr 

(8) 

In order to get the initial segment ofthe expansion of 8 ( L  ) for 
an arbitrary potential V ( r )  to have the form (6),  we must im- 
pose on the behavior of the function V (r)  in the neighborhood 
of the point r = 0 certain smoothness requirements that be- 
come stricter as the length of the indicated segment in- 
creases. These requirements find their expression in conver- 
gence conditions on the integrals for the coefficients c, . The 
convergence conditions for the integrals (7) and (8) have re- 
spectively the forms r'12v(r)+0 and r- ' " [ ~ ( r )  - V ( O ) ] + 0  
for r-0. We can, by integrating by parts, obtain another 
representation for c,: 

1 1 
- - ) dr. 

= ( )  0 f ( [ E u ( r  / ,.,. (74  

43. THE CASE OF THE COULOMB GLORY 

Of particular interest are the cases in which the coeffi- 
cient c,, which is energy and potential-form dependent, van- 
ishes, since we have here a much higher backward scattering 
intensity, which in this case is determined by the quantity c,. 
Indeed, if c,  #0 ,  then the classical differential cross section 
for scattering through an angle 8z.n is finite: 

whereas the c ,  = 0 the cross section is classical mechanics 
diverges: 

A necessary condition for c,(E ) to vanish is that the inte- 
grand in (7), i.e., the function 

d 
V ( r )  +rVf ( r )  -E = -(rV(r) ) -E. 

dr 

should change its sign in the integration interval. At any rate 
the sign change occurs at some values of the energy E if 
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Since the dominant contribution to the integral is made by 
the region around r = 0, it is often sufficient to require that 

[i.e., that V(r) > 0] in the vicinity of the point r = 0. 
Let us now discuss the behavior of the function cl(E)  

quantitatively. At high energies the asymptotic form of cl(E ) 
is determined by the behavior of the potential U (r) at small r: 

i.e., it does not depend on the form of V (r), and turns out to be 
the same as for scattering in the Coulomb field - Z/r .  

On the other hand, at low energies c,(E ) is determined 
by the asymptotic form of U (r) for large r: 

a) if as r - +  w the potential U (r) decreases sufficiently 
slowly (i.e., like - - P /ra, 1 <a < 2), thenc,(E) remainsfin- 
ite at E-0: 

dr. 

Let us represent U (r) in the form U (r) = - Z (r)/r, 
where the functionz (r) is such that r-'I2(z (r) - Z (0))+0 as 
r 4 .  Then 

[Z (0) 1 'la- [ Z (r) I Ihdr 

[Z ( r )  ]'"[Z (0) 1" 
(114 

0 

b) When the potential decreases faster (i.e., when a>2),  
the coefficient c,(E ) increases without restriction as E-0: 

2 '1% 2a 3 1 
C, (E) = - 1 ( ) ,z r (T - ,) r ( i  + ;) p-ua~i/a-h, 

c) Ifthe potential is truncated at r = R [U (r) = 0, r > R 1, 
then 

Thus, if U (r) < 0, then in the cases b) and c) the coefficient 
c , (E)  always has a root. In the case a), for the coefficient to 
have a root, is is sufficient that Z (0) > Z (r). 

Let us now consider specific examples of simple poten- 
tials for which the coefficient cl(E ) can be computed explicit- 
ly. 

For a Coulomb potential truncated at r = R, i.e., for 

the coefficient 

behaves in the limiting cases in accordance with the general 
formulas ( 10) and ( 14), and vanishes at E = Eo=Z /2R. In- 
deed, all the coefficients c, vanish at the indicated energy, 
and B (L ) = .rr at 0 < L < ( 2 ~ r n 1 " ~ ~  (giant g l~ry l -~ ,~ .~ , ' ) .  

For the "piecewise Coulomb" potential 
-Z/r+U,, r<R= (2-2') IU, 

) =  { - r>R 

(Z > Z ', U, > 0), we obtain 

E'" - 1 (2-2') 'h (E (2-2') + UOZ') Ih . (1 8) I 
in agreement with (10) and (1 1). The coefficient cl(E ) vanish- 
e s a t E = E o =  Uo(Z-Zf ) / (2Z-2 ' ) .  

