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Abstract. Localized buckling of elastic thin shells reinforced with threads is discussed
in this paper. The results of asymptolic analysis for thin isotropic shells reported in [1]
are generalized for the case of a shell consisting of a matriz reinforced by fibers. The
expressions for critical loadings obtained for the cases when localization of buckling occurs,
for example, for the buckling of a convex shell under hydrostatlic pressure or under torsion.
As examples, buckling of ellipsoidal and cylindrical shells are considered.
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1 Introduction

We consider a thin shell made of composite material, consisting of the matrix reinforced by
fibers situated in planes parallel to the midsurface. On the shell midsurface we introduce
the curvilinear coordinates a, ay coinciding with the curvature lines. The coordinate z is
directed along the normal to the midsurface. We assume that the shell if reinforced with
N systems of fibers, inclined at angles %), k=1,2,.... N to the axis aj.

(0) (k)
;. and averaged stress o;;”, caused by

The shell stress o;; is a sum of the matrix stress o i

the extensions of the fibers
N

055 :aff)JrZaff)- (1)

The elastic energy II of the shell can be expressed as a sum of the stretching energy Il
and the bending energy 1I1,, [1]
M=TI, +11,,

where Il and II,, are given by

1 1

HE = 5// (T1€1—|—T2€2—|—SW) dY = 5// [(ij@i@jdz,
1

1_[,,r = 5// (M1%1—|—M2%2—|—2H7') dX.

Here Ty, Ty, and S are the stress resultants and My, My, and H are the moment resultants.
€1, w, and ey are the stretching-shear strains and s, 7, and sz, are the bending-twisting
strains of the midsurface. d¥ = A; Ay dajday is the area element and the integration in
I1. and II,, is performed on the entire midsurface. K;; are the coefficients the relations for
those have been obtained in citeHas. If the reinforcing fibers are symmetric with respect
to the directions «; and ay, i. e. for each fiber system with an angle ;. corresponds a
system with an angle 6, = —0}, then

Kiz = Dz = K3 = D3; =0 1=1,2

As a result we obtain the constructive orthotropic shell.

2 Bifurcation equations

We simplify the equilibrium equations by using the same assumptions usually made for
the Donnell equations for shallow shells [3]. The metric of the midsurface is described as
the metric of a plane and we assume that the values of the metric coefficients A;, A; and
radii of curvature Ry, and R, are constant. Let

dl’l = Aldal, dl’g = Agdag.
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Neglecting the small term we derive the following equations for strains

; Juy w , Ouy  Ouy , Oug w
el = ST We=o—t o, e = o = o
811?1 Rl 811?1 8:102 8:102 BQ
ow ow
’71 a:(;l? ’72 a$27 ( )
d*w 0*w 0*w
1 =

—re T = My = —— .
dz?’ dzx10zy’ d0x3

If the loads g1, g2 and g3 have the same order or {q, ¢2} < g3, then with the same error
it may be assumed that ¢; = g2 = 0 in equilibrium relations.

The simplified system may be used not only for the analysis of shallow shells but also
in the analysis of vibration and buckling of arbitrary thin shells. In that case the stress-
strain state of a shell may consists of many waves of deformations but in the limit of one
deformation wave the shell should be considered as shallow.

Let consider that as a result of loading, there exists in a shell a momentless stress-strain
state determined by the initial stress resultants 77, Ty, So. The stress-strain state is
referred to as momentless or membrane-like if the moment resultants M; = My = H = 0.
Next we analyze the stability of such a state.

The bifurcation equations for the equilibrium equations become [4]

o1, a5
Tﬁ + 8—;1:2 =0,
or, 0S8
2 90
@:m —I— 8;1;1 ’
0*w 0*w 0*w
0w 0 0

0.

0* M, 0*H 9> M, AT B
—\ 5.2 +2 + 5 — + — =
7 dr0zy  Ox; R Ry

These equations together the with strain-displacement relations and the elasticity relations
and form a closed system, provided linear approximation for tangential deformations is
assumed.

Next we study the one parametric loading by introducing the loading parameter A as

{T107 Tgov So} = _/\{th l, t3}-

The minus sign is necessary in order to seek A > 0, since buckling is possible only if there
exist directions in which compressive stresses are developed. Such directions exist if and
only if at least one of the following inequalities is satisfied

TP <0or TO <0 or (S°°>T0TY. (4)
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We seek the displacements under bifurcation in the form
_ 0 _ 0 _ .0 _ i
Up = uysinz, Uy =uysinz, w=w cosz, z=kx+ kexy, (5)

where the amplitudes u!, uy, and w° and the wave numbers k; and k; must be determined.

