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The generalized arithmetic-geometric mean

Semjon Adlaj

Abstract. The generalized arithmetic-geometric mean (GAGM) is the
�canonical� generalization of the arithmetic-geometric mean (AGM) which
was discovered by Gauss to enable most e�cient calculation of complete
elliptic integrals. It thereby provides the framework necessary for a
contemporary Computer Algebra System (CAS), where complete elliptic
integrals of all kinds are to be exactly evaluated and robustly, swiftly
calculated.

The introduction of the arithmetic-geometric mean (AGM) signi�ed (as
Gauss recorded in his diary on May 30, 1799) the emergence of a �new era of
analysis� [1]. Yet, over two more centuries were required before the great
signi�cance of Gauss' discovery was understood. The concept of the modi�ed
arithmetic-geometric mean (MAGM), discussed in [2], clari�ed the link between
the complete elliptic integral of two kinds (the second with the �rst). The
Computer Algebra System (CAS) �MathPartner�, which implementation was
discussed in [3], incorporates both the AGM and the MAGM, as told in [4, 5].

The GAGM might be regarded as the concept linking to each other complete
elliptic integral of all (three) kinds. The procedure for calculating the perimeter of
an ellipse via the GAGM, presented in [6], emphasized that the calculation of the
complete elliptic integral of the second kind did not necessarily require separate
calculations of the AGM and the MAGM. We also emphasized the Gauss-Euler
algorithm as the algorithm (with no other namings for this algorithm to be ever
justi�ed, contrary to claims made in [7]) underlying fast algorithms for calculating
the constant π. Thus, further incorporating the GAGM in CAS �MathPartner�
provides the framework necessary for exact and robust calculations of complete
elliptic integrals of all kinds, including the third kind, which is notorious to many
contemporary CAS for being too prone to erroneous calculations. The errors being
unavoidable whenever the multivaludness of (path-dependent) elliptic integrals is
not properly addressed. The exploration of the algebraic properties of the GAGM
provides the necessary tools for matching its multivaludness with corresponding
multivaludness of complete elliptic integrals, with the Galois elliptic function, as
de�ned in [8], providing the basis for such exploration.
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Computation of Hamiltonian high order normal
form

Alexander Batkhin

Abstract. The procedure of deriving homological equations of arbitrary order,
which solutions are used in iterative procedure of normalization of a Hamil-
tonian in a neighborhood of an equilibrium position, is considered. A formula
for a homological equation of arbitrary order used in the method of normal-
ization by means of the Lie series is proposed. The normalization procedure is
applied to Hamiltonian of the Hill problem written in scaled regular variables.
The resulting normal form of the Hill problem can be used to find domains
of analyticity of the normalizing transformation.

Introduction
Normal form (NF) of a system of ordinary differential equations (ODE) computed
near an invariant manifold (stationary point, periodic solution or invariant torus)
is rather powerful technique for investigation of local dynamics of the phase flow
in the vicinity of this invariant structure. Even though the NF is a formal object
it can be used for searching first integrals of the system, families of periodic solu-
tions, for studying integrability, stability and bifurcations. The special properties
of Hamilton systems require specific algorithms for computation their NF. The
goal of the presented work is to provide a procedure for constructing so called
homological equation of any order, which is used in the procedure of so called
invariant Hamiltonian normalization .

1. Hamiltonian normal form
We consider an analytic Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
(1)

with n degrees of freedom near its stationary point x = y = 0.
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2 Alexander Batkhin

The Hamiltonian function H(x,y) is expanded into convergent power series
H(x,y) =

∑
Hpqx

pyq with constant coefficients Hpq, p,q ≥ 0, |p|+ |q| ≥ 2.
Canonical transformations of coordinates x,y

x = f(u,v), y = g(u,v), (2)

preserve the Hamiltonian character of the initial system (1).
Denoting by z = (x,y) ∈ R2n the phase vector one can write the linear part

of the system (1) in the form

ż = Bz, B =
1

2
J HessH|z=0 , J =

(
0n En

−En 0n

)
,

where J is symplectic unit matrix, En is identity matrix and HessH is Hessian of
function H. Let λ1, . . . , λ2n be eigenvalues of the matrix B, which can be reordered
in such a way that λj+n = −λj , j = 1, . . . , n. Denote by λ = (λ1, . . . , λn)

T.
There exists [1, § 12, Theorem 12] a canonical formal transformation (2) in

the form of power series, which reduces the initial system (1) into its normal form
for the case of semi-simple eigenvalues

u̇ =
∂h

∂v
, v̇ = −∂h

∂u
,

defined by the normalized Hamiltonian

h(u,v) =
n∑

j=1

λjujvj +
∑

hpqu
pvq,

containing only resonant terms hpqu
pvq with

⟨p− q,λ⟩ = 0.

Here 0 ≤ p,q ∈ Zn, |p|+ |q| ≥ 2 and hpq are constant coefficients.

2. Invariant normalization method and its application
Here we describe normalization procedure.

• The real Hamiltonian H(x,y) is written in the complex form H(z, z̄).
• The method of invariant normalization is applied to H(z, z̄) up to the definite

order and we get it NF h(Z, Z̄), which contains only resonant terms.
• The obtained complex NF h(Z, Z̄) can be transformed into the real NF
h(X,Y).
Here we consider a Hamiltonian system, which stationary point (SP) coincides

with the origin. Applying scaling x → εx, y → εy and t → ε2t one can write it
in the form of power series in ε: H(x,y) = H0 + F = H0 +

∑∞
j=1 ε

jHj(x,y),
where H0 is quadratic (unperturbed) form and Hj is a homogeneous form of order
j + 2. We are looking for the NF of the original Hamiltonian H as a power series
h(z, z̄) = h0+f = h0+

∑∞
j=1 ε

jhj(z, z̄), where h0 =
∑

j=1 λjzj z̄j and homogeneous
forms hj , j > 0, contain only resonant terms hpqz

pz̄q, |p| + |q| = j + 2, such

10



Hamiltonian high order normal form 3

that ⟨λ,p− q⟩. Transformation from the initial Hamiltonian H to its NF h is
provided by Lie generator G having form of a power series of ε: G =

∑
j=1 ε

jGj :
h = H+

∑∞
j=1

1
j!H ∗Gj . Lie generator G produces a near identical transformation,

so we have h0 = H0 and then

f = h0 ∗G+M, M = F +
∑

j=1

1

j!
H ∗Gj . (3)

Solution of (3) can be obtained be the method of invariant normalization,
proposed by V.F. Zhuravlev [2, 3]. This method can be considered as subsequent
averaging of functions Mj along the unperturbed solutions z(t,Z, Z̄) obtained from
the unperturbed system with Hamiltonian H0. It can be applied for the case of
nonzero eigenvalues.

According to it the homological equations can be rewritten in the form

dfj
dt

= 0, Mj = fj −
dGj

dt
, j = 1, 2, . . . (4)

Substituting the solutions z(t,Z, Z̄), z̄(t,Z, Z̄) to the unperturbed system into the
function Mj one gets function mj(t,Z, Z̄) = Mj(t,Z, Z̄) and getting the following
quadrature

t∫

0

mj(t,Z, Z̄)dt = tfj(Z, Z̄) +Gj(Z, Z̄) + g(t). (5)

Hence, on each step of the normalization procedure the next term of the NF
fj equals the coefficient at t, and the Lie generator term Gj equals the time-
independent term in (5).

It is possible to reduce approximately in 4 times the number of terms in
functions Mj , j = 2, 3, · · · . From the first equation of (3) for each j = 2, 3, . . . one
can get that h0 ∗Gj = fj −Mj . Let us introduce the following notations:

f+
j ≡ Fj + fj , f

−
j ≡ Fj − fj , H ∗Gk

j1···jk = H ∗Gk−1
j1···jk−1

∗Gjk .

Statement 1. For j > 2 function Mj is constructed in a such way:

• Term Fj is taking and sum 1
2

j−1∑
k=1

f+
k ∗Gj−k is adding to it.

• For each k not greater than [j/2] we compute the set µ2k+1(j) of all permu-
tations of any partition ν2k+1(j), i.e. the set µ2k+1(j) contains the tuple of
2k + 1 indices which sum is equal to j. For each such tuple (i1, . . . , i2k+1) of
indices one has to compute all the Poisson brackets of form f−

i1
∗G2k

i2···i2k+1
.

• The sum all the computed above Poisson brackets is multiplied by the coeffi-
cient α2k. These coefficients are well known Bernoulli numbers B2k divided by
factorial (2k)!: α2k = B2k

(2k)! . They can be computed with the help of generating
function g(ε) = ε

2 + ε
eε−1 − 1.
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4 Alexander Batkhin

• The final formula for Mj can be written as follows

Mj = Fj +
1

2

j−1∑

k=1

f+
k ∗Gj−k +

[j/2]∑

k=1

α2k

∑

(i1,...,i2k+1)∈µj
2k+1

f−
i1

∗G2k
i2···i2k+1

.

It is evident that high order normalization of the Hamiltonian H is only
possible with computer algebra systems. For example, such software [3, Ch. 7]
was developed in CAS Wolfram Mathematica. The author implemented the de-
scribed above algorithm in CAS Maplesoft Maple. Nevertheless, this invariant
normalization method can be implemented in other open source CAS. For exam-
ple, in SageMath, which essentially uses the SymPy symbolic computation package,
or Maxima.

The method of invariant normalization was applied to the well know planar
circular Hill problem, which Hamiltonian written in scaled regularized variables
has polynomial form. The NF h in the vicinity of the origin was computed up
to the 20-th order. This NF can be used for asymptotic integration of the Hill’s
problem equations of motion and for studying so called domains of analyticity [4].
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GInv: software for calculation of Gröbner in-
volutive basis

Yuri A. Blinkov, Rustam E. Bayramov and Mikhail D. Malykh

Abstract. The open source software GINV implements the Gröbner bases
method for systems of equations. In the report, a new revised version of GInv
will be presented. We use this system for analytical study of cubature formulas
on a sphere known as Popov’s problem.

The study of systems of nonlinear equations in modern computer algebra
systems is based on the calculation of Gröbner bases of ideals generated by the
left-hand sides of the equations of these systems. The implementation of the Buch-
berger algorithm, which came to this system from the Singular system, is used.
Buchberger’s algorithm is the oldest, the basic version of Buchberger’s algorithm
leaves a lot of freedom in carrying out the computational process, thus consider-
able improvements are obtained by implementing criteria for reducing the number
of S-polynomials to be actually considered (e.g., by applying the product criterion
or the chain criterion).

In the late 1990s, involutive algorithms [1, 2] were proposed as an alter-
native to the Buchberger algorithm and implemented in the GInv system. On
the initiative of V.P. Gerdt and Yu.A. Blinkov in 2005, the GInv project (http:
//invo.jinr.ru) was founded, within which software was developed for calculat-
ing involutive bases, written as a C++ module for the Python language. Recently,
this system has been significantly revised by one of the authors of this paper,
the new version is in the public access and is available at https://github.com/
blinkovua/GInv. In the new version of the GInv system, dynamic memory real-
location mechanisms have been added, which allow speeding up calculations sig-
nificantly, up to several times. The proposed approach is fundamentally different
from other algorithms known under the general name ‘garbage collection’ [3] and
is based on the implementation of object-oriented programming in C++.

A good demonstration of the achievements of the GInv system was an an-
alytical study of cubature formulas on a sphere known as Popov’s problem. The
development of the theory of cubature formulas on the sphere that are invari-
ant under transformations of finite symmetry groups of regular polyhedra was

13



2 Yuri A. Blinkov, Rustam E. Bayramov and Mikhail D. Malykh

the subject of recent studies by A.S. Popov [4]. In Popov’s works the solution of
the problem is reduced to the study of a system of nonlinear algebraic equations,
which was then solved numerically using the computer facilities of the Siberian
Supercomputer Center. We investigate the problem of finding the weights and
nodes of cubature formulas of a given order on a unit sphere that are invariant
under the rotation groups of the icosahedron (described by A.S. Popov’s in [5])
using free-access computer algebra systems, namely, the popular general-purpose
system Sage (https://www.sagemath.org) and the GInv system.

Popov’s algorithm for reducing the problem to a system of nonlinear equa-
tions is implemented in Sage. For approximation orders 19 and 20, the set of solu-
tions is described using standard tools of the Sage system. For order 23, Popov’s
problem could not be solved in Sage, since the system could not calculate the
Gröbner basis of the ideal for the system of equations describing Popov’s problem
in this case in a few days. However, the GInv system successfully coped with this
task; it turned out that the basis polynomials have extremely large integer coeffi-
cients. Further, using the well-known Gröbner basis, it was possible to completely
describe the set of solutions to the Popov problem in Sage. The exact solutions
found using computer algebra systems are compared with the solutions found nu-
merically by Popov. In particular, a new solution of the Popov problem is found
for the order of approximation equal to 23.

It should be emphasized that this test is not artificial, specially invented
for testing computer algebra systems, and the results themselves are of general
scientific interest. It is impossible not to note the significant difference between
the parameters characterizing the calculation of the Gröbner basis when studying
the Popov problem and standard tests (http://invo.jinr.ru/ginv/benchmark.
html): the coefficients of the basis polynomials turn out to be huge, and the degrees
on the contrary, remain small.

Acknowledgments. This work is supported by the Russian Science Foun-
dation (grant no. 20-11-20257).
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Multifrequency resonant conditions in Hamilton-
ian systems

Alexander Bruno, Alexander Batkhin and Zafar Khaydarov

Abstract. The conditions on the coefficients of the characteristic polynomial
of the matrix of the linearized Hamiltonian system, under which this poly-
nomial has roots satisfying the resonance equation, are formulated. These
conditions are described as roots of quasi-homogeneous polynomials defined
in the coefficient space.

Introduction

Resonances play an essential role in vibrational systems. Their presence, on the
one hand, leads to complex dynamics, when the energy of vibrations is “pumped”
between several degrees of freedom, whose corresponding frequencies are in res-
onance. On the other hand, the presence of nontrivial solutions of the resonance
equation allows to write additional formal first integrals and, as a consequence,
allows to analyze the stability of the equilibrium position or to integrate asymp-
totically the system of equations of motion reduced to the normal form.

Consider an analytic Hamiltonian system

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
(1)

with n degrees of freedom, where x,y ∈ Rn, near the equilibrium position

x = y = 0.

The Hamilton function H(x,y) expands into a convergent power series

H(x,y) =
∑

Hpqx
pyq

with constant coefficients Hpq, where p,q ≥ 0, |p|+ |q| ≥ 2.
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2 Alexander Bruno, Alexander Batkhin and Zafar Khaydarov

Introduce a phase vector z = (x,y) ∈ R2n(C2n). Then the linear part of the
system (1) can be written in the form

ż = Bz, B =
1

2




∂2H

∂y∂x

∂2H

∂y∂y

− ∂2H

∂x∂x
− ∂2H

∂x∂y




∣∣∣∣∣∣∣∣
x=y=0

(2)

Let λ1, . . . , λ2n be the eigenvalues of matrix B, which can be reordered as
follows λj+n = −λj , j = 1, . . . , n. Denote by vector λ = (λ1, . . . , λn) the set of
basic eigenvalues of the system (2). For a Hamiltonian system, the characteristic
polynomial f̌(λ) is the polynomial of even powers of λ. Let us call the polynomial
f(µ)

def
= f̌(λ), where µ = λ2, as semi-characteristic:

f(µ) = µn + a1µ
n−1 + a2µ

n−2 + · · ·+ an−1µ+ an. (3)

According to Theorem 12 in [1, § 12] in the case of semi-simple eigenval-
ues there exists a canonical formal transformation that reduces the Hamiltonian
system (1) to its normal form

u̇ = ∂h/∂v, v̇ = −∂h/∂u,

given by the normalized Hamiltonian h(u,v)

h(u,v) =

n∑

j=1

λjujvj +
∑

hpqu
pvq (4)

containing only the resonant terms hpqu
pvq satisfying the resonant equation

⟨p− q,λ⟩ = 0. (5)

Here ⟨p,λ⟩ =∑
j

= 1npjλj is the scalar product.

The resonant equation (5) has two kinds of solutions, which correspond to
two kinds of resonant terms in the normal form (4):

1. Secular terms of the form hppu
pvp, which are always present in the Hamil-

tonian normal form because of the special structure of the matrix B of the
linearized system (2)

2. Strictly resonant terms, which correspond to nontrivial integer solutions of
the equation

⟨p,λ⟩ = 0. (6)
To investigate the formal stability of the equilibrium position of the Hamil-

tonian system it is necessary to perform a normalization procedure and then ap-
ply Bruno’s theorem [3], the condition of which requires the absence of third- and
fourth-order resonances. The conditions on the coefficients of the polynomial (3) for
two-frequency resonances are effectively formulated in terms of q-discriminants [4].

The problem is the following: formulate conditions on the coefficients aj ,
j = 1, . . . , n, of the semi-characteristic polynomial f(µ) of degree n = 3 and
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n = 4, under which the multifrequency resonance of multiplicity 1 of order 3 or
order 4 takes place.

1. Conditions for a system with three degrees of freedom

The only multifrequency resonance of multiplicity 1 of order 3 corresponds to the
case where the algebraic sum of all three basic eigenvalues λj , j = 1, 2, 3, is equal
to zero. Then in terms of roots µj of the polynomial (3) this condition is written
as

µ1 = A± 2C, where A = µ2 + µ3, C
2 = µ2µ3. (7)

Considering the condition (7) as a polynomial ideal, we compute the Gröbner
elimination basis that excludes the quantities A and C, and obtain the condition
on roots:

3∑

j=1

µ2
j − 2

3∑

1=j<k

µjµk = σ2
1(µ)− 4σ2(µ), (8)

where σk(µ) are elementary symmetric polynomials for which σk(µ) = (−1)kak.
Then the condition on the coefficients of the polynomial (3) takes the form

a21 − 4a2 = 0. (9)

The condition for the existence of multifrequency resonance of multiplicity 1
of order 4 is equivalent to the case of the algebraic sum of 2λ1, λ2, λ3 equals to
zero. Repeating the above calculations, we get a condition on the coefficients of
the polynomial (3) in the form

16 a61 − 264 a41a2 +36 a31a3 +1425 a21a
2
2 − 630 a1a2a3 − 2500 a32 +9261 a23 = 0. (10)

The conditions (9) and (10) are algebraic varieties in the coefficient space
of the polynomial (3) for n = 3, and their left-hand sides are quasi-homogeneous
polynomials from coefficients aj , j = 1, 2, 3. By methods of power geometry one
can obtain a polynomial parametrization of the variety (10):

a1 = 2v (37t− 35) , a2 =
(
456337t2 − 7666t+ 721

)
v2,

a3 = 36 (71t+ 2) (5− 249t)
2
v3.

Note that many works on oscillation theory consider multifrequency reso-
nances of multiplicities 2 and higher. For example, a resonance of order 4 in the
form of commensurable frequencies 2 : 1 : 1 has multiplicity 2 and is defined using
the conditions on two-frequency resonances. The 1 : 1 commensurability is deter-
mined by the discriminant variety D(f) of dimension 2, the 2 : 1 commensurability
is determined by the resonant variety R4(f) of dimension 2, and their intersection
gives the submanifold of dimension 1 on which the above resonance takes place. At
the same time, the condition (10) for the existence of a three-frequency resonance
of multiplicity 1 defines a variety of dimension 2, i. e. it is a more general condition.
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2. Conditions for a system with four degrees of freedom

In this case, the situations of three-frequency and four-frequency resonances should
already be considered separately. We have two three-frequency resonances of orders
3 and 4, and one four-frequency resonance of order 4.

The condition on roots (8) of three-frequency resonance of order 3 for a
polynomial of degree 4 must be satisfied for some one triplet of roots µk, k =
1, . . . , 4. Then we make a product of four factors of the form (7) for each triplet
and add it to the ideal composed of polynomials of the form ak −σk, k = 1, . . . , 4.
Using the Gröbner elimination basis, we exclude the values of µk and obtain a
condition on the coefficients of the form

−4 a51a3 + a41a
2
2 + 4 a41a4 + 34 a31a2a3 − 8 a21a

3
2 − 30 a21a2a4 − 27 a21a

2
3 − 72 a1a22a3

+

16 a42 − 54 a1a3a4 + 72 a22a4 + 108 a2a
2
3 + 81 a24 = 0.

We can do the same to determine the condition on the roots of the polynomial
in the presence of a three-frequency resonance of order 4 for a polynomial of degree
4. The resulting polynomial turns out to be very cumbersome (it contains 153
monomials) and is not given here.

Finally, let us indicate the condition on the coefficients of the polynomial (3)
of the fourth order which, if satisfied, leads to a four-frequency resonance of order
4:

a41 − 8 a21a2 + 16 a22 − 64 a4 = 0.
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On basic strati�ed structures in quantum

information geometry

M.Bure², A.Khvedelidze, D.Mladenov and S.Velkov

Searching for non-trivial physical consequences of quantum theory, the knowl-
edge of the mathematical structure of the set of quantum states can be a reliable
guide. The state space PN of an N -level quantum system consists of N ×N Her-
mitian, normalized semi-positive density matrices,

PN = {X ∈MN (C) |X = X† , X ≥ 0 , TrX = 1 } .
During the last two decades, following the request coming from the advanced quan-
tum technologies and quantum information science, the state space PN has been
studied in various contexts, among them convex-geometric, topological, di�erential-
geometric, etc. (see, e.g. reviews [1, 2, 3] and references therein.)

In the present report, we discuss some features of the underlying strati�ed
structure of PN . It will be outlined that among three admissible partitions of
PN , namely by the adjoint SU(N) orbits, by the corresponding orbit types, or
by the subsets of density matrices with �xed ranks, only the last decomposition
determines the Whitney strati�cation. Based on this observation, we expand some
results of our recent paper [4], devoted to the study of the Bures-Fisher metric for
rank de�cient states, which are non-maximal dimensional strata of the Whitney
strati�cation. We comment on the existence of a generalized strati�ed metric on
the whole state space.