54. THE QUANTUM-MECHANICAL PROBLEM AND THE 
SCATTERING OF ELECTRONS BY ATOMS 

Let us proceed to apply the results obtained in the the- 
ory of electron scattering by atoms. Let us choose the effec- 
tive interaction potential in the form 

which, for a z0 .5 ,  guarantees a good approximation to the 
atomic potential in the Thomas-Fermi statistical theory of 
the atom (see, for example, Refs. 8 and 9); Z is the nuclear 
charge; we use atomic units). Introducing the reduced ener- 
gy g = E /ZA, and going over to the variable t = ( 1 + rA ) - ', 
we obtain 

It follows from the general results that c,(E) 
z2.81.(2A / rnz) ' l2g  -'I6 for E 4  and c l (E)  
=: - 2 ( 2 ~  /rn)'I2z - ' for E- w . Figure 1 shows the result 
of a numerical computation of the integral (20). The coeffi- 
cient c,(E ) has only one root at go = 0.67, which corresponds 
to an electron energy of Eo = 0.67 a b -'z4I3. Thus, for 
Z = 50 we find in ordinary units that Eo = 1.9 keV. In this 
case, as was discussed above, the large-angle scattering is 
determined by the magnitude of the coefficient c,, for which 
a numerical computation with E = go yields the expression 

FIG. 1. Energy dependence of the c~efficients of the expansion of the 
function 6 ( L  ) for the potential - Z / r ( l  + Ar)':i., = c,(M /rnz)-l''; 
5, = c,(M /rn~)-~". 
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The scattering of an electron by an atom at an energy of 
several keV is accompanied by intense inelastic processes 
(excitation and ionization of the atom). The elastic scattering 
through angles close to a is governed by the interaction of 
the electron with the atomic nucleus, and its cross section is 
proportional to Z (see Ref. 10, $ 139). The total (for all tran- 
sitions in the atom) differential cross sections for large-angle 
inelastic scattering is also close to the Rutherford result, but 
it represents the sum of the cross sections for scattering by 
the individual atomic electrons, i.e., it is proportional to Z 
(see Ref. 10, $148). This allows us in the case of backward 
electron scattering to neglect the inelastic processes. The 
conditions of applicability of such an approximation get bet- 
ter as well when we choose the energy E = Eo, since the elas- 
tic backward scattering is especially intense in this case. 

It should be noted that, for weakly inelastic processes, 
when AE /E< 1, the Coulomb glory will, apparently, also be 
observed, although at a somewhat different energy. 

As was pointed out above, in the c, = 0 case the classi- 
cal differential cross section diverges as 8 - t ~  in accordance 
with the formula (9). Therefore, for small a-8, we should use 
wave mechanics, which gives a finite result for the cross sec- 
tion. 

Let us use for the backward scattering the eikonal ap- 
proximation, in which the scattering amplitude has the form 

OD 

i 
j (0)  =- xJ e2ib~+inLJo((n-0) L )  LdL, (21) 

where k = (2mE )'I2 and Jo(z) is the Bessel function of zeroth 
order. The scattering phase can be found from the function 
8 (L ), which is well known from classical mechanics, with the 
aid of the equation 

d 6 ~  
2 - +e (L) =o, 

dL 

which is valid in the quasiclassical approximation.1° In par- 
ticular, limiting ourselves to the first terms of the expansion 
(6), we obtain 

where 6''' is an insignificant constant phase. Then the 
expression for the amplitude assumes the form 

f ( 0 )  = (csl  - l e e z l a ( 0 ) ~ ( ~ ? ) ,  c4 1 ~ ~ 1 - l ' ' )  ; (24) 

For c, = 0 the reduced amplitude F is a universal func- 
tion of a single variable: the reduced angle 
A 8 = (P - 8 ) I  C, / - 'I4. For angles A 8% 1, the corresponding 
integral can be computed by the stationary phase method, 
with the use of the asymptotic forms of the Bessel functions, 
which leads to the classical result (9). In the opposite limiting 
case we can expand the Bessel function in a series, which 
yields 

FIG. 2,Pifferential scattering cross section as a function of the reduced 
angle A0 in the eikonal approximation. The curves 1,2, and 3 correspond 
to values of the characteristic parameter c, lc,l - ' I 2  equal to - 0.25,0, and 
0.25. The curve 4 indicates the cross section in the classical approximation 
for the case when c, = 0. 

The series (25) converges absolutely at all a-8, and is 
convenient for computations. A similar, but more unwieldy 
formula can be obtained in the general c, # O  case. 

Figure 2 shows the results obtained in a calculation of 
the cross section as a function of the reduced angle d8 for 
different values of the characteristic parameter c,/Ic31 'I2. In 
accordance with the discussion in $1, the decrease of 
c, jc, I - 'I2 < 0 leads to the flattening out of the peak in the 
backward scattering. The growth of this parameter leads to 
the growth of the backward-scattering cross section right up 
to the value ~ / k  /c3 I (instead of the value ~ / 4 k  lc, 1 that we 
have in the c, = 0 case) in the limiting case cllc31 - ' I2+m.  