From the first two equations in equilibrium equations we find «? and 9 as functions of

w®.

Now we can cancel w? in the third equation in equilibrium equations since all functions
are only of w° and find X as

B.+ B,
A= [k, k) = — 35 (6)
t

where

Ay (kf B

2
Ba — K E E) , Ak — [X’11A11 + [X712A12 + [\/71314137

B.. = anil + 4D13kfk2 +2 (D12 +2Ds3) kfk% + 4D23k‘1k§ + D22k§7
A= Aggkil — 2A23kf’k2 + (2412 + Agg)kfkg — 2A13k1k§’ + Auk;*,
Bt — tlkf —|— thklkg —|— tgk%

Here we denote by Ay the determinant of the matrix { K;;}. The variables B., B,, and B,
are proportional respectively to the bending-twisting shell energy II,,, the tensile-shear
shell energy for additional displacements Il., and the work of the initial momentless stress
resultants on the additional rotations of the normal.

Since II,, and II. are positive definite, the matrix {K;;} is also positive definite and
therefore

Ak>0, ]X’7¢¢>0, A; >0 B%>O,
A>0 for k¥+ki+#0.

3 Analysis of the relation for the critical loading

Relation (6) is rather general. It may be used for estimation of the value of a critical
loading and expected buckling mode in many problems. We obtain the critical value Aq
for the parameter A by minimizing the function f(ki, k2) in all real k; and ko, such that
B, > 0.

Let

ki = rcosp, ko = rsin .
Taking into account that the functions are homogeneous in k; and k; we introduce

B. = Bl(¢), B.= T4B:(g0), B, = TQB:(L,O), A= r4A*(<,o).
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Minimizing the function (6) in r we obtain

o= min () = ), ) =2
P = BZ(¢o)
° " Bxi(po)

Due to (5), the pits are significantly elongated at angle —¢q to the axis z5. This relations
may be used to study the buckling of convex shells under compression, stretching, torsion,
bending or combined loading. In the case of shells of zero gaussian curvature only for the
axial compression of cylindrical and conical shells this relation provides the nontrivial
result.

In fact, the algorithm described above may be applied only for shells of positive gaussian
curvature (R; Ry > 0). For shells of negative gaussian curvature (R; Ry < 0), due to (6)

we get
Ao = min{f*(¢)} =0, ro =0 for tangy= 4 /—&. (7)
4 RQ

Similarly, for shells of zero gaussian curvature (R;' = 0), i.e. cylindrical and conical, we

obtain from (6)
Ao = min{ f*(¢)} =0, ro =0 for ¢o=0. (8)
©

Relations (7) and (8) mean that for shells of zero or negative gaussian curvature the order
of the critical loading (Ag = 0) decreases and the buckling mode is not localized (ro = 0).
To obtain the critical loading and buckling modes for such shells one should apply the
method of the asymptotic integration that is described below for a circular cylindrical
shell as an example. The case of the axially compressed cylindrical shell t, = t3 = 0,
t1 > 0, is the only one, when the application of relations (6) provides a nontrivial result.

4 Examples

4.1 Orthotropic ellipsoid under external pressure.

As an example we consider an elliptical shell of revolution with the semi-axes (a,a,b).
The angle between the axis of symmetry and the normal to the surface is denoted as §. We
select the parameter R = a as a characteristic length. Then for the principle curvatures

p2 = R/Ry = (sin? 0 + dcos? ), py = R/R, = p3/d*, d=b]a. (9)

Here d is the coefficient of the ellipsoid compression (if d > 1 an ellipsoid is prolate, if
d < 1 it is oblate).

The elliptical shell consists of the matrix made of the uniform material of the thickness
h, Young’s modulus £ and Poisson’s ration v. The shell is reinforced with two similar
systems of threads, the angles between the threads and the meridional direction are equal
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to £a. The threads occupy the volume (1 — dp)V, where V' is the entire volume of the
structure; Young’s modulus of the thread material is e times larger than F.

The elliptical shell is under uniform normal (hydrostatic) pressure A. The relations for
the initial stresses are well-known [1]

1
tl = —sign)\, tg =

= ————signA 13 = 0.
5 22 signA, 3

For the external pressure signA > 0, and for the internal pressure signA < 0. Note, that
for the external pressure the buckling may occur due to (14) for the elliptical shells of
arbitrary form and for the internal pressure only for such shells for which 2p; < py, 1. e.

ps > 2d°. (10)
It follows from (9) that for p, the following relations hold
Il <py<d, ford>1,d<py <1, ford<1. (11)

Simultaneously inequalities (10) and (11) are satisfied only for 2d? < 1.