The �rst author was supported from EU Regional Development Fund-Project
No.CZ.02.1.01/0.0/0.0/16_019/0000766. The research of A.K and D.M was sup-
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On the Integrability of the Polynomial Case of a

Liénard-type Equation

Victor F. Edneral

Abstract. The paper investigates the connection between the global integra-
bility of an autonomous two-dimensional polynomial ODE system and its
local integrability near stationary points using the example of the polynomial
case of a Lenar-type equation. We presented the equation in the form of a
dynamical system and parametrized it. The conditions for local integrability
near stationary points are written out and the values of the parameters under
which these conditions are satis�ed are found. It is established that for certain
values of the parameters obtained in this way, the system actually turns out
to be integrable. Thus, we can speak of a heuristic approach that allows one
to determine the cases of ODE integrability.

Introduction

We use an approach based on local analysis. It uses the resonant normal form
computed near stationary points [1]. In [2], a method was proposed for �nding
parameter values for which the dynamical system is locally integrable at all sta-
tionary points simultaneously. The main idea is that in the domain of integrability
in the phase space, a necessary condition is local integrability at every point of
this domain. But at regular points, local integrability already takes place, so lo-
cal integrability is also necessary at singular points, and at all such points of the
domain under consideration.

Note that for the global integrability of an autonomous planar system, it
su�ces to have one global integral of motion. From its expression, one can obtain a
solution of the system in quadratures; therefore, integrability implies the solvability
of the system.

This paper has been supported by the RUDN University Strategic Academic Leadership Program
(recipient A.A., mathematical model development).
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Problem

We will check our method on the example of the Liénard-like equation

ẍ = f(x)ẋ+ g(x), (1)

Here we assume that f(x) and g(x) are polynomials. Usually, the Linard equation
assumes that f(x) is an even function and g(x) is an odd function [3] . We do
not assume a certain parity for them, so we are talking about the Linard-type
equation.

Equation (1) is equivalent to the dynamical system

ẋ = y,
ẏ = (a0 + a1x) y + b1x+ b2x

2 + b3x
3,

(2)

here x and y are functions in time and parameters a0, a1, b1, b2, b3 are real.
The problem is to construct the �rst integrals of system (2).

Method

Note that for the global integrability of an autonomous planar system, it su�ces to
have one global integral of motion. From its expression, one can obtain a solution
of the system in quadratures; therefore, integrability implies the solvability of the
system. The main task of the method under discussion is to �nd conditions on
the parameters of the system under which the system is locally integrable near its
stationary points. Local integrability means the presence of a su�cient number
(one for an autonomous �at system) of local integrals at each point of the region
under study, including the corresponding stationary points. Local integrals may be
di�erent for each point of this region of the phase space, but for the existence of a
global integral, local integrals must exist for the desired values of the parameters at
all �xed points. This is a necessary condition. In papers [1] the algebraic condition
of local integrability is written out. This is the so-called A condition. This condition
is satis�ed at all regular points, but it is nontrivial at stationary points.

First, we look for sets of parameters under which the conditionA is satis�ed at
the �xed point of the system at the origin (2). We solve the corresponding systems
of algebraic equations with respect to the parameters a0, a1, b1, b2, b3 and check the
integrability at other stationary points for each found set of parameters. "Good"
sets of parameters are good candidates for the existence of a single function for
all points - the �rst integral. These integrals are sought by the method described
below.

Conditions of the Integrability

The condition A is some in�nite sequence of polynomial equations with respect to
the coe�cients of the system. Each of the stationary points has its own system of
equations. But the normal form has a non-trivial form only in the resonant case.
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On the Integrability of the Polynomial Case of a Liénard-type Equation 1 3

This means that we can only use our method if the eigenvalues of the linear part
of the system (2) refer as integers. We restrict our study to this case for now. A
possible condition for these eigenvalues to be related as 1 : M and have opposite
signs (the resonance case) is the relation

a0 −
√

a20 + 4b1 = −M
(
a0 +

√
a20 + 4b1

)
.

We choose the �resonance� restriction on parameters in the form

b1 =
a20M

(M − 1)2
. (3)

From the A condition, we constructed three equations for the system param-
eters a0, a1, b2, b3 for the (1 : 2), (1 : 3) and (1 : 4) resonances, i.e. for M = 2, 3, 4.
Here is the �rst of three equations for M = 2 as an example

a0
3
(
2a1

3 − 29a1b3
)
+ a0

2b2
(
26a1

2 + 43b3
)
+ 13a0a1b2

2 − 11b2
3 = 0.

Results

For the case with resonance M = 2 the solutions of the corresponding algebraic
system calculated by the MATHEMATICA-11 system are

1) {a0 → 0, b2 → 0},
2) {b2 → −a0a1, b3 → 0},
3) {b2 → −4a0a1/7, b3 → −6/49 a12},
4) {b2 → −a0a1/3, b3 → −a12/9},
5) {b2 → 3a0a1, b3 → a1

2},
6) {a1 → 0, b2 → 0, b3 → 0}.

(4)

Here b1 → 2a20 for M = 2. At these sets of parameters we checked the integrability
condition at other stationary points of (2).

The autonomous system of the second order(2) can be rewrite as the �rst
order non-autunomous equation

dy(x)/dx = [(a0 + a1x) y(x) + b1x+ b2x
2 + b3x

3]/y(x)
or

dx(y)/dy = x(y)/[(a0 + a1x(y)) y + b1x(y) + b2x(y)
2 + b3x(y)

3].
(5)

After this rewrite, we tried to solve such equations with each of the parameter sets
(4) using the MATHEMATIC-11 solver. We have found solutions for sets 2), 4), 5)
and 6) in the implicit form of F (y(x), x, C) = 0. We then expressed the constant
C as a function in x, y(x) and replaced these variables with x(t) and y(t). Thus,
we obtain integrals of motion. The resulting integrals can be veri�ed by direct
calculation of the time derivative along the system.
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The integrable cases in (4) correspond to the equations

2) ẍ = (a0 + a1x) ẋ+ 2a0
2x− a0a1x

2,
4) ẍ = (a0 + a1x) ẋ+ 2a0

2x− 1
3a0a1x

2 − 1
9a1

2x3,
5) ẍ = (a0 + a1x) ẋ+ 2a0

2x+ 3a0a1x
2 + a1

2x3.
(6)

We returned here from the systems of equations to the equations of the second
order. For equation 2) the �rst integral is

(a1x(t)− 2a0) sinh
(
1
2R(x(t), y(t))

)
+ a0R(x(t), y(t)) cosh

(
1
2R(x(t), y(t))

)

(a1x(t)− 2a0) cosh
(
1
2R(x(t), y(t))

)
+ a0R(x(t), y(t)) sinh

(
1
2R(x(t), y(t))

) ,

where

R(x(t), y(t)) =

√
a1(x(t)(a1x(t)− 2a0)− 2y(t))

a02
.

We have done the above steps for M = 2, 3 resonances with the same results. The
coe�cient b1 for x in (6) is �xed everywhere, since b1 = 2a20 for M = 2, but for
other M it will be di�erent.

Note also that case 4) in (6) (6) is exactly a special case of equation 4 from
section 2.2.3-2 of [4] with parameters a0 → b, a1 → 3a, c→ 2b2. But the fact that
cases 2) and 5) are integrable is a new result, at least for this book.
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Around concurrent normal conjecture

Alexandr Grebennikov and Gaiane Panina

Given a smooth convex body K ∈ Rn, its normal to a point p ∈ ∂K is a line
passing through p and orthogonal to ∂K at the point p. It is conjectured that for
any convex body K ∈ Rn there exists a point in the interior of K which is the
intersection point of at least 2n normals from di�erent points on the boundary of
K. The concurrent normals conjecture trivially holds for n = 2. For n = 3 it was
proven by Heil via geometrical methods and reproved by Pardon via topological
methods. The case n = 4 was completed also by Pardon.

Recently Martinez-Maure proved for n = 3, 4 that (under mild conditions)
almost every normal through a boundary point to a smooth convex body K passes
arbitrarily close to the set of points lying on normals through at least six distinct
points of ∂K. He used Minkowski di�erences of smooth convex bodies, that is, the
theory of hedgehogs.

We give a very short proof of a slightly more general result: for dimension

n ≥ 3, under mild conditions, almost every normal through a boundary point to a

smooth convex body K ∈ Rn contains an intersection point of at least 6 normals

from di�erent points on the boundary of K.

Our proof is based on the bifurcation theory and does not use hedgehogs.
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A. Grebennikov is supported by Ministry of Science and Higher Education of the
Russian Federation, agreement 075-15-2019-1619.
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Algebraic solution of a scheduling problem in project
management

Gubanov S. A., Design bureau "Luch", software engineer,
segubanov@mail.ru

Abstract. A project scheduling problem is examined, where the maximum
deviation of start time of jobs is minimized under various constraints imposed
on the start and finish time of jobs. We represent the problem in terms of
tropical algebra as a tropical optimization problem, and then obtain a direct
solution given in compact vector form.

1. Introduction
One of the main problems of the project management is the problem of drawing
up an optimal schedule of jobs in a project [1, 2]. To solve scheduling problems,
models and methods of tropical mathematics are used, which studies semirings and
semifields with idempotent addition [3, 4, 5]. Scheduling problems are reduced to
optimization problems formulated and solved in terms of tropical mathematics
(tropical optimization problems) [6, 7, 8, 9]. In this paper we consider the problem
of minimizing the maximum deviation of the start times of jobs from the due dates
under given various temporal constraints. The problem is represented as a tropical
optimization problem, and then solved using a result of the paper [10].

2. Optimal scheduling problem
We consider a problem which arises in project management where an optimal
schedule for a project is developed to minimize the maximum deviation of start
times of jobs from given due dates.

Let us consider a project which consists of 𝑛 jobs performed in parallel,
subject to time constraints in the form of “start-start”, “start-finish”, and “finish-
start” precedence relationships, as well as boundaries for the start and finish times
of jobs.
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For each job 𝑖 = 1, . . . , 𝑛, we denote the start time by 𝑥𝑖 and the finish time
by 𝑦𝑖. Let the values 𝑔𝑖 and ℎ𝑖 define the earliest and latest allowed start time, as
well as 𝑓𝑖 defines the latest finish time. These values set boundaries for the start
and finish times in the form of the inequalities

𝑔𝑖 ≤ 𝑥𝑖 ≤ ℎ𝑖, 𝑦𝑖 ≤ 𝑓𝑖.

The “start-start” constraints for the job 𝑖 are defined in the form of inequali-
ties 𝑏𝑖𝑗 +𝑥𝑗 ≤ 𝑥𝑖 for all 𝑗 = 1, . . . , 𝑛, where 𝑏𝑖𝑗 denotes the minimum allowed time
interval between the start of job 𝑖 and the start of 𝑗. We put 𝑏𝑖𝑗 = −∞ if the value
𝑏𝑖𝑗 is not set. Combining the inequalities over all 𝑗 gives the equivalent inequality

max
1≤𝑗≤𝑛

(𝑏𝑖𝑗 + 𝑥𝑗) ≤ 𝑥𝑖.

Let us denote the minimum allowed interval between the start time of 𝑖 and
the finish time of 𝑗 by 𝑐𝑖𝑗 (𝑐𝑖𝑗 = −∞ if the interval is not specified) and write the
“start-finish” constraint in the form of the inequality 𝑐𝑖𝑗+𝑥𝑗 ≤ 𝑦𝑖. We assume that
the job finishes immediately when the “start-finish” constraints are satisfied, and
then the equality 𝑐𝑖𝑗 + 𝑥𝑗 = 𝑦𝑖 is satisfied for at least one 𝑗. After combining the
inequalities for all 𝑗, we obtain

max
1≤𝑗≤𝑛

(𝑐𝑖𝑗 + 𝑥𝑗) = 𝑦𝑖.

We denote the minimum allowed interval between the finish time of job 𝑖 and
the start time of 𝑗 by 𝑑𝑖𝑗 (𝑑𝑖𝑗 = −∞ if no interval is specified). The “finish-start”
constraints are written as the inequalities 𝑑𝑖𝑗 + 𝑦𝑗 ≤ 𝑥𝑖, which are combined into
the inequality

max
1≤𝑗≤𝑛

(𝑑𝑖𝑗 + 𝑦𝑗) ≤ 𝑥𝑖.

Suppose that for each job 𝑖, a due date 𝑝𝑖 is given, which determines the
most desirable start time. We formulate a problem of minimizing the maximum
deviation of start time of jobs from the due dates under given constraints as the
problem of determining for all 𝑖 = 1, . . . , 𝑛 the values 𝑥𝑖 and 𝑦𝑖 to find

min
𝑥𝑖,𝑦𝑖

max

(︂
max
1≤𝑖≤𝑛

(𝑝𝑖 − 𝑥𝑖), max
1≤𝑖≤𝑛

(𝑥𝑖 − 𝑝𝑖)

)︂
;

max
1≤𝑗≤𝑛

(𝑏𝑖𝑗 + 𝑥𝑗) ≤ 𝑥𝑖, max
1≤𝑗≤𝑛

(𝑐𝑖𝑗 + 𝑥𝑗) = 𝑦𝑖,

max
1≤𝑗≤𝑛

(𝑑𝑖𝑗 + 𝑦𝑗) ≤ 𝑥𝑖, 𝑔𝑖 ≤ 𝑥𝑖 ≤ ℎ𝑖,

𝑦𝑖 ≤ 𝑓𝑖, 𝑖 = 1, . . . , 𝑛.

(1)

Below, this problem is formulated in terms of tropical mathematics and solved
by using methods of tropical optimization.
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3. Elements of tropical mathematics

Let us outline the main definitions and results of tropical (idempotent) mathe-
matics [7, 8, 4, 5], which are used in the next section for describing and solving
tropical optimization problems.

Let X be a set that is closed under the associative and commutative operations
of addition ⊕ and multiplication ⊗, and contain their neutral elements zero 0 and
one 1. Addition is idempotent (for each 𝑥 ∈ X the equality 𝑥⊕𝑥 = 𝑥 holds), while
multiplication is distributive with respect to addition and invertible (for any 𝑥 ̸= 0

there exists 𝑥−1 such that 𝑥 ⊗ 𝑥−1 = 1). The algebraic system ⟨X, 0,1,⊕,⊗⟩ is
called an idempotent semifield. The sign ⊗ of the multiplication operation will be
omitted from now on.

Idempotent addition defines a partial order: 𝑥 ≤ 𝑦 if and only if 𝑥 ⊕ 𝑦 = 𝑦.
We assume that this partial order extends to a linear order on X.

For any 𝑥 ̸= 0 and integer 𝑝 > 0, an integer power is defined in the usual
way: 𝑥0 = 1, 𝑥𝑝 = 𝑥𝑝−1𝑥, 𝑥−𝑝 = (𝑥−1)𝑝, 0𝑝 = 0. It is assumed that the powers
with rational exponents are also defined.

An example of the idempotent semifield is the real semifield Rmax,+ = ⟨R ∪
{−∞},−∞, 0,max,+⟩ for which 0 = −∞, 1 = 0, ⊕ = max and ⊗ = +.

Let us denote by X
𝑚×𝑛 the set of matrices which consist of 𝑚 rows and 𝑛

columns with elements from X. Addition and multiplication of conforming matrices
𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗) and 𝐶 = (𝑐𝑖𝑗), as well as multiplication by a scalar 𝑥 are
defined by the formulas

{𝐴⊕𝐵}𝑖𝑗 = 𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗 , {𝐵𝐶}𝑖𝑗 =
⨁︁

𝑘

𝑏𝑖𝑘𝑐𝑘𝑗 , {𝑥𝐴}𝑖𝑗 = 𝑥𝑎𝑖𝑗 .

The order relation given above is extended to matrices and is understood
entrywise.

Consider square matrices in X𝑛×𝑛. The matrix 𝐼 with elements equal to 1 on
the main diagonal and 0 outside it is the identity matrix.

For any square matrix 𝐴 = (𝑎𝑖𝑗) and integer 𝑝 > 0 the power is given by:
𝐴0 = 𝐼, 𝐴𝑝 = 𝐴𝑝−1𝐴. We define the functions

tr𝐴 =
𝑛⨁︁

𝑖=1

𝑎𝑖𝑖, Tr (𝐴) =
𝑛⨁︁

𝑘=1

tr𝐴𝑘,

If Tr(𝐴) ≤ 1, then the Kleene matrix is defined in the form

𝐴* =

𝑛−1⨁︁

𝑘=0

𝐴𝑘.

The set of column vectors consisting of 𝑛 elements is denoted by X𝑛.
A vector without zero elements is called regular.
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For any nonzero vector 𝑥 = (𝑥𝑖) ∈ X
𝑛, the transposed vector is denoted

as 𝑥𝑇 . The multiplicatively conjugate vector for 𝑥 is the row vector 𝑥− = (𝑥−
𝑖 ),

where 𝑥−
𝑖 = 𝑥−1

𝑖 if 𝑥𝑖 ̸= 0 and 𝑥−
𝑖 = 0 – otherwise.

4. Solution of the optimal planning problem

Let us formulate the problem (1) in terms of the idempotent semifield Rmax,+. We
denote the following matrices and vectors:

𝐵 = (𝑏𝑖𝑗), 𝐶 = (𝑐𝑖𝑗), 𝐷 = (𝑑𝑖𝑗),

𝑥 = (𝑥𝑖), 𝑦 = (𝑦𝑖), 𝑓 = (𝑓𝑖), 𝑔 = (𝑔𝑖), ℎ = (ℎ𝑖), 𝑝 = (𝑝𝑖).

The problem (1) in vector notation has the form

min
𝑥,𝑦

𝑥−𝑝⊕ 𝑝−𝑥,

𝐵𝑥 ≤ 𝑥, 𝐶𝑥 = 𝑦, 𝐷𝑦 ≤ 𝑥, 𝑔 ≤ 𝑥 ≤ ℎ, 𝑦 ≤ 𝑓
(2)

The solution of the problem is described by the following statement.

Lemma 1. Let 𝐵 and 𝐷 be matrices, 𝐶 be a column-regular matrix such that the
matrix 𝑅 = 𝐵⊕𝐷𝐶 satisfies Tr(𝑅) ≤ 1. Let 𝑔 be a vector, and 𝑓 and ℎ be regular
vectors such that the vector 𝑠𝑇 = 𝑓−𝐶 ⊕ ℎ− satisfies the condition 𝑠𝑇𝑅*𝑔 ≤ 1.

Then the minimum value of the objective function in problem (2) is equal to

𝜃 = (𝑝−𝑅*𝑝)1/2 ⊕ 𝑠𝑇𝑅*𝑝⊕ 𝑝−𝑅*𝑔,

and all regular solutions have the form

𝑥 = 𝑅*𝑢, 𝑦 = 𝐶𝑅*𝑢, (3)

where 𝑢 is any regular vector which satisfies the conditions

𝑔 ⊕ 𝜃−1𝑝 ≤ 𝑢 ≤ ((𝑠𝑇 ⊕ 𝜃−1𝑝−)𝑅*)−. (4)

5. Conclusion

A project scheduling problem is considered, which consists in minimizing the max-
imum deviation of start times of jobs from given due dates under given constraints
of the form “start-start”, “start-finish”, “finish-start” and boundaries for the earliest
and latest allowed start time. A direct solution of the problem is obtained, which
can be used for both formal analysis and direct calculations.
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Riemann Hypothesis Property for The Convergents of

a Continued Fraction Expansion

Nikita Gogin and Mika Hirvensalo

Abstract. We show that the denominators and numerators of convergents to a con-
tinued fraction both satisfy a Riemann Hypothesis property, meaning that their zeros
lie in a perpendicular line in a complex plane.

1. Continued fraction representation

We study the function

D(w) = −w +
12

−w +
22

−w +
32

−w +
42

−w + . . .

= −w + K∞r=1(
r2

−w ) (1)

�rst formally, without verifying any convergence property. As usual, the �nite initial
segments Dm(w) of (1) are called convergents ([5], [4]). For example, the �rst convergents
are

D0(w) = −w, D1(w) = −w+
1

−w =
w2 + 1

−w , D2(w) = −w+
1

−w +
4

−w
=
−w3 − 5w

w2 + 4
.

It is plain to see that each Dn(w) is a rational, and denoting

Dn(w) =
Pn(w)

Qn(w)

the theory of continued fractions provides ([5], [4]) the recurrence relations

Pn(w) = −wPn−1(w) + n2Pn−2 and Qn(w) = −wQn−1(w) + n2Qn−2, (2)

and the initial conditions P0(w) = −w, Q0(1) = 1, P1(w) = w2 + 1, Q1(w) = −w can
be read from the representations of the �rst convergents. It is also customary to de�ne
P−1(w) = 1 and Q−1(w) = 0 to make the recursions (2) valid already for n ≥ 1. By
initial conditions and recursions (2) it is obvious that both Pn(w) and Qn(w) are in Z[w]
for each n ≥ 0.
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2. Determinant formulas

Lemma 1. Let notations be as above and

P̂n(w) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−w 1 0 0 · · · 0 0
−3 −w 2 0 · · · 0 0
0 −4 −w 3 · · · 0 0

0 0 −5 −w . . . 0 0
...

...
...

. . .
. . . n− 1 0

0 0 0 · · · −(n+ 1) −w n
0 0 0 · · · −1 −w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

and

Q̂n(w) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−w 2 0 0 · · · 0
−2 −w 3 0 · · · 0
0 −3 −w 4 · · · 0

0 0 −4 −w . . . 0
...

...
...

. . .
. . . n

0 0 0 · · · −n −w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4)

Then P̂n(w) = Pn(w) and Q̂n(w) = Qn(w) for all n ≥ 1. Notice that (3) and (6) are
determinants of (n+ 1)× (n+ 1) and n× n-matrices, respectively, and that the last low

subdiagonal element of P̂n(w) is −1 by purpose.

Proof. We prove the claim for Pn(w) �rst. For the initial values we have P0(w) = −w =

det(−w) = P̂0(w) (the determinant of 1×1-matrix), and P1(w) = w2+1 =

∣∣∣∣
−w 1
−1 −w

∣∣∣∣.

