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Abstract—The general theoretical approach to the asymptotic extraction of the signal series from the
additively perturbed signal with the help of singular spectrum analysis (SSA) was already outlined in
Nekrutkin (2010, Stat. Its Interface 3, 297–319). In this paper, the example of such an analysis applied
to the linear signal and the additive sinusoidal noise is considered. It is proven that, in this case, the
so-called reconstruction errors ri(N) of SSA uniformly tend to zero as the series length N tends to
infinity. More precisely, we demonstrate that maxi |ri(N)| = O(N−1) as N → ∞ if the “window
length” L equals (N + 1)/2. It is important to mention that a completely different result is valid for
the increasing exponential signal and the same noise. As is proven in Ivanova and Nekrutkin (2019,
Stat. Its Interface 12(1), 49–59), no finite number of last terms of the error series tends to any finite
or infinite values in this case.
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1. INTRODUCTION
Let us first consider the variant of the singular spectrum analysis (SSA), which is discussed in this

paper. A detailed description of this method can be found in [1] or [2].
The real “signal” F = ( f0, …, fn, …) is considered. It is assumed that the series F is governed by a linear

recurrent formula (LRF) of order d

(1)

with ad > 0, which is minimal in the sense that there is no LRF of lower order governing the series F.
In addition, “noise” E = (e0, …, en, …) is introduced and it is assumed that the series XN = FN + δEN is

observed, where FN and EN are matched segments of length N of the signal and noise, and δ is the formal
perturbation parameter. In other words,

The general problem is to extract (approximately) the signal FN from the sum XN. It is assumed that only
the order value d of the LRF (1) is known. The terms “signal” and “noise” emphasize our interest partic-
ularly in the series FN.

1.1. Brief Description of the Method
The SSA method is described in this case as follows.
1. First of all, the window length L < N is chosen and the Hankel trajectory matrix H(δ) of dimension

L × K, K = N – L + 1, with elements H(δ)[ij] = , 0 < i ≤ L, 0 < j ≤ K is constructed from the series XN.
It is assumed here that min(L, K) ≥ d. In [1], this operation is called embedding.
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If we denote H and E as the Hankel matrices obtained from FN and EN series by embedding with the
same window length L, then, of course, H(δ) = H + δE.

2. The matrix H(δ) is then subjected to a singular value decomposition and d main (i.e., corresponding
to the largest singular values) elementary matrices of this decomposition are summed. The result  of
this operation is the best approximation of the matrix H(δ) using matrices of rank d in the Frobenius
norm.

3. After that, the Hankel matrix  is searched for, which is the closest to  in the same Frobenius
norm. Explicitly, this means that, on each secondary diagonal i + j = const, all elements of the matrix 
are replaced by their average values. Therefore, this operation is called diagonal averaging in [1]. Denoting
it  we get that  = .

4. Finally, applying to  the operation inverse to embedding, we obtain the reconstructed series

which is declared as an approximation to the signal FN.
A more formalized notation of this variant of the SSA can be found in ([2], p. 128) with M = 1. It is

natural to name the series

with ri(δ) = fi(δ) – fi a series of reconstruction errors, and the matrix Δδ(H) =  – H a matrix of recon-
struction errors.

In this work, we consider linear signal

(2)

where θ1 ≠ 0, and the noise as a linear combination of harmonics

(3)

where  ≠ 0,  ≠ ωp at  ≠ p and 0 <  < 1/2. Since the signal (2) is governed by LRF fn = 2fn – 1 – fn – 2, then
d = 2 in this case.

In ([3], paragraph 5.3), a general scheme of asymptotic analysis of reconstruction errors at N → ∞ is
proposed. As it is used below, let us give a brief description if it.

1.2. Approach to Analysis of Reconstruction Errors

We are interested in uniform convergence of the residuals ri(δ) to zero first of all, i.e., the behavior of
the norm ||FN(δ) – FN||max = max0 ≤ i < N|ri(δ)| at N → ∞.

In addition, it is assumed that min(L, K) ≥ d. In this work, we use relation L = (N + 1)/2, i.e., the length
of the series N is assumed odd.

Further, if  is a linear space generated by columns of the matrix H, then it follows from (1) that the
dimension of  equals d independently on N and L in these conditions.