For the system of threads described above the shell is orthotropic and the relation for A
has the following form

B (¢, 0)Bx(¢, 0
Ao = min{ [*(,0)} = [*(o, 0o), f*(%g)zz\/ 2(,0)B5(#, 0)

Bi(p,0) ’
T‘S _ B:(S‘Qoa 90) 7 (12)
B;(S‘Ooa ‘90)
where

* Ay 2 -2 \2 - -
B = TIA (,02 cos” @ + pysin go) , Ar = K11 A 4+ K3Aq,,
B: = Djcos’p+2 (D12 + 2D33) cos? psin® p + Dy sin? ¢,
Br = t;cos?p + tysin? o,

A = Apcostp+ (2415 + Aszz) cos? psin® p + Ay sin? o,

A = KypKss — [(223, Arg = K13K33 — K12 K33,
Ay = K11 Kss — K2, Ass = K11 Ky, — K.

We start the consideration with the isotropic elliptical shell under external pressure
(do=1). In this case

1 —
Ay = Ay = K? 5 Va A = —vAu,
Eh
Ags = K*(1 —0° K=
33 1& ( 14 ), \ 1—1/2 1
Ap = — VKB(l -1*), A=K? v (COSQ@ + sin? 99)2,
1 — 2
B =K v 5 <0032 @py + sin? L,o,ol)Q,

R? (cos2 © 4+ sin® go)
B = %K <C082 © 4+ sin® @)2

> 1
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and relation (6) may be written as

Eh? . (cos?ppy + sin? ppy)
min —
R2\/3(1 —v?) #f licos?p+1asin”

/\0:

Minimising by ¢ the above expression we obtain

b7 ty, T = 21t t
I 3(1—y2)p1/ 2, for o =7/2 if typs > tipy
Eh? .
NG VQ)pg/tl, for ¢ =0 if typy < t1py
b7 t, = b7 ty, il ¢ =1
A T Ay e =

In the last case the angle ¢ is undefined. It means that there exist multiple buckling
modes. At the same time the value of the buckling loading is unique.

For the case under consideration the condition ¢3p3 = {1p; may be rewritten as

s 22— p

2p2 2/02 ’
or py = pz2, that corresponds to d = 1, i. e. spherical shell. For d > 1 t3p2 > t1p;, and for
d <1 tgpg < t1,01-

Therefore the relation for the critical loading is given as

Ll 2p3, for d <1

Pa, 10T € =

2 /31 — 12
Ao = min f 32(1 v?) 2
’ Lh 20102 ford > 1
R:/3(1—12)2p2 — p1’ N
Now minimising by # we obtain
Eh?
2d?, for d < 1
\o — R2\/3(1 —v?)
0~ EhR* 2
, ford > 1
R2,/3(1 —v?)2d* — 1

For d > 1 the weakest parallel is on the equator (6y = 7/2), and the pits are elongated in
the direction of the meridian (@ = 7/2).

For d < 1 the weakest parallel is the pole (6§ = 0). Note, that in the last case the value of
Ao does not depend on angle ¢ and, therefore, angle pq is undetermined.

Now we consider the orthotropic shell. For such shell

FEyh? Eh? FELEyh?
An=—"0G, Ap=——G Ay=—"—,
1-— 140%) 1— 140 %) 1-— 140
I € E\E,h3G
Ay = _'/1277 A, = L2
1 — 141y 1 — w1y
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Despite of the isotropic case in the case of orthotropic shell relation (6) cannot be simplified
and one should seek numerically for the minimum of function (12). For that we fix the
parameters a and dp and find the minimum of the function

Ao = q’}}gl{f*(so’@)} =

min  f*(p,0) ford>1
©€[0,7/2]
926[17d]
min  f*(¢,0) forv2/2<d<1 (13)
= ©€[0,m/2]
p2€[d71]
min [*(p,0) ford < \2/2
we[Arctan //)gfﬁ,wﬂ]
p2€[d71]

where

F(,0) = 4 [BxAy  p2d®cos® p + pisin® o
’ A d?cos?p+ (2d2 — p2)sin p

for the different values of the parameter d. The numerical calculations revealed that the
function attains its minimum at 6y = 0 for d < 1 and at 8y = 7/2 for d > 1. This result

does not depend on the values of the other parameters.

As it might be expected the increasing of the thread stiffness and their relative volume
leads to the increasing of the critical loading. For very small values of the parameter dg
(the threads occupy almost all volume) the critical presure comes down drastically since
the shell in this case behaves like a system of threads.

The angle g depends of the values of the parameters d, a and dq. For large values of d
the pits are elongated in the direction of the meridian, that angle ¢q converges to /2 and
for highly elongated orthotropic elliptical shells the buckling modes are similar to those
for the isotropic shells.