The recurrence for P̂n(w) may not be self-evident, and hence we illustrate it here
for the case n = 4:

P4(w) =

∣∣∣∣∣∣∣∣∣∣

−w 1 0 0 0
−3 −w 2 0 0
0 −4 −w 3 0
0 0 −5 −w 4
0 0 0 −1 −w

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

−w 1 0 0 0
−3 −w 2 0 0
0 −4 −w 3 0
0 −0 −1 −w 4
0 −0 −w −1 −w

∣∣∣∣∣∣∣∣∣∣

= −w

∣∣∣∣∣∣∣∣

−w 1 0 0
−3 −w 2 0
0 −4 −w 3
0 0 −1 −w

∣∣∣∣∣∣∣∣
− 4

∣∣∣∣∣∣∣∣

−w 1 0 0
−3 −w 2 0
0 −4 −w 3
0 0 −w −1

∣∣∣∣∣∣∣∣

= −wP3(w)− 4

∣∣∣∣∣∣∣∣

−w 1 0 0
−3 −w 2 0
0 −1 −w 3
0 −1 −w −1

∣∣∣∣∣∣∣∣
= −wP3(w)− 4

∣∣∣∣∣∣∣∣

−w 1 0 0
−3 −w 2 0
0 −1 −w 3
0 0 0 −4

∣∣∣∣∣∣∣∣
= −wP3(w) + 42P2(w)

In the �rst line, the last column of the determinant is added to the 3rd last column, and
then the Laplace expansion along the last column is applied. After this, the last column
of the latter 4× 4 determinant is added to the 3rd last column, and then the second-last
row is added to the last one, with multiplier −1. The latest stage is the Laplace expansion
along to the last row.

It is obvious that this procedure generalizes to P̂n(w) = −wP̂n−1(w) + n2P̂n−2(w)
for each n > 2. Now that the initial conditions and the recurrence formula are same for
P̂n(w) and Pn(w), the claim follows.
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In the same way, Q̂1(w) = −w = Q1(w), Q̂2(w) =

∣∣∣∣
−w 2
−2 −w

∣∣∣∣ = w2 + 4 =

Q2(w). As a determinant of a tridiagonal matrix, (̂Q)n(w) satis�es the recurrence relation

Q̂n(w) = −wQ̂n−1(w) + n2Q̂n−2(w). �

Remark 1. The numerator sequence Pn(w) is equal, up to constant multipliers, to Kratwchouk
polynomials ([3]). On the other hand, the denominator sequence Qn(w) is related to
Meixner polynomials.

Theorem 1. Polynomials Pn(w) and Qn(w) satisfy the RH-property (see [3]), namely, all
their zeros lie in the line Re(z) = 0.

Proof. This follows directly from the Jacobi theorem, which states that the tridiagonal
matrices of form (3) and (6) are similar to skew-symmetric matrices (for details, see
[3]). �

3. Convergence questions

So far we did not consider the convergence of (1). Here we can apply the following
theorem:

Theorem 2 (Van Vleck). Let ε > 0. Continued fraction K∞r=1( 1
br

) (see (1) for the nota-

tion), where −π2 + ε < arg(br) <
π
2 − ε converges (to a �nite value) if and only if the

series
∞∑

r=1

|br| (5)

diverges.

We can apply the theorem by rewriting (1) in an equivalent form

D(w) = −w +
1

−w/1 +
1

−w/4 +
1

−4w/9 +
1

−9w/64 +
1

−64w/225 + . . .

, (6)

which, using the notation in (1) can be written as −w + K∞r=1( 1
−ξrw ), where ξr =

( (r−1)!!
r!! )2.
If r = 2k is even, we can estimate

(r − 1)!!

r!!
=

2k!

2kk!
: 2kk! =

1

22k

(
2k

k

)
∼ 1√

πk
,

and the estimate is similar for odd r. Therefore, ξr = Θ( 1
r ) and the series (5) with

br = ξrw obviously diverges whenever w 6= 0. It follows that the continued fraction
expansion (1) is convergent for all w 6= 0, provided arg br 6= ±π2 .
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Teaching Math in SGU with Computer Algebra

Systems

Stefan Hypolite James and Tatiana Mylläri

Abstract. We discuss usage of computer algebra systems in teaching College
Mathematics in St. George's University. Some examples are given.

Introduction

St. George's University School of Arts and Sciences comprise mainly of local and
Caribbean students. From our lens in Grenada, students display a negative per-
ception of Mathematics at all levels in their academic journey, from primary, sec-
ondary and tertiary level education. Many variables are responsible for the learning
of mathematics. These factors include but are not limited to: teachers, students,
environment and classroom setting; teachers must lead this process.

We agree with the ideas presented in [1, 2]: modern computer algebra sys-
tems (CAS) change the way to do mathematics and to teach mathematics. Some
of our experience of using CAS in education was described earlier [5, 6]. We be-
lieve that with the introduction of technology in mathematics classroom students'
performance will improve. We selected the use of two Computer Algebra Systems:
Maxima and GeoGebra for teaching Mathematics at St. George's University; both
programs are free with an excellent user graphic interface for its users.

Grenada as a third world country has limited resources with low income as
compared to the other developing countries. The cost to students will be zero,
Students, will not incur any cost to use CAS in the learning environment in SGU.

To assist students, we have created a Power Point presentation with instruc-
tions for the use of both Maxima and GeoGebra. Students will also have the advan-
tage of checking for accuracy as well as to generate additional examples in order
to achieve mastery in various Math topics. Polya's Problem Solving Technique can
be incorporated by SGU students in the learning environment for mathematics:

1. Identify the problem (Identify and understand the problem)
2. Devise a plan (Use Maxima/ GeoGebra)
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3. Carryout the Plan (Correctly input the information in Maxima / GeoGebra;
use the power point for assistance) CAS

4. Check-Back (Check physical workings with CAS answers).

Teachers are stagnated with the method in which math is taught in the
Caribbean. We believe that with the use of technology students will be motivated
to learn Math concepts in the learning environment. Teachers can also use CAS to
generated additional examples for students as well as it can positively assist with
the explanations of complicated Math problems; teachers do not have to waste
time on problems that are di�cult from the computational point of view. Topics
which can be incorporated with the use of CAS: basic simpli�cation, factorization,
solving polynomial equations, solving linear systems with 2, 3 and more variables,
matrices (determinant of 3x3 and inverse of a matrix), Geometry (area, perimeter
and volume of shapes), and others. Below, we give just a few examples of how we
are using CAS in the classroom.

1. Examples with Maxima

Certainly, Mathematica or Maple would be even better to use in the classroom,
but Maxima can do most of things needed and as it was mentioned earlier, Maxima
is free. Some examples and discussion of using Maxima in education can be found
in [3, 4].

Maxima easily allows calculation of the determinant of Matrix A or �nding
the inverse of the matrix (Figure 1). It is very easy to solve quadratic equation

Figure 1. Calculation of the determinant and inverse of matrix A

and illustrate solutions with a plot (Figure 2). It is also easy to solve systems of
linear equations and in the case of two equations with two variables to illustrate
it (Figure 3).
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Figure 2. Solution of Quadratic Equation

Figure 3. Solution of Linear System

2. Some examples with GeoGebra

GeoGebra is useful not only for solving problems, but also for preparing illus-
trations, demonstrations and experimenting. Some basic examples are shown on
�gures 5, 4, and 6.

Conclusion

Using CAS helps students to deal with complicated problems, lets students to
check results obtained by hand. Teacher can use CAS for demonstrations during
the lecture and for preparing students' assignments. We believe that using CAS in
the classroom will improve the quality of teaching mathematics.
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Figure 4. Circumference of a circle

Figure 5. Finding of area and perimeter of a trapezium
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Figure 6. Calculation of perimeter
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Is there an algebraic geometry for exponen-

tial sums?

B. Kazarnovskii

Abstract. An analytic set in Cn, given as the zero set of a �nite system of
exponential sums, is said to be the exponential variety (E-variety). We de�ne
the intersection number for any two E-varieties. The main problem in this
de�nition is the in�nity of a 0-dimensional E-variety (as for the zero set of ez−
1). To overcome this obstacle, we introduce the concept of weak density, which
is analogous to the number of points of a 0-dimensional algebraic variety.

Introduction

An exponential sum (ES) is a function on Cn of the form

f(z) =
∑

λ∈Λ, cλ∈C
cλ e〈z,λ〉,

where Λ is a �nite set in Cn, and 〈z, λ〉 = z1λ1 + . . . + znλn. The sets Λ and
conv(Λ) are respectively called the support and the Newton polytope of ES. Below
we assume that λi ∈ R. Thus Newton polytope is a convex polytope in Rn.

The ring of ESs looks like a Laurent polynomial ring. In 1929 J. Ritt proved
that, if the ratio of two ESs in one variable is an entire function, then this function
is also an ES. (Ritt multidimensional theorem was proved later.) However, many
attempts to �nd other algebraic-geometric properties, similar to the properties of
the ring of polynomials, encountered great di�culties. For example, the existence
of a common zero of two ESs does not imply the existence of a common divisor: the

ESs ez − 1, e
√

2z − 1, having a common zero at z = 0 have no a common divisor.
This follows from the in�nity of the zero set of any ES. It is probable that Ritt
himself proposed the conjecture about the �niteness of the set of common zeros of
two coprime ESs in one variable. Currently, this conjecture is very far from being
proven. If one of the ESs is ez−1, then the conjecture is true. This is the classical
result of Skolem on Diophantine solutions of exponential equations. This follows
from a theorem called the "Mordell-Lang conjecture" for a complex torus.
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Description of results

There has been some progress in the algebra of ESs in recent years; see [3, 4, 5, 6].
The main result is the construction of the "ring of conditions" for the space Cn.
The ring of conditions is the ring of the intersection theory on spherical varieties;
see [2, 1]. It turned out that a similar intersection theory can be constructed for
E-varieties in Cn.

The construction of the ring of conditions is based on the concept of intersec-
tion indices of E-varieties. In the talk, we de�ne the weak density of 0-dimensional
E-variety, which is analogous to the number of points of a 0-dimensional alge-
braic variety, and then use the weak density to de�ne the intersection numbers.
It turns out that, as in polynomial case, the intersection index of n exponential
hypersurfaces is equal to the mixed volume of their Newton polytopes.

Given the intersection indices, it is easy to de�ne the ring of conditions.
By de�nition, the elements of the ring of conditions are the numerical equivalence
classes of E-varietes with the "union" and "intersect" operations. However, proving
the correctness of the de�nition is technically quite di�cult. We will not consider
the details and justify the correctness of this de�nition during the talk.
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Symplectic Structures in Finite Quantum

Mechanics and Generalized Cli�ord Algebras

Vladimir V. Kornyak

Abstract. In the Hamiltonian formulation of classical mechanics, the state of
a system is described by pairs of conjugate variables q and p called positions

and momenta. These pairs form an even-dimensional symplectic manifold.
When constructing quantum mechanics, the variables q and p are natu-

rally replaced with Hermitian operators q̂ and p̂ that must satisfy the Heisen-
berg canonical commutation relation [q̂, p̂] = iℏ, without which it is impossible
to describe quantum interference. However, this relation is not fundamental.
Being, in fact, an in�nitesimal approximation of a more fundamental relation,
it can only be realized in an in�nite-dimensional Hilbert space. Replacing the
conjugate Hermitian operators q̂ and p̂ with a pair of unitary operators Q
and P , Hermann Weyl constructed a canonical commutation relation

QP = ωPQ, ω = e2πi/N .

Weyl proved that the matrices Q and P are generators of a projective repre-
sentation of ZN × ZN in the N -dimensional Hilbert space and coincide with
�the shift and clock matrices� discovered by J.J. Sylvester in the 19th century.
The shift matrix Q is the matrix of cyclic permutation of N elements. The
clock matrix P is simply the diagonal form of the matrix Q.

The orthonormal bases associated with the matrices Q and P are mutu-

ally unbiased bases, a concept that is a deep quantum version of the symplectic
conjugation introduced by J. Schwinger.

The matrices Q and P generate a structure called the generalized Clif-

ford algebra. This structure is quite non-trivial and even in the simplest case
N = 2 allows one to describe quaternions, three-dimensional rotations, spin- 1

2

particles, etc. Thus, having only single cyclic permutation ofN elements, using
purely mathematical means � linear algebra, projective representations and
central group extensions � we get rich tools for studying quantum-mechanical
problems.

The fundamental role of the cyclic permutation matrix Q agrees well
with the �nite quantum mechanics [1�3] describing unitary evolutions by per-
mutations, which are always products of cyclic permutations.
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Tropical Optimization Techniques for Solving

Multicriteria Problems in Decision Making

Nikolai Krivulin

Abstract. We consider a decision-making problem to find ratings of alterna-
tives from pairwise comparisons under several criteria, subject to constraints
imposed on the ratings. Given matrices of pairwise comparisons, the prob-
lem is formulated as the log-Chebyshev approximation of these matrices by a
common consistent matrix (a symmetrically reciprocal matrix of unit rank)
that minimizes the approximation errors for all matrices simultaneously. We
rearrange the approximation problem as a constrained multiobjective opti-
mization problem of finding a vector that determines the approximating ma-
trix. The optimization problem is then represented in the framework of trop-
ical algebra. We apply methods and results of tropical optimization to solve
the problem according to various principles of optimality, including the max-
ordering, lexicographic ordering and lexicographic max-ordering optimality.

Introduction

Tropical optimization constitutes an important research and application domain of
tropical (idempotent) mathematics [1, 2, 3], which focuses on optimization prob-
lems that are formulated and solved in the framework of semirings and semifields
with idempotent addition. Methods and techniques of tropical optimization find
application in many areas, including engineering, computer science and operations
research, where they offer new solutions to various classical and novel problems.
As an application example one can consider decision-making problems of deriving
priorities of alternatives from pairwise comparisons [4, 5, 6].

In this paper, we consider a decision-making problem to find absolute rat-
ings (scores, priorities, weights) of alternatives, which are compared in pairs un-
der several criteria, subject to constraints in the form of two-sided bounds (box-
constraints) on ratios between the ratings. Given matrices of pairwise comparisons
made according to the criteria, the problem is formulated as the log-Chebyshev

46



2 Nikolai Krivulin

approximation of these matrices by a common consistent matrix (a symmetri-
cally reciprocal matrix of unit rank) that minimizes the approximation errors for
all matrices simultaneously. We rearrange the approximation problem as a con-
strained multiobjective optimization problem of finding a vector that determines
the approximating consistent matrix.

The optimization problem is then represented in the framework of tropical
algebra. We apply methods and results of tropical optimization to handle the
multiobjective optimization problem according to various principles of optimality
[7, 8]. Complete solutions in the sense of the max-ordering, lexicographic order-
ing and lexicographic max-ordering optimality are obtained, which are given in a
compact vector form ready for formal analysis and efficient computation.

1. Single-Criterion Pairwise Comparison Problem

Suppose that n alternatives are compared in pairs, which results in a pairwise
comparison matrix C = (cij) where the entry cij > 0 shows that alternative i
is cij times more preferable than alternative j. The matrix C is assumed to be
symmetrically reciprocal, which means that cij = 1/cji for all i, j = 1, . . . , n. Given
a pairwise comparison matrix C, the problem of interest is to calculate individual
ratings (scores, priorities, weights) of alternatives.

A pairwise comparison matrix C is referred to as consistent if the condition
cij = cikckj holds for all i, j, k. If a pairwise comparison matrix C is consistent,
then it is not difficult to verify that there exists a positive vector x = (xi) whose
entries determine the entries of C by the relation cij = xi/xj valid for all i, j.
It directly follows from this relation that the vector x, which is defined up to a
positive factor, can be taken as a vector of absolute ratings of alternatives and
thus gives the solution of the pairwise comparison problem.

The matrices of pairwise comparisons that appear in real-world problems
are commonly not consistent, which makes the problem of evaluating absolute
ratings nontrivial. The solution techniques available to handle the problem include
heuristic methods that do not guarantee the optimality of solution, but offer results
acceptable in practice, and approximation methods that provide mathematically
justified optimal solutions, which however can involve difficult computations.

An approximation technique that minimizes the Chebyshev distance in log-
arithmic scale (a log-Chebyshev approximation) are proposed in [4]. The method
is to find positive vectors x = (xi) that solve the problem

min
x>0

max
1≤i,j≤n

∣∣∣∣log cij − log
xi

xj

∣∣∣∣ .

Suppose now that there are constraints imposed on the absolute ratings of
alternatives in the form of two-sided bounds on ratios between the ratings. Given
a matrix B = (bij) where bij ≥ 0 shows that alternative i must be considered not
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less than bij times better than j, the constraints are given by the inequalities

max
1≤j≤n

bijxj ≤ xi, i = 1, . . . , n.

Observing that the logarithm to a base greater than 1 monotonically in-
creases, one can rewrite the objective function in the problem as

max
1≤i,j≤n

∣∣∣∣log cij − log
xi

xj

∣∣∣∣ = log max
1≤i,j≤n

cijxj

xi
.

The logarithmic function on the left-hand side attains its maximum where its
argument is maximal, which allows us to remove the logarithm from the objective
function to solve the equivalent problem

min
x>0

max
1≤i,j≤n

cijxj

xi
;

s.t. max
1≤j≤n

bijxj ≤ xi, i = 1, . . . , n.

2. Multicriteria Pairwise Comparison Problems

Assume that n alternatives are compared in pairs according to m criteria. For
each criterion l = 1, . . . , m, the results of pairwise comparisons are given by a

matrix Cl = (c
(l)
ij ) of order n. The problem is to find a vector x = (xi) of ratings

subject to constraints given by a matrix B = (bij) of order n. Application of the
log-Chebyshev approximation technique yields the problem

min
x>0

(
max

1≤i,j≤n

c
(1)
ij xj

xi
, . . . , max

1≤i,j≤n

c
(m)
ij xj

xi

)
;

s.t. max
1≤j≤n

bijxj ≤ xi, i = 1, . . . , n.

(1)

In the rest of this section, we consider three common approaches to handle
problem (1), which result in different procedures to find the solution set X. The
solution techniques used are based on the max-ordering, lexicographic ordering
and lexicographic max-ordering principles of optimality [7].

2.1. Max-Ordering Solution

Max-ordering optimization aims at minimizing the worst value of the objective
functions, and leads to replacing the vector of objective functions by a scalar func-
tion given by the maximum of the objective functions (Chebyshev scalarization).

To solve the constrained problem at (1), we define the feasible solution set

X0 =

{
x > 0 : max

1≤j≤n
bijxj ≤ xi, i = 1, . . . , n

}
.

We apply the Chebyshev scalarization to form the objective function

max
1≤l≤m

max
1≤i,j≤n

c
(l)
ij xj

xi
= max

1≤i,j≤n

cijxj

xi
, cij = max

1≤l≤m
c
(l)
ij .
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Then, the problem reduces to the constrained minimization problem

min
x∈X0

max
1≤i,j≤n

cijxj

xi
,

which is to solve to obtain the max-ordering solution as the set

X1 = arg min
x∈X0

max
1≤i,j≤n

cijxj

xi
.

Note that the solution obtained by the max-ordering optimization is known
to be week Pareto-optimal, and becomes Pareto optimal if it is unique [8].

2.2. Lexicographic Ordering Solution

Lexicographic optimization considers the objective functions in a hierarchical order
based on some ranking of objectives. Suppose the objectives are numbered in such
a way that objective 1 has the highest rank, objective 2 has the second highest and
so on. The lexicographic approach first minimizes function 1 and examine the set
of solutions obtained. If the solution obtained is unique (up to a positive factor), it
is taken as the solution of the overall multiobjective problem. Otherwise function
2 is minimized over all solutions of the first problem, and the procedure continues
until a unique solution is obtained or the problem with function m is solved.

To apply this approach, we first take the initial feasible solution set X0 defined
above, and then obtain the solution set Xs for each problem

min
x∈Xs−1

max
1≤i,j≤n

c
(s)
ij xj

xi
, s = 1, . . . , m.

The solution procedure stops as soon as the set Xs consists of a single solution
vector or all m scalar objective functions are examined. The last found set Xs is
taken as the lexicographic solution for the problem.

2.3. Lexicographic Max-Ordering Solution

This approach combines the lexicographic ordering and max-ordering into one pro-
cedure that improves the accuracy of the assessment provided by the max-ordering
approach. The procedure consists of several steps, each of which finds the max-
ordering solution of a reduced problem that has a lower multiplicity of objectives
and smaller feasible set. The first solution step coincides with the above described
max-ordering solution of the constrained problem with m objectives and the feasi-
ble solution set given by the constraints. Each subsequent step takes the solution
from the previous step as a current feasible solution set and selects objectives that
can be further minimized over the current feasible set, to incorporate into the
current vector objective function. A scalar objective function is included in the
current function if it has its minimum value over the current feasible set below the
minimum of the objective function at the previous step.

To describe the solution, we use the symbol Is to denote the set of indices of
scalar objective functions involved at step s. We initially set I0 = {1, . . . , m} and
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define X0 as above. At each step s, we need to solve the problem

min
x∈Xs−1

max
l∈Is−1

max
1≤i,j≤n

c
(l)
ij xj

xi
, s = 1, . . . , m.

where Xs−1 denotes the solution set of the problem at step s − 1.
With the minimum value of the objective function at step s denoted by θs,

we define the index set as follows:

Is =

{
l ∈ Is−1 : θs > min

x∈Xs

max
1≤i,j≤n

c
(l)
ij xj

xi

}
.

The procedure is completed if either the set Xs reduces to a single solution
vector, the condition Is = ∅ holds or all m objective functions are examined.

Below, we show how the solutions offered by the above methods can be repre-
sented in explicit analytical form using methods and result of tropical mathematics.

3. Preliminary Algebraic Definitions and Notation

Consider a tropical (idempotent) semifield that is defined as the set of nonnegative
reals equipped with addition ⊕ given by the maximum as x ⊕ y = max(x, y),
and multiplication denoted and defined as usual. Addition is idempotent since
x ⊕ x = max(x, x) = x, and has 0 as the neutral element. Multiplication has 1 as
the neutral element, is invertible for all nonzero x and distributes over addition.
This tropical semifield is commonly referenced to as the max-algebra.

Matrices and vectors over the max-algebra are routinely introduced. Matrix
and vector operations follow the standard entrywise rules with the scalar addition
+ replaced by ⊕. The conjugate of a column vector x = (xj) is the row vector

x− = (x−
j ) where x−

j = x−1
j if xj 6= 0, and x−

j = 0 otherwise. The zero vector is
denoted by 0, and identity matrix by I. For any square matrix, the power notation
indicates repeated (tropical) multiplication of the matrix by itself.