Let us denote by  orthogonal projector on linear space  and by  orthogonal projector on
linear space generated by columns of the matrix . Then, as shown in ([3], paragraph 5.3),

(4)

In this work, according to ([3], paragraph 5.3), we use two matrix norms. For matrix A with size L ×
K, spectral norm ||A|| is determined as maximal singular number of this matrix and uniform norm ||A||max as
maximum of the modules of the elements of this matrix. Relation between these norms is well-known ([4],
paragraph 2.3.2):

(5)
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168 ZENKOVA, NEKRUTKIN
Since || ||max ≤ ||A||max, then the left of the inequalities (5) allows using the spectral norm to study the
behavior of reconstruction errors. At the same time, the form of the first term on the right side of (4) shows
that it is necessary to pay attention to the difference of the projectors  – .

Using the classical results of Kato ([5], chapter 2, paragraph 3), an upper estimate of spectral norm
||  – || is obtained in ([3], Theorem 2.1), which is used in some so-called subspace methods of sig-
nal processing. However, since the difference of the projectors in (4) is multiplied by H(δ), this estimate
turns out to be insufficient and it is necessary to distinguish the “main part” of the difference  – .

This is done as follows. Let us denote maximal and minimal positive eigenvalues of the matrix HHT as
μmax = ||H||2 and μmin, respectively. In addition, assume that S0 is the pseudoinverse Moore–Penrose
matrix to the matrix HHT with ||S0|| = 1/μmin. Then we denote

and

(6)

where P0 = I – , and I is identity (L × L) matrix. The following assertion then holds (see ([3],
Theorem 2.4)).

Theorem 1. Assume that δ0 > 0 and ||B(δ)||/μmin < 1/4 for all δ ∈ (–δ0; δ0). There is then such an absolute
constant C that

(7)

The inequality (7) is used as follows. The equality (4) is rewritten as

(8)
If it turns out that, in this case, the following inequality holds at N → ∞

(9)

then it is left to check the asymptotic behavior of the elements of a specific (even possibly complex) resid-
ual matrix  + W1(δ)H(δ).

It is proposed to solve the problem of asymptotic separability of signal (2) from noise (3) in this work
exactly in this way. Namely, we first prove that inequality (7) holds for any δ for sufficiently large N, then
we arrive at convergence (9) by estimating the right-hand side of (7) from above (see Section 2).

Section 3 presents the proofs of relations  = O(N–1) and  = O(N–1). This imme-
diately implies convergence of  ||FN(δ) – FN||max to zero; moreover, this expression is of the order O(N–1) at
N → ∞.

All these facts are first discussed for a single sinusoidal noise, transition to noise of the general form,
and the final results of the work—Theorem 2—are also placed in Section 3.

2. AUXILIARY ASSERTIONS AND PROOF OF CONVERGENCE OF (9)
As was mentioned before, we consider here the signal (2) (it is enough to take θ1 = 1) and the noise

(10)

In addition, let L = K := N – L + 1 = (N + 1)/2 (i.e., the matrices H and E are quadratic and symmetrical),
while N → ∞.

As noted in ([3], Lemma 3.1), there are such positive constants Ccos, Cmax, and Cmin < Cmax in these con-
ditions that the following relations hold at N → ∞:

(11)
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Lemma 1. At N → ∞ relation ||HET||max = O(N) holds.

Proof. At 1 ≤ p ≤ L and 1 ≤ s ≤ K, we have

where ϕs = 2πsω + ϕ.

Since inequalities

are true for any ψ and in the notations

there is a relation

then ||HET||max = O(N).

Note 1. Since LK ∼ N2/4, and μmin ∼ CminN4 at N → ∞, then, applying the right of inequalities (5), we
obtain that ||HET||/μmin = O(N–2).

Lemma 2. There is a relation  = O(N–1).

Proof. Let us denote

Of course, the pair PL(0), PL(1) is the basis of the linear space . Thus, the matrix  can be repre-
sented as

(12)

where (L × L) matrices have the form
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and

Multiplying each term in the right part of (12) by the matrix

and acting in the same way as in Lemma 1, we obtain the result, omitting absolutely elementary, but cum-
bersome and numerous calculations.

Lemma 3. There is a relation ||S0E|| = O(N–4).
Proof. Let us consider singular decomposition of matrices HHT, S0, and H:

In addition,  =  + , where U1 and U2 are orthonormalized eigenvectors of the matrix HHT.
Then we have

and, since  ∼ Cmax(N2),  → c > 1, and ||HET||max = O(N), then this implies that

Since  =  = O(N–1), then  = O(N–1) at i = 1, 2, and, there-
fore, accounting that E = ET, we obtain (see (5))

which was to be proven.
Proposition 1. Assume that N is odd, N → ∞ and L = (N + 1)/2. Then,  for any δ,

Proof. First, according to Lemma 1 and asymptotics (11), there is such a constant C1 that

Therefore, for any δ the inequality (7) is held at large enough N and as a result at N → ∞ there is a relation

whence immediately follows the required.