The increasing of the thread stiffness leads to the smaller angle .

The dependence of the critical loading and buckling mode on the angle between the system
of threads is more complicated. For the angles a larger than 7/4 the critical loading and
buckling modes are equal to the the critical loading and modes for the isotropic elliptical
shell. For the slightly elongated ellipsoid the critical loading attains its maximum for the
angles close to 7/8.

For the oblate orthotropic elliptical shell (d < 1) the value of f; may be determined in
the unique way from the conditions:

*
b

A Y

¥o - /\(99070) = Hgn
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from which it follows that
B, 1/4
wo = £ Arctan <F>

1

For small and large values of d the following approximate formulas may be used to obtain
the critical loadings

hi\/E F,
. . RQ 3(1 — I/lVQ)
Ao = min h?\/Ey B, 2
RZ\/ 3(1 - V1V2) 2d2 —1

4.2 Orthotropic elliptical shell under internal pressure.

2d?, for d < 1

, ford >1

We start the consideration with the case of the isotropic shell (dp=1). Since for the shell
under internal normal pressure ¢; < 0, and ¢, > 0, then the inequality t3p2 > t1p; holds
for any values of the parameter d and relation (6) has the form

Eh?

Ao = min N VQ)pl/tQ, for o = m/2

or
Eh? 2p1p>
Ao = —min P1Pa , for d <
0 R2\/3(1 —v2)p1— 2p2

ol

20195 2p3
p1—2p2 13— 2d?
For d < 1/2 the function attains its minimum at p; = 2d, i. e. on the parallel § =

We seek the minimum of the function under condition 2d* < r3 < 1.

and this minimum is equal to 16d?. For 1/2 < d < ? the minimum attains at

. 3d2
arcsingy—

p2 = 1, 1. e. on the equator and it is equal to #.
Hence, the pits are elongated in the direction of the meridian and they moves from the

equator to the pole as d decreases.

Consider the orthotropic elliptical shell described in the previous section. then the relation
for the critical loading may be written as

Ao = Ig}en{f*(g‘oa 0)} = min (e, 0) (14)

2
pe(Arctan pgiW’”/Q]

P2€(\/§d,l]

[(,0) = 4 | Bx Ay pid? cos? p + phsin®
4 A —d?cos? o — (2d* — p2)sin®

As before, we seek the minimum for all positive A\g. We remind that the buckling of the

where

elliptical shell under the internal pressure may occur only if d < v/2/2.
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For the shell reinforced with the threads the critical loading is higher than for the isotropic
shell and the weakest parallel is closer to the equator for 1/2 < d < v/2/2. At the same
time the orientation of the pit axis ¢y changes significantly.

The critical loading decreases as the angle « increases. For o > /4 the buckling modes
of isotropic and orthotropic shell practically coincide.

4.3 Cylindrical shell under axial compression

Finally we consider circular cylindrical shell under axial compressive force. In this case
the dimensionless initial stress-couples are {1, = ¢35 = 0 and ¢; > 0. Substituting the
coeflicients in the elasticity relations [2] into the espression for the energies we obtain for
the axisymmetric buckling mode (ky = 0)

GhEFyk? h? (EykY) 2
B.= ——7"-""+- = By = kit 15
R2 (GE kD) 12(1 — 1) ' i (15)
and
hElEQhS h2 E1E2
TP = My =2 XY e e— 1
1 ! \/3212(1 — 111) R\ 3(1 —u111s) (16)

For the axisymmetric mode we get

EFE, h?
TO=C,)—12 .2
! 3(1 —V11/2) R

where

RV E1E2 + 2G 1— 1/11/2) + Ell/g
\ E1E2 + ElEQ/QG) Ell/g

Both formulas coincide with those given in [5].

10



ECCM-2001, Cracow, Poland

References

[1] P. E. Tovstik, The Buckling of Thin Shells. Asymptotic Methods. Nauka, Fizmatlit,
Moscow, (1995), (in Russian).

[2] J. R. Vinson, The Behavior of Shells Composed of Isotropic Materials. Kluwer
Academic Publisher, Dordrecht, (1993).

[3] L. H. Donnel, Beams, Plates and Shells. New York, McGraw-Hill, (1976).

[4] E. M. Haseganu, A. L. Smirnov, P. E. Tovstik, Buckling of thin amisotropic shells.
Transactions of the CSMF, 24, No.1B, pages 169-178, (2000)

[5] T. Hayashi, On the elastic instability of orthogonal anisotropic cylindrical shells,
especially the buckling load due to compression, bending and torsion, J. Soc. Naval

Arch. Japan, No.81, pages 85-98, (1949).

11