For any square matrix A = (aij) of order n, the trace is given by

trA = a11 ⊕ · · · ⊕ ann.

A tropical analogue of the matrix determinant is defined as

Tr(A) = trA ⊕ · · · ⊕ trAn.

If Tr(A) ≤ 1, then the Kleene star operator is calculated as

A∗ = I ⊕ A ⊕ · · · ⊕ An−1.

4. Solution of Multicriteria Pairwise Comparison Problems

Consider the multiobjective optimization problem at (1). After rewriting the ob-
jective functions and inequality constraints in terms of max-algebra, the problem
can be formulated in vector form as follows. Given (n×n)-matrices Cl of pairwise
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comparisons of n alternatives for criteria l = 1, . . . , m, and nonnegative (n × n)-
matrix B of constraints, find positive n-vectors x of ratings that solve the problem

min
x>0

(x−C1x, . . . ,x−Cmx);

s.t. Bx ≤ x.
(2)

Below, we offer max-ordering, lexicographic and lexicographic max-ordering
optimal solutions to this problem.

4.1. Max-Ordering Solution

We start with a solution obtained according to the max-ordering optimality.

Theorem 1. Let Cl for all l = 1, . . . , m be matrices such that Tr(Cl) 6= 0, and B
be a matrix such that Tr(B) ≤ 1. With A = C1 ⊕ · · · ⊕ Cm, define the scalar

θ =

n⊕

k=1

⊕

0≤i1+···+ik≤n−k

tr1/k(ABi1 · · ·ABik)

and matrix

G = (θ−1A ⊕ B)∗.

Then, all max-ordering solutions of problem (2) are given in parametric form by

x = Gu, u 6= 0.

4.2. Lexicographic Ordering Solution

The lexicographic ordering technique solves problem (2) in m steps each minimiz-
ing a scalar objective function over a feasible set given by the previous step.

Theorem 2. Let Cl for all l = 1, . . . , m be matrices such that Tr(Cl) 6= 0, and B
be a matrix such that Tr(B) ≤ 1. With B0 = B, define the recurrence relations

θs =

n⊕

k=1

⊕

0≤i1+···+ik≤n−k

tr1/k(CsB
i1
s−1 · · ·CsB

ik
s−1),

Bs = θ−1
s Cs ⊕ Bs−1, s = 1, . . . , m;

and the matrix

G = B∗
m.

Then, all max-ordering solutions of problem (2) are given by

x = Gu, u 6= 0.

4.3. Lexicographic Max-Ordering Solution

Similar to the lexicographic ordering solution, we handle problem (2) by solving
a series of problems, where each problem has a scalar objective function and in-
equality constraint provided by the solution of the previous problems. The solution
obtained in the framework of max-algebra is described as follows.
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Theorem 3. Let Cl for all l = 1, . . . , m be matrices such that Tr(Cl) 6= 0, and B
be a matrix such that Tr(B) ≤ 1. With B0 = B and I0 = {1, . . . , m}, define the

recurrence relations

θs =

n⊕

k=1

⊕

0≤i1+···+ik≤n−k

tr1/k(AsB
i1
s−1 · · ·AsB

ik
s−1), As =

⊕

l∈Is−1

Cl,

Is =



l ∈ Is−1 : θs >

n⊕

k=1

⊕

0≤i1+···+ik≤n−k

tr1/n(ClB
i1
s · · ·ClB

ik
s )



 ,

Bs = θ−1
s As ⊕ Bs−1, s = 1, . . . , m;

and the matrix

G = B∗
m.

Then, all lexicographic max-ordering solutions of problem (2) are given by

x = Gu, u 6= 0.
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Solving the problem of choosing an information
system project by methods of tropical mathemat-
ics

Nikolai Krivulin and Alexey Prinkov

Abstract. A multicriteria problem of evaluating the ratings of alternatives
based on pairwise comparisons when making a decision on choosing an infor-
mation system project is considered. To solve the problem, an approach based
on the weighted minimax log-Chebyshev approximation and the application
of tropical mathematics methods are used. The obtained solution is compared
with the known solution by the method of analytical hierarchy process.

Introduction

Multicriteria problems of evaluating alternatives based on pairwise comparisons
are significant class of decision-making problems that are common in many areas.
In multicriteria problems, the alternatives are compared in accordance with several
criteria. The main difficulty of such problems is the absence in the general case of
a solution that is the best for all criteria at once. The initial data for the problem
are a set of m alternatives and their pairwise comparison by n criteria. The results
of comparisons are represented in the form of pairwise comparisons matrices Ak,
where 1 ≤ k ≤ n. The criteria are also compared with each other in pairs, and the
results of the comparisons are recorded in a criteria comparisons matrix C. The
solution of the problem is the vector of absolute ratings, which determines the ranks
of alternatives. One of the approaches to solve the problem is based on the log–
Chebyshev approximation of pairwise comparisons matrices by consistent matrices
(inversely symmetric matrices of unit rank). The log-Chebyshev approximation
problem can be represented in terms of tropical mathematics and then solved
analytically in a compact vector form.
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1. Algebraic definitions

Tropical (idempotent) mathematics studies the theory and applications of alge-
braic systems with idempotent operations [1, 2, 3]. An operation is called idem-
potent if, when applied to the same arguments, it results in this argument. For
example, the maximum operation is idempotent: max(x, x) = x. Optimization
problems formulated in terms of idempotent algebraic systems can be solved by
methods of tropical optimization.

The paper uses max–algebra, an algebraic system, which is a set of non-
negative real numbers R+ = {x ∈ R|x ≤ 0} with addition and multiplication oper-
ations. Addition is defined as maximum and denoted by⊕. Multiplication is defined
and denoted as usual. Vector and matrix operations are performed according to
standard rules with the replacement of arithmetic addition by the operation ⊕.
The unit matrix is denoted by I and has the usual form. The integer non-negative
power of a square matrixA denotes the result of the multiplication of the matrix by
itself and is defined for all natural p as A0 = I, Ap = Ap−1A = AAp−1. The trace
of a matrix A = (aij) of order n is calculated by the formula trA = a11⊕· · ·⊕ann.

The spectral radius of the matrix A is calculated by the formula

λ = trA⊕ · · · ⊕ tr1/n(An) =
n⊕

i=1

tr1/i(Ai).

If λ < 1, then for the matrix A the Kleene operator is defined

A∗ = I ⊕A⊕ · · · ⊕An−1 =

n−1⊕

i=0

Ai.

More detailed information on the theory, methods and applications of theo-
retical mathematics can be found, for example, in [1, 2, 3].

2. Problem of choosing an information system project

Let us consider the problem of choosing an information system project described
in [4]. The problem is to choose the most preferable information system project
for implementation according to a set of criteria. The paper [4] provides a solution
using the analytic hierarchy process of T. Saaty [5].

In the considered problem, a rating scale from 1 to 9 is used. In total, m = 6
competing alternative information system projects are considered. Alternatives are
compared according to n = 4 criteria: increasing the accuracy of clerical operations,
the efficiency of information processing, the promotion of organizational learning
and the implementation costs.
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A pairwise comparisons matrix of criteria is given by:

C =




1 1/9 1/7 1/5
9 1 2 5
7 1/2 1 3
5 1/5 1/3 1


 .

Pairwise comparisons matrices of alternatives for each criterion are:

A1 =




1 1/3 1/6 1/6 1/3 1/9
3 1 1/3 1/3 1 1/8
6 3 1 1 3 1/8
6 3 1 1 3 1/8
3 1 1/3 1/3 1 1/8
9 8 8 8 8 1


 ; A2 =




1 4 3 1 3 4
1/4 1 7 3 1/5 1
1/3 1/7 1 1/5 1/5 1/6
1 1/3 5 1 1 1/3

1/3 5 5 1 1 3
1/4 1 5 3 1/3 1


 ;

A3 =




1 1/5 2 1/3 1/2 2
5 1 7 2 3 7

1/2 1/7 1 1/5 1/2 1
3 1/2 5 1 2 5
2 1/3 2 1/2 1 3

1/2 1/7 1 1/5 1/3 1


 ; A4 =




1 5 4 2 3 1/3
1/5 1 1/2 1/4 1/3 1/8
1/4 2 1 1/3 1/2 1/6
1/2 4 3 1 2 1/4
1/3 3 2 1/2 1 1/5
3 8 6 4 5 1


 .

We now describe the solution of the problem, which is based on the weighted
minimax log-Chebyshev approximation and obtained using methods of tropical
optimization proposed in [6, 7].

To solve the problem we use analytical computations in terms of max-algebra
which is a tropical semifield with addition defined as maximum.

To determine the weights of the criteria, we first calculate the spectral radius
of the matrix C given by

λ = trC ⊕ · · · ⊕ tr1/4(C4) = (25/9)1/3 ≈ 1.4057.

The calculation of the Kleene star matrix, whose columns generate all the
optimal vectors of the weights of the criteria, gives the following result:

D = (λ−1C)∗ =




1 1/9λ 2λ/25 λ/5
9λ 1 2/λ 5/λ

27λ/5 3/5 1 3/λ
5/λ λ/5 2/5 1


 .

If the columns in the matrix generate a unique (up to a positive multiplier)
vector, this vector is taken as the vector of weights. Otherwise some best and
worst differentiating vectors of weights are obtained. As the best (worst) vector
of weights, a vector is considered for which the ratio between the maximum and
minimum elements is maximal (minimal).

We normalize the columns of the matrix D with respect to the maximum
element, which makes the maximum element in each column be equal to 1. In this
case, the best solutions corresponds to the columns whose minimum elements are
the smallest among all columns, and the worst ones to the vectors whose minimum
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elements are the largest. The normalized matrix D is equal to



1/9λ 1/9λ 1/9λ 1/9λ
1 1 1 1

3/5 3/5 λ/2 3/5
λ/5 λ/5 λ/5 λ/5


 .

The best differentiating vector of weights is the vector

v = (1/9λ, 1, 3/5, λ/5)T,

and the worst is vector

w = (1/9λ, 1, λ/2, λ/5)T.

Let us take the best differentiating vector of weights v and evaluate a weighted
sum

P = 1/9λA1 +A2 + 3/5A3 + λ/5A4 =

=




1 4 3 1 3 4
3 1 7 3 9/5 21/5

2/3λ 2λ/5 1 1/5 3/10 3/5
9/5 4λ/5 5 1 6/5 3
6/5 5 5 1 1 3
3λ/5 8λ/5 6 3 λ 1



.

The spectral radius of the matrix P is defined as

µ = trP ⊕ · · · ⊕ tr1/6(P 6) = 451/3 ≈ 3.5569.

Calculation of the Kleene star matrix gives

(µ−1P )∗ =




1 675/µ5 378/µ4 189/µ4 3/µ 7/5

3/µ 1 1134/µ5 567/µ5 405/µ5 21/5µ

2/15 2λ/5µ 1 126/λµ5 90/λµ5 42/λµ4

81/µ4 3/5 18/µ2 1 243/µ5 3/µ

675/µ5 225/µ4 14/5 7/5 1 945/µ5

8/15 8λ/5µ 6/µ 3/µ 72λ/5µ3 1


 .

Using the generating matrix (µ−1P )∗ we calculate the best differentiating
vector of ratings:

x = (3/µ, 405/µ5, 90/λµ5, 243/µ5, 1, 72λ/5µ3)T ≈
≈ (0.8434, 0.7114, 0.1125, 0.4268, 1.0000, 0.4498)T.

The obtained vector sets the order A5 > A1 > A2 > A6 > A4 > A3.
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With the worst differentiating vector of weights w we have the weighted sum

R = 1/9λA1 +A2 + λ/2A3 + λ/5A4 =

=




1 4 3 1 3 4
5λ/2 1 7 3 3λ/2 7λ/2
2/3λ 2λ/5 1 1/5 λ/4 λ/2
3λ/2 4λ/5 5 1 λ 5λ/2
λ 5 5 1 1 3

3λ/5 8λ/5 6 3 λ 1



.

The matrix R has the spectral radius

µ = trR⊕ · · · ⊕ tr1/6(R6) = (75λ/2)1/3 ≈ 3.7495.

The Kleene star matrix (µ−1R)∗ is equal to



1 1125λ/2µ5 315λ/µ4 315λ/2µ4 225λ/2µ4 7/5

375λ2/4µ4 1 1575λ2/2µ5 1575λ2/4µ5 1125λ2/4µ5 525λ2/4µ4

75λ3/2µ5 15λ2/µ4 1 21λ2/5µ3 3λ2/µ3 105λ3/2µ5

225λ2/4µ4 3/5 15λ/µ2 1 675λ2/4µ5 5λ/2µ

1875λ2/4µ5 375λ/2µ4 14/5 7/5 1 2625λ2/4µ5

150λ3/µ5 60λ2/µ4 6/µ 3/µ 12λ2/µ3 1


 .

The worst differentiating vector of ratings takes the form:

y = (4µ5/1875λ2, 2µ4/375λ, 5/14, 5/7, 1, 4µ5/2625λ2)T ≈
≈ (0.8001, 0.7499, 0.3571, 0.7143, 1, 0.5715)T.

The order defined by this vector is the order A5 > A1 > A2 > A4 > A6 > A3.

Conclusion
Note that in [4], the order of alternatives obtained using the analytic hierarchy
process is given by A1 > A2 > A5 > A6 > A4 > A3. If we compare it with the best
log-Chebyshev solution, we can see that the difference in solutions is in the first
three ranks, the last three ranks completely coincide. In the case of comparison
with the results of the worst differentiating solution, the three most preferred and
the three least preferred alternatives coincide, but there is a different order within
the triples. The difference between solutions makes it somewhat difficult to choose
one most preferable alternative, but allows one to recognize a group of three most
preferable alternatives.
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On the computation of Abelian differential
of the third kind

Mikhail Malykh and Leonid Sevastianov

Abstract. We consider the construction of the fundamental function and
Abelian differentials of the third kind on a plane algebraic curve over the field
of complex numbers that has no singular points. The algorithm for construct-
ing differentials of the third kind is described in Weierstrass’s Lectures. The
article discusses its implementation in the Sage computer algebra system. The
specificity of this algorithm, as well as the very concept of the differential of
the third kind, implies the use of not only rational numbers, but also alge-
braic ones, even when the equation of the curve has integer coefficients. Sage
has a built-in algebraic number field tool that allows implementing Weier-
strass’s algorithm almost verbatim. The simplest example of an elliptic curve
shows that it requires too many resources, going far beyond the capabilities
of an office computer. Then the symmetrization of the method is proposed
and implemented, which solves the problem and allows significant economy
of resources. The algorithm for constructing a differential of the third kind is
used to find the value of the fundamental function according to the duality
principle. Examples explored in the Sage system are provided.

Of all the known approaches to Abelian integrals, Weierstrass’s approach
was the most constructive. In Ref. [1], we tried to show that the normal form of
representation of Abelian integrals proposed in the lectures gives solutions to a
number of classical problems and its implementation in computer algebra systems
would be very useful. The key problem on this way, both in the 19th century and
now, is the construction of the fundamental function (Hauptfuktion) or, which
is also due to the duality principle, the differential of the third kind (Art), the
construction algorithm of which is described in the last chapter of Part 1 of the
Weierstrass Lectures [2], published in 1902 by Hettner and Knoblauch. There are
no examples of using the algorithm in the text.

A characteristic feature of Weierstrass’ approach is the use of a large number
of irrational numbers, the algorithm for determining which is either described in
the text, or more or less obvious. The Sage system has a built-in implementation
QQbar of the field of algebraic numbers, so in theory the algorithms from the
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Lectures can be implemented as written. However, in practice, symbolic expres-
sions containing a ten of numerical coefficients from the field of algebraic numbers
QQbar are very difficult to manipulate. We decided to consider this direct imple-
mentation of the algorithms and these expressions themselves and evaluate the
difficulties that arise.

Let polynomial f define an algebraic curve C of the order r on the projective
plane xy over the field C. Let for simplicity this curve have no singular points.

Definition. A differential of the form udx, u ∈ C(x, y) having no singular
points is called a differential of the first kind. A differential of the form udx,
u ∈ C(x, y) is called a differential of the third kind, if it has two singular points,
namely, poles of the first order (x1, y1) and (x2, y2) with residues 1 and −1.

Problem 1. Given a polynomial f ∈ Q[x, y], find a non-constant rational
function u ∈ C(x, y) such that udx is a differential of the first kind.

The absence of finite singular points makes one seek the solution in the form

E(x, y)dx

fy(x, y)
, E ∈ C[x, y],

and the absence of singular points at infinity indicates the fact that the order of
the polynomial E cannot exceed r− 3. Since no limitations should be imposed on
the coefficients of this polynomial, the set of differentials of the first kind has the
dimension

p =
(r − 1)(r − 2)

2
,

which is called a genus of the curve. For the basis of this space one can take
differentials with the coefficients form the field Q, rather than from its algebraic
closure. Therefore, when constructing differentials of the first kind it is possible
and necessary to work over the field Q.

Algorithms for calculating a basis for the space of differentials of the first kind
for planar curves, including those having singular points, have been proposed both
in classical books and in present-day papers [3]. At present they are implemented
in the systems Maple (AlgCurves, CASA) and Sage.

Problem 2. Given a indecomposable polynomial f ∈ Q[x, y], defining a pro-
jective curve C, and two points (x1, y1) and (x2, y2) on this curve, and x1, x2, y1, y2 ∈
Q. It is required to construct a non-constant rational function u ∈ C(x, y) such
that udx is a differential of the third kind with the poles (x1, y1) and (x2, y2).

The addition to the differential of a linear combination of differentials of the
first kind does not give rise to new singularities of change of residues, therefore,
the solution of Problem 2 is defined to a linear combination of p differentials of
the first kind.

The absence of finite singular points with x 6= xi makes one seek the solution
in the form

E(x, y)dx

(x− x1)(x2 − x)fy(x, y)
, E ∈ C[x, y],
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and the absence of points at infinity indicates the fact that the order of the poly-
nomial E cannot exceed r − 1. Equation

f(xi, y) = 0

beside the root y = yi has r − 1 more roots; let us denote them as y′i, . . . , y
(r−1)
i .

If there are no multiple roots among them, then the equations

E(xi, y
(j)
i ) = 0, i = 1, 2, j = 1, . . . , r − 1

ensure the absence of singularities at point, different from (x1, y1) and (x2, y2).
The conditions for residues at these points give two more equations:

E(x1, y1) = (x2 − x1)fy(x1, y1), E(x2, y2) = (x2 − x1)fy(x2, y2).

Thus, the solution to Problem 2 reduces to the solution of a system of linear
equations with coefficients from QQbar, and the main difference of Problem 2
from Problem 1 is the necessity to extend the number field.

We wrote a directi realization of the described method in Sage and applied
it to an elliptic curve

x3 − y3 + 2xy + x− 2y + 1 = 0.

The solution of Problem 2 led to six linear equations with six unknowns c0, . . . , c5.
To solve systes of equations, Sage uses a standard function solve, which does
not support the operation with algebraic numbers. Therefore, we proceeded to
matrices over the field of algebraic numbers and tried to solve the system of linear
equations by means of function solve_right. However, this function did not cope
with this system in a reasonable amount of time.

Fortunately, the system of equations consists of two subsystems of the form

E(xi, y
(j)
i ; c0, . . . ) = bi,j , j = 1, 2, . . . r, (1)

where y
(j)
i is te set of roots of equation f(xi, y) = 0 with respect to y. It can be

symmetrized and its solution can be reduced to inverting matrices with rational
coefficient. In the example considered, a visually graspable expression is obtained
( -0.9888519187910046?* x * y - y ^2 +
0.1254856073486862?* x - 0.4533976515164038?* y -
2.205569430400590?) * dx /((3* y ^2 - 2* x + 2) *( x - 1) * x)

Thus, such symmetrization is quite enough for efficient implementation of the
method for constructing a differential of the third kind, proposed in Weierstrass’s
Lectures.

The next step in implementing algorithms, proposed in Weierstrass’s Lec-
tures, is the construction of the fundamental function. For this purpose, it is suffi-
cient to construct a differential of the third kind with a movable pole. To execute
symmetrization in this case, too, we intend to use a perfect tool — the package
Symmetric Functions for Sage, which allows expressing a symmetric function from
a ring K[x1, . . . , xn] as a linear combination of elementary symmetric functions.
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Fourier series summation and A.N. Krylov
convergence acceleration in CAS

Ksaverii Malyshev

Abstract. The summation of Fourier series in finite terms is considered. First
at all, we want to present some results about testing standard instruments
for calculating of infinite sums in modern CAS. They work over the field of
complex numbers and, in the case of Fourier series, sometimes this lead to
strange forms for symbolic representation of sums.

Then we want suggest an alternative approach to the summation of
Fourier series, based on a method, proposed by A.N. Krylov for the accelera-
tion of Fourier series convergence. We consider examples of Fourier series from
mathematical physics related to the wave equation, and especially the Green’s
functions of a finite string. Sometimes, and for several Green’s functions espes-
sially this approach give zero expression instead of a fast convergence Fourier
series. This means in our viewpoint that we find the summation of Fourier se-
ries in finite terms. In this case, it is supposed to use the field of real numbers.
The advantages and difficulties of both approaches and their implementation
in CAS are discussed.
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Fair division algorithms
with a small number of queries

Andrei Malyutin

Abstract. We study the algorithmic complexity of fair division problems
with a focus on minimizing the number of queries needed to find an approx-
imate solution with desired precision. In a recent joint work with Alexandr
Grebennikov, Xenia Isaeva, Mikhail Mikhailov, and Oleg Musin, we showed
for several classes of fair division problems that under certain natural condi-
tions on sets of preferences, a polylogarithmic number of queries with respect
to the reciprocal of accuracy is sufficient. The present note extends these re-
sults (on the sufficiency of polylogarithmic number of queries) to the case of
four or more tenants in the rental harmony problem with convex preference
sets.

We study algorithmic aspects of the so-called fair division problems. A nice
introduction to the subject is given in the book [RW98]. In this note, we discuss
the following specific algorithmic geometry problem, the relation of which to the
rental harmony problem (this is a type of fair division problems) is explained, e. g.,
in a recent paper [GIMMM].