3. STUDYING THE ELEMENTS
OF THE RESIDUAL MATRIX AND THE FINAL RESULT

We have to research asymptotic behavior of the elements of matrices W1(δ)H(δ) and  in conditions
of Proposition 1. In this case, as in the previous section, it is assumed that the noise has the form (10).
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According to Lemma 2,  = O(N–1); therefore, it is necessary to deal with W1(δ)H(δ).

Proposition 2. In conditions of Proposition 1, ||W1(δ)H(δ)||max = O(N–1).
Proof. Let us begin with some simplifications. According to formula (6), we have

where  = P0EHTS0 + S0HETP0. Since (see Lemma 3)

and ||E|| = o(||H||), then  = O(N–1) → 0, and, thus, it is enough to consider the elements
of the matrix

instead of W1(δ)H(δ). Further, since

then we have to deal with the matrix P0EHTS0H.

Since HTS0H = , where  is the matrix of orthogonal projection on the space of rows of the matrix
H, then we finally will deal with the elements of the matrix

Since  = , then Lemma 2 implies that  = O(N–1). In order to obtain a similar inequality for

, it is enough to calculate this 2 × 2 matrix explicitly using formula (12) and make sure that each of
its element has the order O(N–1). Like in Lemma 2, we will omit here this cumbersome and elementary
procedure.

The main result of the present work can now be formulated and proven.
Theorem 2. Let us consider a linear signal fn = θ1n + θ0, where θ1 ≠ 0 and a noise that is a linear combi-

nation of harmonics at n = 0, 1 …, N – 1:

(13)

where  ≠ 0,  ≠ ωp at  ≠ p and 0 <  < 1/2.
Let us assume that xn = fn + δen, where δ is the formal parameter of perturbation and taking odd N and L

equal to (N + 1)/2, apply the variant of the SSA method described in Introduction to the series xn, n = 0, …, N – 1
to extract the signal with d = 2.

If we denote the reconstruction result of the series  using this variant of the SSA method as
f0(δ), …, fN – 1(δ), then for any δ ∈  at N → ∞

Proof. Since, as was already mentioned, || ||max ≤ ||A||max, then, at r = 1, the result immediately follows
from Propositions 1 and 2.

Let us now proceed from r = 1 to an arbitrary r. First, according to ([3], Lemma 3.1), ||E|| ∼ CN not
only at r = 1 but also in the case when the noise has the form (13). Further, since

and ||S0(E1 + E2)|| ≤ ||S0E1|| + ||S0E2||, then the assertions of Lemmas 1 and 3 (and as a result of Prop-
osition 1) remain true for the noise (13) as well. In the same way
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Fig. 2. Maximal reconstruction errors, multiplied by N, depending on the length of the series N for xn = 2n + 1 +
cos(2πω + ϕ), where ω = 1/3, ϕ = 0. 
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Fig. 1. Maximal reconstruction errors depending on the length of the series N for xn = 2n + 1 + cos(2πω + ϕ), where ω =
1/3, ϕ = 0. 

0e+00

3e+05

6e+05

9e+05

M
a
x
im

a
l 

e
rr

o
r

25 50 75 100
N

implies that the assertions of Lemma 2 and Proposition 2 are also true for this noise. The theorem is
proven.

Note 2. The condition L = K is technical and is used only for proving Proposition 1. General consid-
erations and computation experiments allow for assuming that the result of the theorem will be preserved
for any polynomial signal and window length L ∼ αN at N → ∞ if α ∈ (0, 1). However, this is not yet
proved is such generality.

It is necessary to note that a similar line of reasoning was carried out in [6], where a growing exponen-
tial signal and a sinusoidal noise were studied. In this case, it turned out that ||FN(δ) – FN||max  0 at
N → ∞, which is in sharp contrast to the case of the linear signal under consideration.

APPENDIX. THE RESULTS OF NUMERIC EXPERIMENTS

As an example, let us consider the series

when n = 0, …, N − 1 with N = 5(1)101. We use window length L = .

Calculation results are shown in Figs. 1 and 2. It can be seen in Fig. 1 that the maximal in absolute value
reconstruction errors of the series really tend to zero with growth of N. At the same time, Fig. 2 shows that
maximal errors become bounded after multiplication of the terms of the series in Fig. 1 by N. This con-
firms the result of Theorem 2.

→/

= + + πω + ϕ ω = ϕ =2 1 cos(2 ), where 1/3, 0,nx n
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