But actually the growth of the cross section stops earlier 
because of the fact that, for real scattering, the restriction to 
the first terms of the expansion (6) is not valid. Indeed, the 
backward-scattering amplitude is formed largely by the par- 
tial waves with low angular momenta. On the other hand, 
the value of the integral (24) for c, Ic3 / - ' I2> 1 is determined 
by the region of large L, which indicates a going beyond the 
limits of applicability of the formula in question. 

Let us now return to the specific problem of electron 
scattering by an atom. For the typical values Z = 50 and 
E z E 0 ,  a satisfactory approximation is given by the use of 
the first four partial waves (with L = &3). In this case the 
procedure, leading to (21), whereby the series in terms of the 
partial waves is replaced by an integral is not justified. 
Therefore, the cross section was recalculated (Fig. 3) from 
the exact quantum-mechanical formula for the scattering 
amplitude, but with the quasiclassical scattering-phase val- 

FIG. 3. Cross section for electron scattering by atoms in the case when 
allowance is made for the first four partial waves. The curves 1, 2, and 3 
correspond to reduced-energy values of 0.45,0.35, and 0.67 respectively. 
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ues determined from (23). It can be seen from Fig. 3 that the 
cross section peak is in this case broad. Let us note that, 
although at energies of several keV the elastic electron scat- 
tering is primarily small-angle scattering, the excess of the 
backward-scattering cross section over the cross section for 
scattering through angles -90" can, in principle, be ob- 
served. As can be seen from Fig. 3, the maximum ratio of the 
backward-scattering cross section to the cross section for 
scattering through angles r - 8 ~ 0 . 8  is attained at Ez0.45, 
and is approximately equal to 30. In ordinary energy units 
this corresponds to 1.3 keV. As we move away from this 
value on either side, the peak flattens out. 

For one and the same interaction potential the magni- 
tude of the coefficient c, decreases with increasing incoming- 
particle mass m like m-,I2 (the value of Eo does not depend 
on m). In other words, the peak in the backward scattering is 
formed by higher partial waves, and is narrower. 

55. CONCLUSION 

A screened spherically-symmetric attractive Coulomb 
potential is realized first and foremost in electron scattering 
by atoms. The energy region where the Coulomb glory oc- 
curs in scattering of negative singly-charged particles by 
atoms corresponds roughly to a quarter of the important 
atomic constant: the potential of the electron cloud in the 
atomic nucleus. For the Thomas-Fermi potential this quan- 
tity is equal to 1.588b - '2 4'3; and for the potential - Z / 
r(l  + Ar)2 it is equal to 2ZA. 

Unfortunately, in the energy region where the Coulomb 
glory should occur the quasiclassicality condition is fulfilled 
only to a slight degree: the electron wavelength is only sever- 
al times smaller than the dimensions of an atom with Z = 50. 
This means that the Coulomb glory phenomenon manifests 
itself only for the first 2 4  partial waves, and we can expect 
only a relatively broad peak in the range of r - 6' values 
from - 20 to 40". 

In this respect, more suitable objects for the observation 
of the effect would be heavy negatively-charged particles, in 
particular, ,u mesons. Experiments on the observation of the 
backward scattering of kilovolt muons by heavy atoms are at 
present quite practicable. The role of the inelastic processes 
for the heavy particles will also be less significant, since they 
move significantly more slowly than the electrons, and the 
collision will be adiabatic. But even for the electrons, even 
though the inelastic processes do weaken the effect and a 
more exact estimate of their contribution is necessary, the 
detection of the peak in the backward scattering remains 
within the feasibility limits of practicable experiment. 

APPENDIX 

In the case of potentials that grow as r-0 faster than 
r- 112, an investigation of (5) together with (3) shows that the 

expansion of the function 6' (L ) contains fractional powers of 
L : 

0 ( L )  =n+clLZ('-'), 

where the exponent y characterizes the behavior of V(r) as 
r-0: 

The case y = 4 is an intermediate case, and corresponds to 
the logarithmic terms in the expansion: 

0 ( L )  =n-4m (2mZ) -"a ( 0 )  L In L. (-43) 

As an example of a potential with a more complicated singu- 
larity at the origin, we cite the function 

V ( r )  =la ( r )  / r  ln r ,  (A41 
in which case 

In all the considered cases the deviation 8 (L )-n- decreases as 
L-0 more slowly than L, the coefficient in the correspond- 
ing term being independent of the energy, and being entirely 
determined by the character of the growth of the potential 
V (r) as r-0. 

''Notice that, with the aid of the solution to the inverse scattering prob- 
lem, we can construct potentials for which the scattering angle is con- 
stant and equal to a fixed value in some interval 0 < p < R (Refs. 2 and 3). 
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