1. Stating an algorithmic problem
Let k ≥ 2 be a positive integer, let ∆k be a (k − 1)-dimensional regular simplex
with edges of length 1 in Rk−1, and let v1, . . . , vk be the vertices of ∆k. For
j ∈ {1, . . . , k}, we denote the facet Conv ({vi}i 6=j) of ∆k, where Conv (X) stands
for the convex hull of X, by Fj . (For the rental harmony problem, ∆k corresponds
to all representations of total price as a sum of k nonnegative numbers; and Fj is
precisely the set of price distributions with zero price for the jth room.)

Assume that a collection of k subsets P1, . . . , Pk of ∆k is fixed such that
(P1) {P1, . . . , Pk} is a covering of ∆k, that is,

⋃
i∈{1,...,k} Pi = ∆k;

(P2) Pi contains Fi for each i ∈ {1, . . . , k};

This work was supported by RFBR, research project no. 20-01-00070.
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(P3) Pi is convex for each i ∈ {1, . . . , k};
(P4) Pi is closed for each i ∈ {1, . . . , k}.1

Assume that we have no description of the sets P1, . . . , Pk, but we know that
the sets have the listed properties and we can perform queries about these sets: if
we choose an index i ∈ {1, . . . , k} and a point x ∈ ∆k, we receive ‘yes’ if x ∈ Pi
and ‘no’ otherwise.

The Knaster–Kuratowski–Mazurkiewicz (KKM) lemma guarantees (due to
the properties (P1), (P2), and (P4)) that the intersection

⋂
i∈{1,...,k} Pi is nonempty,

so that there exists a point x in ∆k such that dist(x, Pi) = 0 for all i ∈ {1, . . . , k}.
We say that such x in ∆k is a solution for P = {P1, . . . , Pk}. We say that x in ∆k

is an ε-solution, ε ≥ 0, for P if dist(x, Pi) ≤ ε for all i ∈ {1, . . . , k}.2
Our goal is to construct an algorithmic procedure that, given a collection

{P1, . . . , Pk} (having properties (P1)–(P4)) and an ‘accuracy constant’ ε > 0 finds
an ε-solution using the smallest possible number of queries.

2. The main result
It is known that ε-nets allow us to find ε-solutions with O(1/ε)k−1 queries. In the
case k = 2, we can use binary search to find an ε-solution in the interval ∆2 with
O(log(1/ε)) queries. Theorem 5.2 in [GIMMM] implies that in the case k = 3,
an ε-solution can be found with O(log(1/ε))2 queries. A natural conjecture arises
that an ε-solution can be found with O(log(1/ε))k−1 queries. The main result of
the present note confirms this conjecture for k = 4.

Theorem 1. In the case k = 4, an ε-solution for convex Pi can be found with
O(log(1/ε))3 queries.

Theorem 1 implies (modulo results of [GIMMM] and using terminology in-
troduced there) that, for the rental harmony problem with 4 tenants having con-
vex preference sets, we can find an ε-fair division point in binary mode with
O(log(1/ε))3 queries.

3. Basic idea of the algorithm
The description of our algorithm is rather cumbersome, and before proceeding to
it, we will outline its core idea. This idea seems to work for an arbitrary dimension,
but here we restrict ourselves to the case of k = 4. Let us fix one of the facets F1,
F2, F3, F4 (say, F4) and study the sections of our ∆4 with hyperplanes parallel
to F4. These sections form a bundle (Tθ)θ∈[0,1] of regular triangles, where θ is the
diameter of Tθ; we have T0 = v4 and T1 = F4. The first key observation we need

1In fact, we can carry out our constructions without condition (P4), but we introduce it for
convenience, in order not to repeatedly mention the transition to closures in what follows.
2We remark that an ε-solution is not necessarily located close to a solution. It is easy to construct
an example when the distance between an ε-solution and the solution closest to it exceeds 100ε.
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is that if P1, P2, P3 do not cover Tθ for some θ (so that Tθ \ (P1 ∪ P2 ∪ P3) is
nonempty) then Tθ contains a unique ‘inscribed circle’ Sθ that touches each of
P1, P2, and P3 and has no points of P1 ∪ P2 ∪ P3 inside. The center of Sθ is an
rθ-solution, where rθ is the radius of Sθ. Thus, if given an ε > 0 we find some
θ ∈ [0, 1] such that Tθ \ (P1 ∪ P2 ∪ P3) is nonempty and rθ ≤ ε, then the center
of Sθ will be the desired ε-solution. Observe that, due to convexity arguments,
if the set I of those θ for which P1, P2, P3 do not cover Tθ is nonempty, then
this I is a half-open subinterval in [0, 1] of the form (θ′, 1], and the radii rθ form
a continuous monotone function on this subinterval I . Using this, we can try to
find θ with a small radius rθ ≤ ε via binary search. Take θ1 = 1/2. If 1/2 is not
in I , then put θ2 = 3/4, and if 1/2 is in I and r1/2 > ε, then put θ2 = 1/4, and
so on. For example, if the set I is empty or of length less than ε, then at the step
m = log2d1/εe we get θm = 1− 1/2m ≥ 1− ε and any point in the nonempty (by
the KKM lemma) set Tθm ∩P1 ∩P2 ∩P3 is an ε-solution (because F4 ⊂ P4 is close
enough).

A difficulty arising when implementing the described idea as an algorithmic
procedure is that a monotone function can have ‘jumps’. This issue is resolvable
due to the fact that the function rθ is convex in addition. Another difficulty is the
calculation of inscribed circles.

3.1. Inscribed antitriangles
In order to simplify computations, instead of finding (approximately) inscribed
circles Sθ for triangles Tθ, we introduce and calculate (approximately) inscribed
antitriangles. By an antitriangle in a triangle Tθ (in the above notation) we mean
any regular triangle contained in Tθ that is related to Tθ by a negative homothetic
transformation. An antitriangle A in Tθ is inscribed if the intersection of A with the
union P1∪P2∪P3 is the set of vertices of A. It can be shown that if Tθ\(P1∪P2∪P3)
is nonempty then there exists a unique inscribed antitriangle Aθ for Tθ. Observe
that if Tθ\(P1∪P2∪P3) is nonempty, then the center of the inscribed antitriangleAθ
is a (Diam (Aθ) /

√
3)-solution, where Diam (Aθ) is the diameter of Aθ, while any

point in Aθ is a Diam (Aθ)-solution. Similar to the approach with inscribed circles,
the diameters Diam (Aθ) form a continuous monotone convex function on I . Using
this, we can try to find θ with a small Diam (Aθ) via binary search.

4. Procedure for finding inscribed antitriangles (PFIA)
Now we describe a computational procedure that, given an arbitrary θ ∈ (0, 1],
operates in the triangle Tθ and calculates, with a prescribed precision, the size of
the inscribed antitriangle Aθ and its position (if it is large enough). The input of
the procedure is the ‘coordinate’ θ and a ‘precision constant’ δ > 0. The outputs
of the procedure are:
• A (nonnegative real) number dθ such that |dθ − Diam (Aθ) | ≤ δ (if Aθ is

undefined, we formally set Diam (Aθ) = 0 so that dθ ≤ δ in this case).
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• A point xθ in Tθ such that the metric ball Bdθ+δ(xθ) of radius dθ+δ centered
at xθ intersects P1, P2, and P3. Besides, Bdθ+δ(xθ) intersects P4 whenever
Diam (Aθ) > δ.

In this procedure, we fix one of the facets F1, F2, F3 (say, F3) and regard Tθ
as a bundle of closed segments parallel to the edge Tθ∩F3. For this bundle, we use
the notation (Iα)α∈[0,θ], where Iα is the segment of length α (so that Iθ = Tθ ∩F3

and I0 is the opposite vertex of Tθ). For each α ∈ [0, θ], the segment Iα is isometric
to the segment [0, α]. In the following description, when α is fixed we identify Iα
with [0, α] via the isometry sending the endpoint Iα ∩ F1 to {0} in [0, α].

If Tθ \ (P1 ∪ P2 ∪ P3) is nonempty and the inscribed antitriangle Aθ exists,
then there is a unique η ∈ (0, θ) such that Iη contains an edge of Aθ. In this case
we use the notation E(θ) = η. If Tθ \ (P1 ∪ P2 ∪ P3) is empty, we set E(θ) = θ.
The procedure uses several levels of binary searches, the upper level goes through
the interval [0, θ] and study segments Iα of (Iα)α∈[0,θ], which can be regarded as
aiming to ‘find’ (approximately) the segment IE(θ).

We set a1 = 0 and b1 = θ and start an iterative process with intervals [ai, bi]
in [0, θ] such that [ai, bi] contains E(θ) if Diam (Aθ) is large enough. Given ai
and bi such that 0 ≤ ai < bi ≤ θ, the ith iteration looks as follows. We set
ci := (ai + bi)/2 and operate in the segment Ici (which is parametrized as [0, ci]
by the above convention). In m := dlog2(9ci/δ)e ≤ dlog2(1/δ)e+ 4 queries we can
find in Ici = [0, ci] a half-open subinterval of the form [pδ′, pδ′ + δ′), where p is an
integer and δ′ = ci/2

m ≤ δ/9, such that

[0, pδ′] ⊂ (Ici ∩ P1) ⊂ [0, pδ′ + δ′).

Another m queries allow us to find q ∈ Z such that (qδ′, qδ′ + δ′] contains the
endpoint g of Ici ∩ P2 such that [g, ci] = Ici ∩ P2. We have three cases:

q < p, which means that P1 ∪ P2 contains Ici and ci < E(θ). In this case, we set
[ai+1, bi+1] := [ci, bi] and pass to the next iteration.

q = p, which means that either P1 ∪ P2 contains Ici or the interval Ici \ (P1 ∪ P2)
has length at most δ. In the case q = p, we also set [ai+1, bi+1] := [ci, bi]
for the next iteration, even though it is possible that E(θ) = ci. In fact, if
q = p, then E(θ) can take any position in (0, ci), but we see that if q = p and
E(θ) ≤ ci, then the diameter of Aθ is at most δ, which is less than our ‘level
of visibility’ limit.

q > p, in this case we see that the length of Ici \(P1∪P2) is greater than (q−p−1)δ′

and lesser than (q−p+1)δ′. In the case q > p, we do additional computations.

Additional computations for the case q > p are as follows. If the subsegment
[pδ′, qδ′ + δ′] of Ici is an edge of an antitriangle contained in Tθ, we denote the
opposite vertex of this antitriangle by w. If the subsegment [pδ′ + δ′, qδ′] of Ici is
an edge of an antitriangle contained in Tθ, we denote the opposite vertex of this
antitriangle by v. If any of v and w is defined, we perform a query whether P3

contains it. Then, for the case q > p, we introduce three subcases:
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(L) either v is not defined or v ∈ P3. In this case, we have E(θ) < ci, and we set
[ai+1, bi+1] := [ai, ci] (and pass to the next iteration).

(R) w is defined and w 6∈ P3. In this case, E(θ) > ci. We set [ai+1, bi+1] := [ci, bi].
(+) v is defined and v 6∈ P3 while w is either not defined or w ∈ P3. In this

case, we have |Diam (Aθ) − (q − p)δ′| ≤ δ′, and we stop our procedure with
setting dθ = (q − p)δ′ and xθ to be the center of the antitriangle with edge
[(p+ 1)δ′, qδ′] (or just set xθ to be any point of this edge).

This completes the description of the iterative step.
We continue the iterative process either until subcase (+) happens or stop

at step 2dlog2(1/δ)e+ 10. If subcase (+) happens, the output of the procedure is
described above. If we stop at the step t = 2dlog2(1/δ)e+ 10 with no (+) subcase,
the situation splits in two following subcases.
• The subcase with at > θ − δ/2. It can be shown that the only way to get
at > θ − δ/2 is to have ‘short’ interval Iθ−δ \ (P1 ∪ P2) of length less than
δ + 2δ/9. In this case we have Diam (Aθ) < 2δ and we can set dθ = δ. The
point xθ can be chosen in Iθ−δ in an obvious way.

• If at ≤ θ − δ/2, we study the segment Iat . Clearly, 2dlog2(1/δ)e+ 10 queries
is enough to find h such that

|h−Diam (Iat \ (P1 ∪ P2)) | < δ/9

and x ∈ Iat such that x (δ/9)-approximates the center of that of the two
intervals Iat \ (P1 ∪ P2) and Iat ∩ P1 ∩ P2 which is nonempty. Then we set
dθ := h+ δ/2 and xθ := x and quit the procedure.3

5. Description of the algorithm (of finding an ε-solution)
Now we turn to the description of our algorithm that, given an ‘accuracy con-
stant’ ε and a collection P = {P1, P2, P3, P4} of subsets with properties (P1)–(P4)
in ∆4, following the basic idea described above, and using the procedure described
above (PFIA), finds an ε-solution for this P.

Algorithm starts with applying PFIA to the triangle T1−ε (see notation in
Sec. 3). Let the input accuracy constant δ for PFIA be ε/9.

If PFIA says that d1−ε ≤ ε− δ, which means that the set T1−ε \ (P1 ∪ P2 ∪
P3) is either empty or ‘thin enough’, then the point x1−ε (this point is in the
output of PFIA; see the description of PFIA) is an ε-solution because the metric
ball Bε(x1−ε) of radius ε centered at x1−ε intersects P4 (which contains F4) and
P1, P2, and P3 as well (because Bd1−ε+δ(x1−ε) by construction of PFIA intersects

3In order to prove that the assigned values of dθ and xθ indeed have the properties declared
for the output, we check several various cases and use properties of convex sets. One of the
key points of our proof is the fact that corresponding endpoints of the intervals Iat \ (P1 ∪ P2)
and Ibt \ (P1 ∪ P2) are located at a small distance from each other. This fact follows from the
conditions at ≤ θ − δ/2 and bt − at ≤ δ2/100 and can be proved by analogy with the simple
observation given in Sec. 5.2.
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P1, P2, and P3 while d1−ε + δ ≤ ε− δ+ δ = ε so that Bd1−ε+δ(x1−ε) ⊂ Bε(x1−ε)).
Then the algorithm stops.

Otherwise, if d1−ε > ε− δ, the algorithm goes into an iterative process with
intervals [ai, bi] in [0, 1] such that dai ≤ δ and dbi > ε− δ (in the present settings
we have ε − δ = 8ε/9). Having d1−ε > ε − δ, we set [a1, b1] = [2δ, 1 − ε]. Each
subsequent iteration, being given [ai, bi] with dai ≤ δ and dbi > ε − δ, we set
ci = (ai + bi)/2 and apply PFIA to the triangle Tci obtaining dci and xci as its
output.
• If dci ≤ δ, we move on to the next iteration with [ai+1, bi+1] := [ci, bi].
• If dci > ε− δ, we move on to the next iteration with [ai+1, bi+1] := [ai, ci].
• If dci ∈ (δ, ε − δ], then Diam (Aci) ∈ (0, ε] (because |dθ − Diam (Aθ) | ≤ δ)

and xci is an ε-solution for P (by construction of PFIA).

5.1. Estimating the number of queries
Observe that Diam (At), t ∈ [0, 1], is a convex nonnegative function. In particular,
for any a and b in [0, 1] such that 0 ≤ a < b ≤ 1, we have (cf. Sec. 5.2)

Diam (Ab)−Diam (Aa)

b− a ≤ Diam (A1)−Diam (Aa)

1− a .

Suppose that the upper level iterative process in our algorithm arrives at step i.
Since Diam (A1) ≤ 1/2, ai < bi ≤ 1− ε, |dθ −Diam (Aθ) | ≤ δ, and Diam (Aai) ≤
dai + δ ≤ 2δ in our case, it follows that

dbi ≤
bi − ai

2ε
+ 3δ.

Since ε− δ < dbi and δ = ε/9, this implies that

ε2 < bi − ai.
Since bi−ai ≤ 21−i, it follows that a necessary conditions for the transition to the
ith iteration is the validity of the inequality

i < log2(2/ε2) = 1 + 2 log2(1/ε).

Therefore, since we refer to PFIA before iterations only once, our algorithm arrives
at an ε-solution by calling procedure PFIA at most 1 + 2 log2(1/ε) times. Each
iteration of PFIA requires at most (2dlog2(1/ε)e+10)2 queries, so the total search
takes at most (2dlog2(1/ε)e+ 10)3 ones.

5.2. An observation concerning convex/concave functions
Let f : [0, 1]→ R be a nonnegative concave function with domain [0, 1], and let a
and b be numbers in [0, 1] such that 0 ≤ a < b ≤ 1. Then

f(b)− f(a)

b− a ≤ f(b)

b
and

f(a)− f(b)

b− a ≤ f(a)

1− a.

In particular, if f(a) and f(b) are in [0, 1] and for some δ > 0 we have δ ≤ a < b ≤
1− δ and b− a ≤ δ2, then

|f(b)− f(a)| ≤ δ.
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Computing the dimensions of the components of
tropical prevarieties

Farid Mikhailov

Abstract. The main goal of this work is the study of tropical recurrent se-
quences determined by various relations. For a set of tropical recurrent se-
quences described by tropical relations, D. Grigoriev put forward a hypothe-
sis of stabilization of the maximum dimensions of the components of tropical
prevarieties. This hypothesis has not been proven yet. As part of this work,
for various recurrent sequences, the appropriate tropical prevarieties were ex-
amined using the gfan package in order to check Grigoriev’s hypotises. The
validity of such a hypothesis would make it possible to calculate the corre-
sponding dimensions for a recurrent sequence for an arbitrary length.

Introduction
As part of this work, for various tropical recurrent relations, the corresponding
tropical prevarieties were studied using the Gfan package in order to check the
Grigoriev hypothesis about the stabilization of the maximum dimensions of the
components, i.e the existence of a tropical analogue of the Hilbert polynomial.
This hypothesis has not been proven yet. As part of this work, for various recur-
rent sequences, the appropriate tropical prevarieties were examined using the gfan
package in order to check Grigoriev’s hypotises.

In this work, the dimensions of the space of sequences are calculated in the
cases of various recurrent relations. According to the calculated dimensions, the
increase rate of the space of sequences relative to the number of elements in finite
tropical sequences was revealed. Based on this regularity, hypotheses were made
about the value of tropical entropy for various tropical recurrence relations. The
calculations were made in the gfan package developed in 2005 by A. Jensen.

Gfan is a software package for calculating Gröbner fans and tropical varieties,
developed in 2005 by A. Jensen, based on the algorithms in his dissertation [2]. The
gfan package allows computing Gröbner bases, Gröbner fans, tropical prevarieties,
varieties by given polynomials, and other objects of tropical geometry and the
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2 Farid Mikhailov

theory of Gröbner bases. It is currently the most powerful software tool for such
calculations. Gfan is distributed as a standard Linux package and is part of the
Debian distribution.

1. Basic objects of tropical math
Basic object of study is the tropical semiring (R∪{−∞},⊕,⊗). If T is an ordered
semi-group then T is a tropical semi-ring with inherited operations ⊕ := max, ⊗ :=
+. As a set this is just the real numbers R, together with an extra element −∞.
In this semiring, the basic arithmetic operations of addition and multiplication of
real numbers are redefined as follows:

x⊕ y := max(x, y) and x⊗ y := x+ y.

Many of the familiar axioms of arithmetic remain valid in tropical mathe-
matics. For instance, both addition and multiplication are commutative. These
two arithmetic operations are also associative, and the times operator takes ⊗
precedence when plus ⊕ and times ⊗ occur in the same expression. The distribu-
tive law holds for tropical addition and multiplication. [4]

Both arithmetic operations have an identity element. Minus infinity is the
identity element for addition and zero is the identity element for multiplication.
An important difference between the tropical semiring and classical math is that
tropical addition is idempotent x⊕ x = x.

Let x1, . . . , xn be variables which represent elements in the tropical semiring
(R ∪ {−∞},⊕,⊗). By commutativity, we can sort the product and write tropical
monomial in the usual notation, with the variables raised to exponents:

q(x1, . . . , xn) = a⊗ xi1
1 ⊗ · · · ⊗ xin

n .

A monomial represents a function from Rn to R. When evaluating this func-
tion in classical arithmetic, what we get is a linear function:

q(x1, . . . , xn) = a+ i1 · x1 + · · ·+ in · xn.

A tropical polynomial is a finite linear combination of tropical monomials:

p(x1, . . . , xn) =
⊗

j

(
aj ⊗ x

ij1
1 ⊗ · · · ⊗ x

ijn
n

)
.

Here the coefficients aj are real numbers and the exponents ij1 , . . . , ijn are
integers. Every tropical polynomial represents a function Rn → R. When evaluat-
ing this function in classical arithmetic, what we get is the maximum of a finite
collection of linear functions, namely

p(x1, . . . , xn) = max
j

(aj + ij1 · x1 + · · ·+ ijn · xn) .

Definition 1. x = (x1, . . . , xn) is a tropical zero of p if maximum maxj qj is
attained for at least two different values of j.
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Let some vector w ∈ Rn be given. We will use it as weight vector of some
monomial ordering. And in this case, we allow negative values of the weigths. The
initial form inw(f) of a polynomial f is the highest monomials of this polynomial
when the degrees of monomials are weighted by the vector w.For example, if g =
x + 2y + z + 1, then in(0,0,1)(g) = z and in(0,0,−1)(g) = x + 2y + 1.The highest
monomials at some weight vectors may have more than one. This is part of the
description of a tropical hypersurface.

Definition 2. Tropical hypersurface of the polynomial f is the set

T (f) = {w ∈ Rb : inw(f) is not monomial}.
The tropical hypersurface is described in the same order space as the weight

space. It is easy to see that if the weight vectors differ by a constant factor, then
the weight orders are the same. That is, the membership of one point in the space
of a tropical hypersurface entails the membership of the ray on which this point
lies.

The connection between the concept of a tropical hypersurface and tropical
mathematics lies in the process of tropicalization. Tropicalization is the transition
from objects of classical mathematics to objects of tropical mathematics, which
is carried out as follows: classical addition, multiplication and exponentiation are
replaced by their tropical counterparts, the coefficients at monomials are assumed
to be equal to zero.

Definition 3. Tropical prevariety of a system of polynomials f1, . . . , fn is the
finite intersection of tropical hypersurfaces

T (f1) ∩ · · · ∩ T (fn).

2. Tropical recurrent sequences

A classical linear recurrent sequence {zj}j∈Z satisfies conditions
∑

0≤i≤n aizi+k =
0, k ∈ Z, a0 ̸= 0, an ̸= 0. A remarkable property of classical linear recurrent se-
quences is as follows: since the last coefficient an is not equal to zero, then if you
calculate all z up to zi, you can uniquely calculate zi+1 by substituting the corre-
sponding k into the formula. This property is satisfied, since in classical arithmetic
there are elements inverse in addition.

Definition 4. y = yi ∈ (R ∪ {−∞})j∈Z is a tropical recurrent sequence if it
satisfies conditions

max
0≤i≤n

(ai + yk+i), k ∈ Z, a0 > −∞, an > −∞. (1)

The fulfillment of this condition means reaching the maximum in two or more
tropical terms ai + yk+i.

The main difference between tropical recurrent sequences and classical ones
is that each subsequent term, knowing the previous ones, is not always uniquely
determined. Tropical recurrent sequences can be either periodic or non-periodic.
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A sequence y is called periodic if ∃d > 0 such that yi − di∈Z satisfies the tropical
recurrence conditions 1.

Periodic recurrent sequences are in a sense trivial, since they correspond to
classical recurrent sequences. The presence of non-periodic sequences is a tropical
effect, and it is this presence that is the reason for the increase in the number of
recurrent sequences with their length. To define tropical entropy, we introduce the
concept of finite tropical recurrent sequences.

y = (y0, . . . , ys) ∈ (R ∪ {−∞})s+1 is a finite tropical recurrent sequence if it
satisfies conditions

max
0≤i≤n

(ai + yk+i), k ∈ {0, 1, . . . , s− n}, a0 > −∞, an > −∞.

Definition 5. Denote by Ds := Ds(a) ∈ (R ∪ {−∞})s+1 the set of sequences
satisfying vector a, and denote by ds := dimDs. Tropical entropy is the limit
H(a) := lim

s→∞
ds

s .

In the paper [1] D. Grigoriev proved the existence of entropy, as well as some
properties.

3. Computing of tropical prevarieties corresponding to tropical
recurrent sequences

Since the tropical entropy is a limit, in this paper reasonable hypotheses are given,
what it can be equal to. To calculate the hypothetical tropical entropy, the vector
a is associated with a system of n − s + 1 linear tropical equations with s + 1
unknowns, then the tropical prevariety of the system of equations are calculated.
The gfan package is used to compute tropical prevarieties. The GFAN package
computes tropical prevarieties only for polynomials with zero coefficients. For non-
zero coefficients, a parametrization is introduced, which is discussed in detail in
the GFAN manual [3] when calculating tropical curves.

From the computed tropical prevariety, one can find ds. With a series of
calculations with different s, you can find a pattern of growth in dimension and
draw a conclusion about the hypothetical tropical entropy.

Using linear transformations, the vector a = (a0, . . . , an) can be associated
with the vector b = (0, b1, . . . , bn−1, 0). It is technically easier to consider cases in
which a0 = 0 and an = 0. The calculations were done for all such vectors of length
n=3, presented in Table 1.

Conclusion
Computations of tropical prevarieties are performed to study the asymptotics of
ds and the conduct of the tropical entropy for various cases of a vector a of length
n = 3. All hypothetical values of tropical entropy satisfy the properties proved in
[1]. As a continuation of this work, it is proposed to do the following:
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1. Computing of tropical prevarieties corresponding to tropical recurrent se-
quences of vectors of greater length.

2. Computing of tropical prevarieties for systems of non-recurrent equations.
3. Development of an interface for tropical computing.

a\s d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 H(a)
(0,0,0,0) 4 4 4 5 6 6 6 7 8 8 8 9 10 10 1/2
(0,1,-1,0) 4 5 5 6 6 7 7 8 8 9 9 10 10 11 1/2
(0,-1,-1,0) 3 4 5 5 5 5 5 6 7 7 7 7 7 8 1/3
(0,1,2,0) 4 4 5 5 5 6 6 6 7 7 7 8 8 8 1/3

(0,-1,-2,0) 4 5 5 5 6 6 6 7 7 7 8 8 8 9 1/3
(0,-1,-3,0) 3 4 4 4 5 5 5 6 6 6 7 7 7 8 1/3
(0,-2,-3,0) 3 4 5 5 5 5 5 6 7 7 7 7 7 8 1/3

(0,-1,-∞, 0) 3 4 4 4 5 5 5 6 6 6 7 7 7 8 1/3
(0,0,-∞, 0) 3 3 4 4 4 4 5 5 5 6 6 6 6 7 2/7
(0,1,3,0) 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1/4
(0,-1,2,0) 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1/4
(0,1,-2,0) 3 4 4 4 4 5 5 5 5 6 6 6 6 7 1/4
(0,-1,0,0) 4 4 5 5 5 5 6 6 6 6 7 7 7 7 1/4
(0,1,0,0) 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1/4

(0,1,-∞, 0) 3 4 4 4 4 5 5 5 5 6 6 6 6 7 1/4
(0,1,1,0) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0
(0,2,3,0) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0

(0,-∞,−∞, 0) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0
Table 1. Hypothetical tropical entropy for n = 3
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Three-body dynamics: Agekian-Anosova region D

Aleksandr Mylläri and Tatiana Mylläri

Abstract. We discuss Agekian-Anosova homology region D and its impact on
the studies of three-body dynamics.

Since it is impossible to obtain a general analytical solution to the three-body
problem, the researchers are left with a numerical experiment. For the numerical
integration of the three-body problem, it is necessary to set up the initial condi-
tions: masses of the bodies, their coordinates and velocities. We need to choose
for each body mass, 3 spatial coordinates and 3 initial velocities, 21 parameters in
total. We can slightly reduce this number using the integrals of motion, but still
the space of initial conditions will have a high dimension, which makes it di�cult
to choose the initial conditions and limits the ability to present the research results
in a visual and easy-to-analyze form.

One can simplify the problem by considering all bodies of the same mass.
Next simpli�cation is to choose zero initial velocities. This simpli�es the problem -
from the spatial the problem becomes planar. In this case, it is necessary to specify
initial coordinates of the bodies, 3 pairs, six numbers total, but the dimensionality
is still high and does not allow visualization easily. The problem was solved when
the famous region D appeared [1, 2], often called Agekian-Anosova region D or
Agekian-Anosova map. Later, A.D. Chernin proposed the name homology region
D [3].

The idea of the region D is very simple: if we place two bodies at the points
with coordinates (-0.5, 0) and (0.5, 0), then we get all possible di�erent geomet-
ric con�gurations by placing the third body in the area bounded by (positive)
coordinate axes and arc of the unit circle centered at (-0.5, 0), see Fig. 1.

Introduction of the homology region D allows sistematical study of the free-
fall equal mass three-body problem and natural visualization. One can study and
display, e.g., life-time of the systems, see Fig. 2, or search for initial conditions
leading to two- and three-body collisions after �rst, second, etc. approach (Fig. 3),
analyse complecsity of trajectories (Fig. 4) and so on.

Homology region D can also be used as a map [4]: at any moment of time
to analyze geometric con�guration we can project the system into region D and
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Figure 1. Agekian-Anosova Region D.

Figure 2. Left: Life time of three-body systems. Blue (dark)
color correspond to short-living systems. Right: zoom into selected area.

follow the motion of the point representing the system. It can be done also in the
case of non-planar (3D) motion. Since typical �nal stage of the evolution of three-
body system with zero angular momentum is ejection, the point (0.5, 0) will play
a role of attractor. Region D can be generalized to the case of di�erent masses -
in this case one would need to consider all six possible permutations of the bodies
at the initial moment.
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Figure 3. Two-body collision curves after �rst, second, etc. ap-
proach. Triple collisions can be revealed as intersections of the curves.

Figure 4. Kolmogorov complexity of trajectories. For each tra-
jectory symbolic sequence was constructed. Complexity is esti-
mated as a length of the archived sequence.
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Around concurrent normal conjecture

Alexandr Grebennikov and Gaiane Panina

Given a smooth convex body K ∈ Rn, its normal to a point p ∈ ∂K is a line
passing through p and orthogonal to ∂K at the point p. It is conjectured that for
any convex body K ∈ Rn there exists a point in the interior of K which is the
intersection point of at least 2n normals from di�erent points on the boundary of
K. The concurrent normals conjecture trivially holds for n = 2. For n = 3 it was
proven by Heil via geometrical methods and reproved by Pardon via topological
methods. The case n = 4 was completed also by Pardon.

Recently Martinez-Maure proved for n = 3, 4 that (under mild conditions)
almost every normal through a boundary point to a smooth convex body K passes
arbitrarily close to the set of points lying on normals through at least six distinct
points of ∂K. He used Minkowski di�erences of smooth convex bodies, that is, the
theory of hedgehogs.

We give a very short proof of a slightly more general result: for dimension

n ≥ 3, under mild conditions, almost every normal through a boundary point to a

smooth convex body K ∈ Rn contains an intersection point of at least 6 normals

from di�erent points on the boundary of K.

Our proof is based on the bifurcation theory and does not use hedgehogs.
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Hidden symmetry of certain rational functions

Fedor Petrov

We discuss a non-obvious symmetry of a certain sum of rational weights along

non-intersecting lattice paths. Based on a joint work with I. Pak. The talk is based

on a current work in progress joint with I. Pak.
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On some numerical experiments with

character sums over �nite �elds

N.V. Proskurin

Abstract. By numerical experiments, it is discovered some strictures in dis-
tribution of cubic exponential sums in �nite �elds. It is given a conjecture on
distribution of these sums.

Consider the �eld Fp = Z/pZ of prime order p, its additive character

x 7→ ep(x) = exp(2πix/p), x ∈ Fp,

a one-variable polynomial f over Fp and related [1], [2] character (or exponential)
sum of additive type

∑

x∈Fp
ep
(
f(x)

)
. (1)

By Weil, the fundamental inequality
∣∣∣
∑

x∈Fp
ep
(
f(x)

) ∣∣∣ ≤ (deg f − 1)
√
p

is valid for all the sums whenever p - deg f . That means, the points

Ep(f) =
1

(deg f − 1)
√
p

∑

x∈Fp
ep
(
f(x)

)
(2)

are located in the unit disk D =
{
z ∈ C

∣∣ |z | ≤ 1
}
.

Let f be a one-variable polynomial over Z. By reduction its coe�cients mod p, we
may consider f as a polynomial over any Fp. Then one may look on distribution of
the points Ep(f) (p = 2, 3, 5, 7 . . . ) in the diskD. One may also look on distribution
of the points |Ep(f)| (p = 2, 3, 5, 7 . . . ) in the interval [0, 1]. We have studied
numerically the sums (1) for lot of cubic polynomials f . We have used computer
algebra systems PARI and MAPLE. Our main observations are as follows.
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2 N.V. Proskurin

(I) For any positive x ∈ R, let π(x) be the number of prime p ≤ x. Given a cubic
polynomial f , some positive X ∈ R, and some interval Ω ⊂ [0, 1] consider

1

π(X)
]
{
p ≤ X

∣∣∣ |Ep(f)| ∈ Ω
}
. (3)

We may take Ω = [0, z] with z ∈ [0, 1] to treat (3) as a function of z. We �nd
numerically (for many di�erent f and largeX) very good agreement of the function
(3) with the function

z 7→ 4

π

z∫

0

√
1− x2 dx.

Based on this observation, we conjecture

lim
x→∞

1

π(x)
]
{
p ≤ x

∣∣∣ |Ep(f)| ∈ Ω
}

=
4

π

∫

Ω

√
1− x2 dx

for all cubic polynomials f and all intervals Ω ⊂ [0, 1]. That may be considered as
an analogue of the classical Sato�Tate conjecture on distribution of the Klooster-
man sums. The density on the right-hand side is known also in connection with
the distribution of the numbers of points on elliptic curves.

(II) Let us consider one instructive sample. On the picture below we have plotted
the real coordinate axis, the imaginary coordinate axis, the unit disk D ⊂ C, and
the points Ep(f) ∈ D for the polynomial f(x) = 6x3 + 3x2 + 4x and for all prime
numbers p ≤ 100000.

The points Ep(f) with
f(x) = 6x3 + 3x2 + 4x and

prime p ≤ 100000.
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It is seen that the points Ep(f) are concentrated along 6 lines passing through the
point 0. We see that the points Ep(f) are just concentrated along the limit lines
rather than lie on them. The counterclockwise angles between the lines and the
real axis are πm/3 + πn/9 with m = 0, 1, 2 and n = 1, 2. The points distributed
sporadically are those few Ep(f) that are located far away from the limit lines.

We have found a similar aster-type pictures for many other cubic polynomials
ax3 + bx2 + cx + d over Z. We have no theoretical explanation to this phenome-
non. The number of lines depends on the coe�cients a, b, c. Looking for possible
classi�cation, we may say the polynomial f falls to the class aster-m if we see m
limit lines on the picture. In this sense, the above polynomial f falls to the class
aster-6. Some other classes are given in [3].
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Symbolic Inference for Non-Horn Knowledge Bases

With Fuzzy Predicates

Alexander Sakharov

Abstract. This paper investigates non-Horn knowledge bases with fuzzy pred-
icates. Inference from these knowledge bases excludes reasoning by contra-
diction, and it is characterized by means of substructural single-succedent
sequent calculi with non-logical axioms expressing knowledge base rules and
facts. A variety of truth functions can be used for the bodies of knowledge base
rules and their contrapositives. Lower bounds of fuzzy truth values of ground
literals are obtained by symbolically deriving the literals, building symbolic
expressions from derivations trees, and evaluating these expressions.

In memory of Vladimir Gerdt

1. Introduction

The languages of logic programs and knowledge bases (KB) are usually based
on �rst-order logic (FOL) [14]. In non-Horn KBs, facts are literals. Atoms are
expressions P (t1, ..., tk) where P is a predicate and t1, ..., tk are terms. Literals
are atoms or their negations. Non-Horn rules are expressions A ⇐ A1 ∧ ... ∧ Ak,
where A,A1, ..., Ak are literals. The advantages of non-Horn KB over Horn KBs
and normal logic programs are discussed in [16].

KBs and logic programs may include computable (aka evaluable) functions
and predicates [10]. They can be implemented as recursive functions in a functional
programming language or as algorithms in a procedural programming language.
The implementations of evaluable predicates serve to calculate the truth values
of their atoms with constant arguments. Evaluable predicates do not have to be
boolean, they may yield real numbers interpreted as fuzzy truth values. Recent
advances in AI made it possible to implement some predicates as neural networks
[4, 18, 17]. These networks yield the fuzzy truth values of atoms of neural predicates
with constant arguments.

The principle of Reductio Ad Absurdum (RAA) states that if A is deduced
from a hypothesis that is A's complement, then A is derivable. Reasoning by
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contradiction, i.e. with using RAA, is not quite adequate for KBs with evaluable
predicates [15]. It will be explained later that reasoning by contradiction is not
appropriate for KBs with fuzzy predicates either.

We introduce a set of very simple sequent calculi that characterize inference
without reasoning by contradiction for non-Horn KBs. Resolution refutations
[3] and other derivations steering clear of RAA are mapped to derivations in
these calculi. This paper shows how to use symbolic inference methods for the
calculation of lower bounds of the truth values of ground literals, i.e. literals
without variables. Symbolic derivations of literals in the sequent calculi are the
input of the calculation. This calculation is done by building ground symbolic
expressions and evaluating them. It is executed in a linear time of the size of the
derivations trees.

2. Non-Horn Knowledge Bases With Fuzzy Predicates

A substitution is a �nite set of mappings of variables to terms. The result of
applying a substitution to a formula or set of formulas is called its instance.
We consider inference of ground literals, which are called goals, from non-Horn
KBs containing evaluable functions and fuzzy predicates. Evaluable functions and
predicates may be partial. Fuzzy truth values are usually real numbers from
interval [0, 1]. For non-Horn KBs, it is more convenient to use interval [−1, 1]
for the representation of truth values. One represents true, minus one represents
false. Other real numbers from interval [−1, 1] represent fuzzy truth values.

Terms of evaluable functions with constant arguments are evaluated as soon
as they appear in KB derivations. The same applies to atoms of neural and
evaluable predicates with constant arguments. The evaluation may not terminate,
in which case it is assumed that the truth value is zero. Any complete search
strategy for inference from KBs with evaluable and neural predicates should
continue and-or search [14] simultaneously with the evaluations including neural
computations. If the evaluation of ground atom A(...) yields a positive value above
a certain threshold h > 0, then A(...) is considered a fact. If the evaluation of this
atom yields a negative value below −h, then ¬A(...) is considered a fact.

All other predicates will be called derivable. As explained in [16], derivable
predicates should be considered partial by default. In the presence of neural
predicates, the truth values of ground atoms of derivable predicates should also
be real numbers from interval [−1, 1], that is, derivable predicates are fuzzy. We
assume that KB facts could be fuzzy. It is expected that truth values lower than
one and higher than h are assigned to fuzzy KB facts. One is the default truth
value for the other KB facts.

Let |A| denote the truth value of ground literal A. We rely on the traditional
de�nition of the negation truth function for fuzzy KBs: |¬A| = −|A| [2]. The use of
this truth function for negation is limited to the calculation of the truth values of
negatibve literals. T-norms are usually considered in the literature as conjunction
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Inference for Knowledge Bases With Fuzzy Facts 3

truth functions [7]. Other conjunction truth functions may be more appropriate for
some KBs. We do not �x the conjunction truth function. The use of this function
is limited to the calculation of the truth values of the bodies of KB rules.

Truth functions for disjunctions will not be used here, and the use of
implication truth functions will be indirect. The meaning of KB rules is that
the truth value of the rule body is a lower bound of the truth value of the head.
Given that KB rules are implications and assuming that KB rules are not fuzzy,
this semantics of KB rules is consistent with several implication truth functions
for t-norms. For the Lukasiewicz, Godel, and product t-norms, |A ⇒ B| = 1 if
|A| ≤ |B| [7].

It is explained in [16] why reasoning by contradiction is questionable for KBs
containing partial functions or predicates. The same argument applies to KBs
containing neural predicates. Consider two KB rules P ⇐ Q and P ⇐ ¬Q. Here
is reasoning by contradiction using these rules. Suppose P is false. The �rst rule
implies that Q is false, and hence P is true by the second rule. Now suppose
|P | = 0. If |Q| = 0 as well, then both rules are satis�ed, but they do not provide
any evidence that P is true or |P | > 0 at least.

3. Sequent Calculi

Let −A denote the complement of A, i.e. it is the negation of atom A, and the
atom of negative literal A. A sequent is Γ ` Π where Γ is an antecedent and Π is a
succedent [11]. Antecedents and succedents are multisets of formulas. KB inference
and logic programming are concerned about the derivation of literals, i.e. sequents
of the form ` A where A is a literal. Consider single-succedent calculi in which
formulas are literals. The only structural rule is cut.

Γ ` A A,Π ` B

Γ,Π ` B
cut

These sequent calculi do not have logical axioms. The following rule is the only
logical rule. It replaces the standard negation rules and is applicable to axioms.

A,Γ ` B

−B,Γ ` −A
swap

KB facts and rules can be treated as non-logical axioms [11]. Sequents of
the form ` A represent facts, and rules are represented by sequents of the form
A1, ..., An ` A where A,A1, ..., An are literals. Variables can be replaced by any
terms in instances of these axioms. The conclusions of swap applied to KB rules
are known as contrapositives [19].

De�nition 1. Lcs is the set of sequent calculus instances in which formulas are

literals, succedents contain one literal, the structural rule is cut, the logical rule is

swap whose premises are axioms, and non-logical axioms represent KB rules and

facts.
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Theorem 1. Lcs is sound and complete with respect to the derivation of ground

literals in FOL without RAA.

Proof. It is proved in [15] that ground literal L is derivable from KB facts and
rules in FOL without RAA if and only if −L is refutable by resolution in which the
factoring rule is not used and at least one premise of every resolution step is not −L
or its descendant. Consider such resolution refutation. The resolution steps that
are not ascendants of the endclause are discarded. Let us ground this refutation
and then exclude the step that resolves −L. There is only one such step because at
least one premise of every resolution step is not −L or its descendant. As a result,
L is added to every descendant clause of this step including the endclause which
becomes L.

Let us traverse this resolution tree bottom-up and map every resolution step
to an application of cut in Lcs. Sequent ` L is the conclusion of the last cut
in the respective Lcs derivation tree. The premises of every cut in this tree are
uniquely determined by the resolution step. The succedent of the cut conclusion is
also the succedent of the second premise, and the succedent of the �rst premise is
the principal formula of this cut. Every leaf node in the Lcs derivation tree is an
instance of a KB fact, KB rule, or the conclusion of swap applied to an instance
of a KB rule.

Now consider a ground Lcs derivation of sequent ` L. Every application of
cut in this derivation corresponds to a resolution step but ground instances of KB
rules and facts are used in this resolution derivation instead of the rules and facts.
The endclause of this resolution derivation is L.

The lifting lemma [3] states that if clause A is an instance of A′, B is an
instance of B′, and C is the resolvent of A and B, then there is such clause C ′

that C is its instance, and C ′ is the resolvent of A′ and B′. It is well-known that
the lifting lemma can be generalized onto arbitrary resolution derivations: If C is
the endclause of a resolution derivation with input clauses A1, ..., An which are
instances of A′1, ..., A

′
n, respectively, then there is such resolution derivation with

input clauses A′1, ..., A
′
n and endclause C ′ that C is an instance of C ′. The proof

is a straightforward induction on the depth of resolution derivations.
As a consequence of this generalization of the lifting lemma, there is a

resolution tree with the input comprised of KB rules and facts treated as clauses
and with such endclause L′ that L is its instance. A step resolving L′ and −L is
added to this derivation. The resolvent of this step is the empty clause, and −L
occurs in one premise of the last step only. �

4. Rule Truth Functions

Traditionally, the truth values for conjunction are de�ned in fuzzy KBs by the
following equation: |A1∧ ...∧Ak| = min{|A1|, ..., |Ak|} [2]. With the Godel t-norm
(min) as the truth function for KB rule bodies, a lower bound for the truth value of
the head of rule A0 ⇐ A1∧ ...∧Ak is given by inequality |A0| ≥ min{|A1|, ..., |Ak|}
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according to the semantics of KB rules adopted here. Consider the case that |Ai|
are positive for i = 1, ..., j − 1, j + 1, ..., k, and |A0| is negative. As an implication
of the semantics of KB rules, | −Aj | ≥ | −A0| in this case. This inequality gives a
lower bound for the truth values of the heads of KB rule contrapositives.

If we replace literal truth values with variables, then the right-hand side of the
latter inequality can be viewed as the truth function for the body of contrapositive
−Aj ⇐ −A0 ∧A1 ∧ ...∧Aj−1 ∧Aj+1 ∧ ...∧Ak, i.e. this truth function is de�ned as:
s′(x0, x1, ..., xj−1, xj+1, ..., xk) = x0. For brevity, truth functions for the bodies of
KB rules or their contrapositives will be called rule and contrapositive functions,
respectively. It was possible to obtain the contrapositive function because the
rule function is de�ned by such symbolic expression s(x1, ..., xk) that inequality
x0 ≥ s(x1, ..., xk) is solved for xj under the conditions: x1 > 0, ..., xj−1 > 0, xj+1 >
0, ..., xk > 0, x0 < 0.

For KBs conatining fuzzy predicates, another truth function for the
conjunctions that are KB rule bodies could give more accurate lower bounds of
the truth values of the respective rule heads. Linear functions do not seem a good
choice for rule truth functions because they may yield positive values even when
one argument is zero. This reason applies to the Lukasiewicz t-norm too [7].

The product t-norm [7] does not look like a good choice either. The product
t-norm is de�ned as the product of the truth values of literals in a conjunction
provided that the truth values are in interval [0, 1]. For example, 0.6 ∗ 0.6 = 0.36.
Linearly projecting these values into interval [−1, 1], we would get the lower bound
|A0| ≥ −0.28 for rule A0 ⇐ A1 ∧ A2 and |A1| = |A2| = 0.2. The estimate 0.36
makes sense in a probabilistic setting, but the corresponding estimate for non-Horn
KB rules is useless.

In contrast to the product t-norm, the following truth function for non-Horn
KB rule bodies is more reasonable:

s(x1, ..., xk) = k
√

(x1 + 1)...(xk + 1)− 1

where k is the number of literals in the rule body. Given this rule function, a
lower bound for the truth values of the heads of KB rule contrapositives could be
obtained by solving the inequality |A0| ≥ k

√
(|A1|+ 1)...(|Ak|+ 1)− 1 for | −Aj |:

| −Aj | ≥ 1− (1− | −A0|)k/((|A1|+ 1)...(|Aj−1|+ 1)(|Aj+1|+ 1)...(|Ak|+ 1))

Again, replacing literal truth values with variables in the right-hand side of this
inequality de�nes the contrapositive function associated with s.

Rule functions could be parametrized. For example, they could be parametrized
by weights assigned to predicates. Also, custom functions yielding lower bounds
for the truth values of rule heads could be de�ned for particular KB rules as it
is done in Sugeno KBs [2]. Let w(A) be the weight assigned to the predicate of
literal A. Here is an example of a parametrized truth function:

s(x1, ..., xk) = (x1 + 1)w(A1)/w... (xk + 1)w(Ak)/w − 1

where s is de�ned for rule A0 ⇐ A1 ∧ ... ∧Ak, and w = w(A1) + ...+ w(Ak).
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De�nition 2. Rule or contrapositive truth function s is called proper if s(1, ..., 1) =
1, s(0, ..., 0) = 0, and for j = 1...k, h ≤ s(x1, ..., xj , ..., xk) ≤ s(x1, ..., x

′
j , ..., xk) if

xj ≤ x′j and x1 ≥ h, ..., xk ≥ h.
It is easy to verify that the rule and contrapositive functions speci�ed earlier

satisfy the conditions of this de�nition.

5. Truth Value Approximation

Let α{b1→β1, ..., bj→βm} denote the substitution of term βi for all occurrences
of variable bi in term α for i = 1, ...,m. Let us de�ne symbolic expression (term)
n(τ) recursively for all ground derivations τ . In the following de�nition, lower-case
letters are variables. These variables correspond to the same named upper-case
ground literals.
- If τ is ground instance A of a KB fact, then n(τ) = |A| (|A| is a constant).
- If τ is a ground instance A0 ⇐ A1, ..., Ak of KB rule and s is the truth function
for this KB rule, then n(τ) = s(a1, ..., ak).

- If the last rule of τ is swap with the conclusion A0, A1, ..., Aj−1, Aj+1, ..., Ak `
Aj and s′ is the truth function for the respective contrapositive, then n(τ) =
s′(a0, a1, ..., aj−1, aj+1, ..., ak).

- If the last rule of τ is cut with premises A1, ..., Ak ` E and E,C1, ..., Cm ` D,
then n(τ) = n(ν){e→n(µ)}. Here, µ and ν are the parts of τ whose endsequents
are the �rst and second premise of this cut, respectively.

Theorem 2. If τ is a ground Lcs derivation of literal G and all rule and

contrapositive functions are proper, then |G| ≥ n(τ) ≥ h.
Proof. By a straightforward induction of the depth of derivations, the only
variables occurring in n(τ) are the variables corresponding to literals in the
antecedent of the endsequent of τ . Consequently, n(τ) does not contain variables
for any derivation τ with the endsequent ` G. All functions occurring in any n(τ)
are increasing with respect to every argument. If n(τ) is treated as a function of
the variables occurring in it, n(τ) is increasing with respect to every argument. It
is proved by a straightworward induction on the depth of n(τ).

The value of any function from n(τ) is greater or equal to h if all arguments
of this function are greater or equal to h. By induction on the depth of n(τ),
the value of n(τ) is greater or equal to h if the value of every variable and every
constant in it is greater or equal to h. Since the only constants in any n(τ) are the
truth values of ground instances of KB facts, n(τ) ≥ h for any τ whose endsequent
is ` G.

Now we will prove by induction on the depth of derivations that if A1, ..., Ak `
D is the endsequent of derivation µ, then |D| ≥ n(µ){a1→|A1|, ..., ak→|Ak|}. As
a corollary, |G| ≥ n(τ).

Base: The depth of derivation µ is zero. If the endsequent of µ is ` D, then
D is an instance of a KB fact, and the above inequality holds. If the endsequent
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of µ is A1, ..., Ak ` D, then this sequent is a KB rule instance, it does not contain
constants, and the above inequality holds due to the de�nition of proper functions.

Induction step. Suppose the inequality under consideration is satis�ed for all
derivations whose depth is less or equal n. Suppose the depth of µ is n + 1. If
the last rule in µ is swap, then its premise is a ground instance of a KB rule, µ
does not contain constants, and again, the inequality holds due to the de�nition
of proper functions.

Now let the last rule in µ be cut, the �rst premise of this cut be B1, ..., Bk `
C1, and the second premise be C1, ..., Cm ` D. If γ is the derivation ending
in B1, ..., Bk ` C1 and δ is the derivation ending in C1, ..., Cm ` D, then
|C1| ≥ n(γ){b1 → |B1|, ..., bk → |Bk|} and |D| ≥ n(δ){c1 → |C1|, ..., cm → |Cm|}
by the induction assumption. Due to the monotonicity of n with respect to every
variable, |D| ≥ n(δ){c1→ n(γ){b1→ |B1|, ..., bk → |Bk|}, ..., cm→ |Cm|}. By the
de�nition of n, n(µ) = n(δ){c1→n(γ)}. Hence, n(δ){c1→n(γ){b1→|B1|, ..., bk→
|Bk|}, ..., cm→|Cm|} = n(µ){b1→|B1|, ..., bk→|Bk|, ..., cm→|Cm|}. �

This theorem establishes that n(τ) is a conservative approximation of the
truth value of G. The proof of Theorem 1 shows that resolution refutations without
factoring can be transformed to Lcs derivations in a single preorder traversal of
the resolution derivations. Therefore, the time complexity of this transformation
is linear in the size of the derivations. We focus on resolution methods because
they are known to be more e�cient.

It is clear from the proof of Theorem 2 that the calculation of a lower bound
of |G| can be done in a single postorder traversal of the derivation tree. We assume
that the time complexity of algorithms implementing rule and contrapositive
functions is linear in the number of function arguments. It is usually possible
to implement such algorithms approximating these functions. Consequently, the
calculation of a lower bound of |G| takes a linear time of the size of G's derivation
in Lcs.

Note that lower bounds of the truth values of derived ground literals could
not be expressed via terms like n in the presence of RAA. RAA steps eliminate
literal −A from sequents ... −A... ` A. The inequality from Theorem 2 for this
sequent has the form |A| ≥ n(...) where n(...) contains | −A|. This inequality does
not give a lower bound for |A|.

It is feasible to get multiple derivations of the same goal. These derivations
of one literal may give various approximations of the truth value of this literal. It
may be bene�cial to skip some fact instances with truth values close to h during
the derivation process. The design of e�cient inference methods capturing higher
truth values is beyond the scope of this paper. Investigation of the applicability of
non-proper truth functions is a topic for future research.
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6. Related Work and Discussion

An overview of KB inference methods including resolution-based methods can be
found in [14]. Resolution methods [3] are well suited for inference from non-Horn
KBs. Ordered resolution is recognized as one of the most e�cient inference methods
[1]. It is used in modern theorem provers [8]. Ordered resolution has been adapted
to inference from non-Horn KBs without RAA [15].

Like Lcs, LK−c calculi from [16] contain non-logical axioms representing KB
rules and facts. LK−c calculi characterize inference of literals from non-Horn KBs
without using RAA. Those calculi have the same inference power as Lcs but
they employ standard negation rules as opposed to the swap rule, they allow
multiple literals in succedents. LK−c derivations cannot be directly used for the
approximation of fuzzy truth values.

Our method is quite di�erent from fuzzy KB systems [2], it does not involve
fuzzi�cation or defuzzi�cation. Forward chaining normally serves as the inference
mechanism for fuzzy KBs [2]. KB inference without RAA is more powerful than the
forward application of Modus Ponens in chaining. For non-Horn KBs with neural
and evaluable predicates, symbolic inference is done �rst. After that, a symbolic
expression denoting a truth value is built from the derivation tree. Finally, this
expression is evaluated.

Non-Horn KBs with fuzzy predicates are similar to possibilistic logic [5] in
the sense that in both of them real numbers are associated with derived ground
literals. A survey of fuzzy proof theories in which numbers indicating truthness are
attached to FOL formulas is presented in [6]. The major di�erence of our approach
is that literals are the only FOL formulas involved in the KB formalism considered
here. Instead of applying fuzzy truth functions to FOL formulas [7], we propagate
constraints on the truth values of literals.

The neural-symbolic method from [13] utilizes weighted real-valued functions
for calculating lower and upper bounds of the truth values of FOL formulas.
Inference is implemented as alternating upward and downward passes over the
structure of the formulas. Truth value bounds are adjusted during these passes.
Modus Ponens and Modus Tollens are used to update truth value bounds. In our
work, sequents play the role of premises of Modus Ponens, and the swap rule can
be viewed as a form of Modus Tollens.

ProbLog [12] extends Prolog by associating probabilities with facts. It is as-
sumed that all ground instances of a non-ground fact are mutually independent and
share the same probability. ProbLog engines calculate approximate probabilities
for inference goals. Non-Horn KBs with neural and evaluable predicates are not
probabilistic, they are based on fuzzy logic [7]. DeepProbLog [9] extends ProbLog
by allowing neural networks to be associated with facts instead of probabilities.
The probabilities of ground instances of a fact are calculated by the neural network
associated with the respective predicate. In contrast, we interpret the output of
neural networks as fuzzy truth values of ground facts.
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Generic-Case Complexity of the Multiple Subset
Sum Problem

Alexandr Seliverstov

Abstract. We consider generic-case complexity of the multidimensional sub-
set sum problem. Several heuristic algorithms have been known. So, in 1994,
Nikolai Kuzyurin published such an algorithm. Nevertheless, the more meth-
ods are known, the more opportunities exist for solving certain problems. We
propose a sub-exponential algorithm to verify that there is no binary solu-
tion to a general system of sufficiently many linear equations with integer
coefficients. Roughly speaking, the algorithm checks whether there exists a
low-degree algebraic hypersurface passing through each point with binary co-
ordinates but not intersecting the given affine subspace.

Introduction
The subset sum problem is NP-complete. A commonly held view was that its
worst-case complexity cannot be sub-exponential [1, 2]. Moreover, if we restrict our
computations by so-called linear machines, then the problem is proved hard [3].

Generic-case complexity of a decision problem is sub-exponential when the
set of hard inputs is negligible (or empty), but almost all inputs can be solved
in sub-exponential time. Moreover, the negligible set containing hard inputs can
be discerned explicitly. Such algorithms are also known as deterministic errorless
heuristics. An example of fast generic-case algorithm is the condensation method
for computing determinants [4]. For general matrices, the method is very nice.
Nevertheless, if some intermediate matrix contains a zero entry, then the algorithm
can fails.

By means of variable elimination, searching for a {0, 1} solution to a system
of m linearly independent linear equations in n variables is reduced to a parallel
check whether a binary solution to a subsystem in n−m variables can be extended
to a {0, 1} solution to the whole system of equations in n variables. Hence, the
initial problem is polynomial-time solvable when the difference between the num-
ber of variables and the number of linearly independent equations is bounded by
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a function of the type n −m = O(log2 n). In this work, we consider generic-case
complexity when both m and difference n−m are sufficiently large.

The Kuzyurin Algorithm
Let us denote by A a m× n matrix with nonnegative entries and by b a column.
One can enumerate all {0, 1} solutions to the system of inequalities Ax ≤ b using
dynamic programming. If m > 9 log2 n and some assumptions about the distri-
bution of the entry values hold, then the average number of {0, 1} solutions is
polynomially bounded. Therefore, all solutions can be found in average polyno-
mial time [5]. The proof is based on the tail bounds of the binomial distribution.
Next, one can verify whether a {0, 1} solution to the system of equations Ax = b
exists. The crucial limitation on the applicability of the Kuzyurin algorithm is the
requirement of nonnegativity of the matrix entries. Of course, any system of linear
equations can be reduced to another system with nonnegative coefficients, but the
distribution is warped.

Low-density Problems
Let the density of an instance of the subset sum problem with positive integer
coefficients ak be defined by n

log2 maxk ak
. A polynomial-time algorithm is known

for solving almost all instances of sufficiently low density using a subroutine for
finding the shortest nonzero vector in a lattice [6, 7]. The multiple low-density
problems are considered too [8].

1. Our Main Algorithm
Within the context of the generic-case complexity, we consider machines having
three halting states. So, the machine not only rejects or accepts an input, but it
can also halt in the vague halting state. The latter means denial of response. But
such a failure is possible only on a small fraction of inputs.

Theorem 1. There exist both constant c and machine with the vague halting state
such that for all positive integers d ≥ 2, n, and m < n satisfying the inequal-
ity (n − m + d)(n − m + d − 1) ≤ md(d − 1) and for every m-tuple of linear
forms `j(x0, . . . , xn−m), where n − m < j ≤ n, the machine either rejects the
input or halts in the vague halting state in O(ncd) arithmetic operations. If the
machine rejects the input, then there is no {0, 1} solution to the system of all in-
homogeneous equations of the type xj = `j(1, x1, . . . , xn−m). Moreover, for every
applicable integers d, n, and m, there exists a nonzero polynomial of degree at most
n2(n−m+1)2d−4 in coefficients of all the linear forms `j such that if the machine
halts in the vague halting state, then the polynomial vanishes.

Proof. The algorithm (Fig. 1) verifies whether there exists a solution to a system
of linear equations in at most n(n−m+1)d−2 unknowns λtk and λtj . The sufficient
condition for the solvability is the full rank of a matrix. Of course, the rank can
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Figure 1. Checking whether the system has no {0, 1} solution.
Input: Both integer d ≥ 2 and set of m linear forms `j in n−m+ 1 variables.
if there exist numbers λik and λij such that

∑

t




n−m∑

k=1

λtkxk(xk − x0) +
n∑

j=n−m+1

λtj`j(`j − x0)


 gt = xd0,

where gt is the t-th monomial of degree d− 2 in variables x0, . . . , xn−m
then the machine rejects the input
else the machine halts in the vague halting state.

be calculated easily. But a weaker sufficient condition is that a largest minor does
not vanish. The minor is a polynomial in matrix entries. An entry is a polynomial
of degree at most two in coefficients of linear forms `j . Thus, the minor is a
polynomial of degree at most n2(n−m+1)2d−4. This polynomial does not vanish
identically. �

Roughly speaking, the algorithm checks whether there exists a hypersurface
passing through each {0, 1} point but not intersecting the given affine subspace.
Therefore, for given d, if the algorithm rejects a subsystem, then it rejects the
whole system too.

If n−m = O(
√
n), then one can use a constant degree d. Thus, generic-case

complexity is polynomial, cf. [9].

Theorem 2. There exist both constant c and machine with the vague halting state
such that for all positive integers n > m ≥ 4 log42 n and for every m-tuple of linear
forms `j(x0, . . . , xn−m), where n − m < j ≤ n, the machine either rejects the
input or halts in the vague halting state in O

(
2cn/ logn

)
arithmetic operations. If

the machine rejects the input, then there is no {0, 1} solution to the system of all
inhomogeneous equations of the type xj = `j(1, x1, . . . , xn−m). Moreover, for every
applicable integers n and m, if all coefficients of forms `j picked independently and
uniformly at random from a set of cardinality (1/ε)4dn/ log2 ne, then the machine
halts in the vague halting state with probability at most ε.

Proof. Let us use Theorem 1 with parameter d = dn/ log22 ne. There exists a
nonzero polynomial of degree at most 4dn/ log2 ne in coefficients of all the linear
forms `j such that if the machine halts in the vague halting state, then the poly-
nomial vanishes. In accordance with the Schwartz–Zippel lemma, the machine halts
in the vague halting state with probability at most ε. �
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Conclusion
If all coefficients are nonnegative integers from a large set and picked independently
at random, then the Kuzyurin algorithm has the advantage with high probabil-
ity [5]. But our algorithm works over all integers. Moreover, for nonnegative coef-
ficients, it can also give a quick answer when the Kuzyurin algorithm requires a
long running time.

References
[1] D. Grigoriev, Complexity of Positivstellensatz proofs for the knapsack, Computational

Complexity 10 (2001), 139–154. https://doi.org/10.1007/s00037-001-8192-0
[2] S. Margulies, S. Onn, D.V. Pasechnik, On the complexity of Hilbert refutations for

partition, Journal of Symbolic Computation 66 (2015), 70–83. https://doi.org/10.
1016/j.jsc.2013.06.005

[3] K. Meer, A note on a P 6= NP result for a restricted class of real machines, Journal of
Complexity 8:4 (1992), 451–453. https://doi.org/10.1016/0885-064X(92)90007-X

[4] C.L. Dodgson, Condensation of determinants, being a new and brief method for com-
puting their arithmetical values, Proceedings of the Royal Society of London 15 (1866),
150–155.

[5] N.N. Kuzyurin, An integer linear programming algorithm polynomial in the aver-
age case. In: A.D. Korshunov (eds.) Discrete Analysis and Operations Research.
Mathematics and Its Applications, vol. 355, pp. 143–152. Springer, Dordrecht, 1996.
https://doi.org/10.1007/978-94-009-1606-7_11

[6] J.C. Lagarias, A.M. Odlyzko, Solving low-density subset sum problems, Journal of the
Association for Computing Machinery 32:1 (1985), 229–246. https://doi.org/10.
1145/2455.2461

[7] M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.P. Schnorr, J. Stern, Im-
proved low-density subset sum algorithms, Computational Complexity 2:2 (1992), 111–
128. https://doi.org/10.1007/BF01201999

[8] Y. Pan, F. Zhang, Solving low-density multiple subset sum problems with SVP oracle,
Journal of Systems Science and Complexity 29 (2016), 228–242. https://doi.org/
10.1007/s11424-015-3324-9

[9] A.V. Seliverstov, Binary solutions to large systems of linear equations (in Russian),
Prikladnaya Diskretnaya Matematika 52 (2021), 5–15. https://doi.org/10.17223/
20710410/52/1

Alexandr Seliverstov
Institute for Information Transmission Problems of the Russian Academy of Sciences
(Kharkevich Institute), Moscow, Russia
e-mail: slvstv@iitp.ru

99



Automorphisms of Types and Cryptography

Sergei Soloviev

• Main point of this reflection is that we may use morphisms (transformations)
of types in cryptography if we want to encrypt structured objects (elements
of a type) instead of mere “texts”.

Example. Consider the type

P = (A→ A)→ ...→ (A→ A)→ (A→ A).

The elements of the “premises” are functions fi : A→ A, and the “conclusion”
consists of f : A → A as well. So an element F : P is, e.g., the composition
operator, Ff1...fn = f : A→ A. In an encrypted form the order of fi may be
changed and the composition Ffσ(1)...fσ(n) useless for an unauthorized user.

• In Type Theory one may introduce categorical structure taking types as
objects and closed terms t : A → B as morphisms (up to usual equivalence
relation based on normalization).

Identity IdA is represented by λx : A.x : A→ A.
As usual, t : A→ B, t−1 : B → A are mutually inverse isomorphisms if

t−1 ◦ t ≡ idA and t ◦ t−1 ≡ idB .
E.g., λz : B1 → (B2 → C).λx2 : B2.λx1 : B1.(zx1x2) is an isomorphism

from B1 → (B2 → C) to B2 → (B1 → C)
It works for different systems of Type Theory and λ-calculus.

• An automorphism is an isomorphism t : A → A§ e.g., λz : B → (B →
C).λx2 : B.λx1 : B.(zx1x2) (i.e., we take B1 = B2 above).

For each type A the automorphisms A→ A form the group of automor-
phisms Aut(A).

It may be seen as a subcategory of the groupoid of isomorphisms, i.e.,
the subcategory of the category of types and deductions - or terms - with the
same objects and only isomorphisms as morphisms.

If we fix a type, we may consider also the groupoid Gr(A) of types
isomorphic to A.

• Relevant theorems.
Theorem (Dezani-Ciancaglini, [1]). βη-invertible terms in the untyped

λ-calculus are exactly the finite hereditary permutations (f.h.p.).
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On calls erasure elimination of all type information from λ-terms in
typed λ-calculus.

Based on this theorem, it is possible to establish that the (well-typed)
terms in many systems of typed λ-calculus are isomorphisms iff their erasures
are f.h.p.

Theorem (Soloviev [5]). The groups Aut(A) for simple types A are (up
to isomorphism of groups) exactly the groups that may be obtained from
symmetric groups by cartesian product and wreath product.

(By an old Jordan’s theorem: they are exactly the groups of automor-
phisms of finite trees. Not C3 for example.)

Theorem (Soloviev [5]). For every finite group G there exists a type AG
in second order typed λ-calculus (system F ) such that the group Aut(AG) is
isomorphic to G. Idem for Z. Luo’s typed logical framework LF with depen-
dent types.

• Interest to cryptography. Illustration: ElGamal cryptosystem (cf. [3, 4]).
The protocol may use the iterations of a distinguished automorphism

g : A→ A, where gm is g ◦ ... ◦ g (m times).
Private Key: m,m ∈ N . Public Key: g and gm.
Encryption. To send a message a : A (in our approach it is not a plain

text, but an element of type A, and may have more complex structure) Bob
computes gr and gmr for a random r ∈ N . The ciphertext is (gr, gmra).

Decryption. Alice knows m, so if she receives the ciphertext (gr, gmra),
she computes gmr from gr, then (gmr)−1, and then computes a from gmra.

Remark.We do not consider here the cryptosystems like MOR based on
a more sophisticated group theory [4] but they, too, can be represented in
type theory using the results of [5].

By encoding a finite cyclic group of prime order as a group of automor-
phism of some type we can implement ElGamal (or any other cryptographic
protocol based on finite groups) since the composition and inverse of type
automorphisms (represented by finite hereditary permutations [2]) can be
computed in linear time.

However, finite cyclic groups are not the only possibility. Let us recall
that the longest period in the symmetric group Sn is given by Landau function
∼ n

√
n. It corresponds to Aut(a → ... → a → p). This gives an idea of the

length of the periods of automorphisms f ∈ Aut(A). Maximal period of an
element in the group Aut(A) may be quite high.
• This approach is not yet “ready to use”. One of the difficulties: for a type

isomorphism/automorphism in normal form it is easy to compute the inverse.
And this is not good for cryptography.
• To be explored: why then the terms used for encoding have to be in normal

form? Normalization of a term may give “size explosion”. And reduction se-
quence may be quite long (more that exponential). So it would be good if
applying the Encryption and Decryption we might avoid normalization.
• Example. (Not directly related to isomorphisms.)
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It is well known that natural numbers may be represented by so called
Church numerals. In their typed version (for a type A) the number n is
represented by λx : A → A.λy : A.(x(...(xy)...) (x is repeated n times).
This is obviously related to “unary representation” of natural numbers. The
term above is normal. One may define arithmetical operations and other
arithmetical functions by application of other λ-terms to numerals. (In fact,
using untyped lambda calculus and corresponding version of numerals, any
partial recursive function may be represented.)

However, one may define also λ-terms representing binary notation. It
is enough to apply (in appropriate order) two terms t0 and t1 representing
multiplication by 2 and multiplication by 2 plus 1, to the term representing
0. Curious observation is that binary numbers are thus represented by terms
that are not normal. If we normalize them we obtain exponentially longer
presentation by standard Church numerals. However, to execute arithmetical
operations we do not need to normalize these terms. The familiar algorithms
for binary numbers may be adjusted.

• Conclusion. Principal idea - to use encoding that preserves functional cor-
rectness of programs. It may be done by type automorphisms represented by
λ-terms. We had shown that standard cryprographic schemes (like ElGamal)
may be adjusted to this case. Some other problems that have to be solved to
make the scheme workable (e.g., the use of normal versus non-normal terms)
were outlined.
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The Chvátal�Sanko� problem: Understanding ran-

dom string comparison through stochastic processes

Alexander Tiskin

Abstract. Given two equally long, uniformly random binary strings, the ex-
pected length of their longest common subsequence (LCS) is asymptotically
proportional to the strings' length. Finding the proportionality coe�cient γ,
i.e. the limit of the normalised LCS length for two random binary strings of
length n→ ∞, is a very natural problem, �rst posed by Chvátal and Sanko�
in 1975, and as yet unresolved. This problem has relevance to diverse �elds
ranging from combinatorics and algorithm analysis to coding theory and com-
putational biology. Using methods of statistical mechanics, as well as some
existing results on the combinatorial structure of LCS combined with elemen-
tary probability theory, we link constant γ to the parameters of a certain
stochastic particle process. These parameters are determined by a speci�c
(large) system of polynomial equations, which implies that γ is an algebraic
number. Using a computer program for exhaustive enumeration of con�gura-
tions of the relevant stochastic process for a su�cient number of time steps,
we solve our system numerically. Short of �nding a closed-form solution for
such a polynomial system, which appears to be unlikely, our approach essen-
tially resolves the Chvátal�Sanko� problem, albeit in a somewhat unexpected
way with a rather negative �avour.
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Fast RSK correspondence by doubling search

Alexander Tiskin

Abstract. The Robinson�Schensted-Knuth (RSK) correspondence is a funda-
mental concept in combinatorics and representation theory. It is de�ned as a
certain bijection between permutations and pairs of Young tableaux of a given
order. We consider the RSK correspondence as an algorithmic problem, along
with the closely related k-chain problem. We give a simple, direct description
of the symmetric RSK algorithm, which is implied by the k-chain algorithm of
Felsner and Wernisch. We also show how the doubling search of Bentley and
Yao can be used as a subroutine by the symmetric RSK algorithm, replac-
ing the default binary search. Surprisingly, such a straightforward replacement
improves the asymptotic worst-case running time for the RSK correspondence
that has been best known since 1998. A similar improvement also holds for
the average running time of RSK on uniformly random permutations.
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Zero-velocity surfaces in the general three-body
problem

Vladimir Titov

The zero velocity surfaces in the form space of the planar three-body problem
are considered. Reduction by translations and rotations reduces the dimension of
configuration space to 3. If the energy is negative the zero velosity surface has
three branches. When angular momentum J equals to zero the available space is
located inside the surface except for the origin. As J grows a small surface appears
and increases around the origin. Inside this small surface the motion is impossible.
The available space is located between two surfaces. As for restricted three body
problem there are five different topological types of zero velosity surface depending
on the value of J .

Lemaitre regularization is used for the degenerate cases, rectilinear and isosce-
les motions. In these cases, the configuration space are two-dimensional. The suit-
able parametrization yields the simple equations of motion in the regularized form
space. The zero velocity curve bounds the available space. The properties of recti-
linear and isosceles orbits in the regularized form space, including those that lead
to chaotic motion, are studied. The number of orbits are calculated by numerical
integration. Among them are the Schubart orbits and Brouke orbits, as well as
free fall orbits (in rectilinear and isosceles cases).

The figure-eight orbit is considered in the regularized by Lemaitre form space.
In this space figure-eight orbit has four pre-images. Clearly these pre-images passes
through six pre-images of Euler points. It is interesting, that one of pre-images is
approximately unit circle.
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Hierarchy of classicality indicators of N -level sys-
tems

Arsen Khvedelidze and Astghik Torosyan

The representation of finite-dimensional quantum systems in a phase space
[1] inevitably leads to the problem of negativity of probability distributions defined
over the phase space [2]. It is commonly accepted that this negativity is an essential
attribute of “quantumness” of a system and therefore can be used for evaluation
of the quantitative characteristics of states [3]. Following this idea and basing on
the algebraic method of construction of the Wigner functions of N−level quantum
systems [4, 5], we introduce the global indicator of classicality QN [6, 7, 8] defined
as a relative volume of a subspace P

(+)
N ⊂ PN of the state space PN , where the

Wigner quasiprobability distribution is positive. In the present report we analyse a
refined hierarchy of measures of classicality corresponding to a natural stratification
of state space PN by the unitary orbit types. The adjoint action of SU(N) group
on density matrices ϱ ∈ PN ,

g · ϱ = gϱg† , g ∈ SU(N) , (1)

induces the state space decomposition into the strata:

PN =
⋃

orbit types
P[Hα] . (2)

The components of decomposition (2) are determined by the isotropy group Hϱ of
a point ϱ ∈ PN ,

P[Hα] :=
{
ϱ ∈ PN | Hϱ is conjugate to Hα

}
. (3)

Having in mind the above stratification, it is natural to define global indicator of
classicality QN [Hα] of states over a given stratum as the ratio:

QN [Hα] =
Vol

(
P

(+)
[Hα]

)

Vol
(
P[Hα]

) , (4)

where P
(+)
[Hα] is the subset of stratum P[Hα] where the Wigner quasiprobability

distribution is non-negative. In the definition (4) the volumes are evaluated with
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respect to the Riemannian metric on P[Hα] induced by the stratification embed-
ding. In order to exemplify the introduced indicator of classicality, we explicitly
evaluate the rate of quantumness-classicality for low-dimensional systems, such as
a qubit and a qutrit.
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On Groebner bases in semigroup rings of partially

ordered semigroups.

Nikolay Vassiliev

The paper discusses the theory of Groebner bases for ideals in semigroup rings

of partially ordered semigroups. The �niteness theorems in classical theory, for

example, the �niteness of reduced Grobner bases or the �niteness of the universal

Grobner basis, are based on Dickson's lemma for a set of monomials of a �nite

number of variables and its generalization to decreasing ordinal ideals in the set

of monomials. We prove analogs of Dixon's lemma for desdending ordinal ideals of

Dicksonian partially ordered sets and give an answer to the question of �niteness

of the universal Groebner bases in semigroup rings of partially ordered Dicksonian

sets.

This work is carried out as part of a project supported by an RNF grant
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Bounded elementary generation of Chevalley groups

Boris Kunyavskĭı, Eugene Plotkin and Nikolai Vavilov

Abstract. We state several results on bounded elementary generation and
bounded commutator width for Chevalley groups over Dedekind rings of arith-
metic type in positive characteristic. In particular, Chevalley groups of rank
≥ 2 over polynomial rings Fq[t] and Chevalley groups of rank ≥ 1 over Lau-
rent polynomial rings Fq[t, t

−1], where Fq is a finite field of q elements, are
boundedly elementarily generated. In both cases we establish explicit bounds,
and in the latter case they are quite sharp. Using these bounds we can also
produce explicit bounds of the commutator width of these groups. We also
mention some applications, possible generalisations and several related open
problems, whose solution would require explicit computations. The complete
text of the present talk is available in [14].

Introduction
In the present talk, we consider Chevalley groups G = G(Φ, R) and their elemen-
tary subgroups E(Φ, R) over various classes of rings, mostly over Dedekind rings
of arithmetic type (we refer to [34] for notation and further references pertaining
to Chevalley groups, and to [2] for the number theory background).

Primarily, we are interested in the classical problems of estimating the width
of E(Φ, R) with respect to the two following generating sets.

• The elementary generators xα(ξ), α ∈ Φ, ξ ∈ R. We say that a group G is
boundedly elementarily generated if E(Φ, R) has finite width wE(G) with respect
to elementary generators.

• Commutators [x, y] = xyx−1y−1, where x, y ∈ G. We say that G has
finite commutator width if every element of E(Φ, R) is a product of ≤ wC(G)
commutators [x, y], x ∈ G(Φ, R), y ∈ E(Φ, R).

Research of Boris Kunyavskii and Eugene Plotkin was supported by the ISF grants 1623/16 and
1994/20. Nikolai Vavilov thanks the “Basis” Foundation grant N. 20-7-1-27-1 “Higher symbols in
algebraic K-theory”. The actual polynomial computations behind the present work were partially
performed/verified with the help of Mathematica 11.3.
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For the case of Chevalley groups of rank ≥ 2, in which we are mostly inter-
ested, bounded generation in terms of elementary generators, and bounded gener-
ation in terms of commutators are essentially equivalent. Indeed, in this case the
Chevalley commutator formula readily implies that every elementary generator
can be presented as a product of a bounded number of commutators.

Conversely, a very deep result by Alexei Stepanov and others, see, in par-
ticular, [30], and in final form [28], implies that every commutator in E(Φ, R) is
a product of not more than L elementary generators, with the bound L = L(Φ)
depending on Φ alone. But of course the actual estimates of wE(G) and wC(G)
can be very different.

Both problems have attracted considerable attention over the last 40 years
or so. Very roughly, the situation is as follows.

• Bounded elementary generation always holds with obvious small bounds for
0-dimensional rings. This follows from the existence of such short factorisations as
Bruhat decomposition, Gauß decomposition, unitriangular factorisation of length
4, and the like. On the other hand, bounded generation usually fails for rings of
dimension ≥ 2. But for 1-dimensional rings it is problematic.

• Existence of arbitrary long division chains in Euclidean algorithm implies
that SL(2,Z) and SL(2,Fq[t]) are not boundedly elementary generated [6]. But
this could be attributed to the exceptional behaviours of rank 1 groups.

• What came as a shock, was when Wilberd van der Kallen [13] established
that bounded elementary generation — and thus also finite commutator width —
fail even for SL(3,C[x]), a group of Lie rank 2 over a Euclidean ring! Compare also
[8], for a slightly simplified proof.

An emblematic example of 1-dimensional rings are Dedekind rings of arith-
metic type R = OS , for which bounded elementary generation of G(Φ, R) is in-
trinsically related to the positive solution of the congruence subgroup problem
in that group. This connection was first noted by Vladimir Platonov and Andrei
Rapinchuk, see [20].

For the number case the situation is well understood, even for rank 1 groups.
Without attempting to give a detailed survey, let us mention some high points of
this development. Apart from the rings R = OS , |S| = 1, with finite multiplicative
group, such finiteness results are even available for SL(2, R).

• For all Chevalley groups of rank ≥ 2, after the initial breakthrough by
Douglas Carter and Gordon Keller, [3, 4], later explained and expanded by Oleg
Tavgen [31], and many others, we now know bounded elementary generation with
excellent bounds depending on the type of Φ and the class number of R alone.

This leaves us with the analysis of the group SL(2, R), for a Dedekind ring
R = OS , with infinite multiplicative group.

• At about the same time, jointly with Paige, Carter and Keller gave a model
theoretic proof [unpublished], [5], somewhat refashioned by Dave Morris [18]. But
as all model theoretic proofs, this proof gives no bounds whatsoever.
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• On the other hand, another important advance was made by Cooke and
Weinberger [7], who got excellent bounds, modulo the Generalised Riemann Hy-
pothesis. The explicit unconditional bounds obtained thereafter seemed to be
grossly exaggerated [16].

• Some 10 years ago Maxim Vsemirnov and Sury [36] considered the key
example of SL

(
2,Z

[
1
p

])
, obtaining the bound wE(SL(2, R)) = 5 unconditionally .

• This was a key inroad to the first complete unconditional solution of the
general case with a good bound, in the work of Alexander Morgan, Andrei Rap-
inchuk and Sury [17]. The bound they gave is ≤ 9, but for the case when S contains
at least one real or non-Archimedean valuation was almost immediately improved
[with the same ideas] to ≤ 8 by Jordan and Zaytman [12].

However, the function case turned out to be much more recalcitrant, and is
up to now not fully solved, apart from some important but isolated results. On the
one hand, an analogue of Riemann’s Hypothesis was known in this case for quite
some time. Also, the function case analogue of Dirichlet’s theorem on primes in
arithmetic progressions, the Kornblum—Artin theorem for Fq[t], is much precise
than the Dirichlet theorem itself.

On the other hand, in the positive characteristic additional arithmetic diffi-
culties occur, that have no obvious counterparts in characteristic 0. They reflect
in particular in the structure of arithmetic subgroups in the function case. For
instance, it is well known that the group SL(2,Fq[t]) is not even finitely generated,
whereas the groups SL(2,Fq[t, t−1]) and SL(3,Fq[t]) are finitely generated but not
finitely presented.

• Until very recently the only published result was that by Clifford Queen
[23]. Queen’s main result implies that under some additional assumptions on R —
which hold, for instance, for Laurent polynomial rings Fq[t, t−1] with coefficients
in a finite field — the elementary width of the group SL(2, R) is 5. As we shall see
this implies, in particular, bounded elementary generation of all Chevalley groups
G(Φ, R) with plausible bounds.

Queen’s proof is mainly based on the same principles proposed by Cooke and
Weinberger [7] in the number field case. Namely, it uses subtle analytic ingredients,
such as a function field analogue of Artin’s primitive root conjecture, in order to
obtain short division chains. In contrast to the number field case where the validity
of Artin’s conjecture is only known conditionally on the Generalized Riemann
Hypothesis (GRH), its function field analogue, developed by Bilharz in the 1930’s,
became an unconditional theorem after Weil’s work. See the paper of Lenstra [15]
for more details, and for a strengthening of Queen’s theorem.

• The case of the groups over the usual polynomial ring Fq[t] long remained
open. Only in 2018 has Bogdan Nica established the bounded elementary gener-
ation of SL(n,Fq[t]), n ≥ 3. Part of the problem is that in characteristic p > 0
bounded elementary generation is not the same as bounded generation in terms
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of cyclic subgroups. For instance, the groups SL(n,Fq[t]) do not have bounded
generation in this abstract sense, see [1].

• After the preliminary version of the present work has been finished, there
appeared a preprint of Alexander Trost [32] where the statement of our Theorem
A was established for the ring of integers R of an arbitrary global function field
K, with a bound of the form L(d, q) · |Φ|, where the factor L depends on q and of
the degree d of K. His method is similar to Morris’ approach in [18].

Here we merely state our main results. There are many interesting aspects
of the proof, especially in the case of the group Sp(4,Fq[t]) that requires tons
of explicit calculations, related to stability theorems, reciprocity laws, Mennicke
symbols, Chebyshev polynomials, etc. Obviously, in the talk we can only present
an outline, all details can be found in our paper [14].

1. Bounded generation of G(Φ,Fq[t])

Here we establish similar results for all Chevalley groups over Fq[t], with explicit
uniform bounds that only depend on type Φ. The first major new result of the
present work treats the most difficult example, polynomial rings Fq[t] with coeffi-
cients in finite fields.

Theorem A. Let G(Φ, R) be a simply connected Chevalley group of type Φ, rk(Φ) ≥
2 over R = Fq[t]. Then the width of G(Φ, R) with respect to elementary generators
is bounded.

One of the main points of the present work is that, unlike the proofs based on
model theory, here we get efficient realistic estimates for the number of factors. In
some cases, like for reduction to smaller rank, our bounds are the best possible ones.
For small ranks, there might be still some gap between the counter-examples and
the estimates we obtain, but our upper bounds are fairly close to the theoretically
best possible ones. And the lower bounds in such similar problems are usually
quite difficult to obtain, anyway.

Roughly, the leading idea of our proof still follows Tavgen’s general scheme,
and is based on his rank reduction trick. It is very general and beautiful, and works
in many other related situations. Tavgen himself used the fact that for systems of
rank ≥ 2 every fundamental root falls into the subsystem of smaller rank obtained
by dropping either the first or the last fundamental root. However, as was pointed
out by the referee of [26], the argument applies without any modification in a much
more general setting. Namely, it suffices to assume that the required decomposition
holds for some subsystems ∆ = ∆1, . . . ,∆t, whose union contains all fundamental
roots of Φ. These subsystems do not have to be terminal.

Some bound in the bounded generation for all Chevalley groups can be easily
derived from the case of rank two systems by a version of the usual Tavgen’s trick
[31], Theorem 1, described in [35] and [26]. Let us state it in a slightly more general
form.
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Theorem B. Let Φ be a reduced irreducible root system of rank l ≥ 2, and R be a
commutative ring. Further, let ∆1, . . . ,∆t be some subsystems of Φ, whose union
contains all fundamental roots of Φ. Suppose that for all ∆ = ∆1, . . . ,∆t, the
elementary Chevalley group E(∆, R) admits a unitriangular factorisation

E(∆, R) = U(∆, R)U−(∆, R) . . . U±(∆, R)

of length L. Then the elementary Chevalley group E(Φ, R) itself admits unitrian-
gular factorisation

E(Φ, R) = U(Φ, R)U−(Φ, R) . . . U±(Φ, R)

of the same length L.

Thus, we are left with the analysis of rank 2 cases.
• For A2 bounded generation of SL(3,Fq[t]) is precisely the main result of

Nica [Ni]. In fact, Nica establishes that

wE(SL(3,Fq[t])) ≤ 41.

This bound 41 is obtained as follows. Over a Dedekind ring one needs 7 elementary
operations to reduce a 3×3 matrix to a 2×2 matrix (one would need 8 for a general
ring subject to sr(R) ≤ 2). The elementary length of any matrix g ∈ SL(2, R)
inside SL(3, R) is at most 34. Interestingly, the main arithmetic ingredient of his
proof is the Kornblum—Artin functional version of Dirichlet’s theorem on primes
in arithmetic progressions.

An interesting aspect of Nica’s work [19] is that he avoids the usual Mennicke
type calculations [2], and carries the proof using the so-called "swindling lemma"
instead. This allows him to obtain somewhat better bounds for the number of
elementary generators.

• Luckily, we do not have to imitate Tavgen’s proof [31], section 5, for the
case of the Chevalley group of type G2. Instead of a difficult direct calculation,
we show that this case can be derived from the case of A2 by the usual stability
arguments. Stability of the embeddings A1 ⊆ A2 ⊆ G2 under asr(R) ≤ 2 was
established by Michael Stein, see [27]. We had just to go over the proof to trace
all elementary operations.

Over a Dedekind ring one needs 20 elementary operations to reduce any
element of E(G2, R) to an element of SL(2, R) in a long root embedding — one
would need 24 for a general ring subject to asr(R) ≤ 2, which gives us

wE(G(G2,Fq[t])) ≤ 54.

• A large part of the actual proof of theorem A is the analysis of the most
difficult case of Sp(4,Fq[t]), which is the Chevalley group of type C2. The difficulty
is that now we have to take two types of embeddings of A1 ≤ C2, the long root
embedding and the short root embedding.

Here, we again take the proof in Tavgen’s paper [31], section 4, as a prototype.
But there is a substantial difference, since now we have to verify many arithmetic
lemmas that are well known in the number case, but for which we could not find any
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obvious reference in the function case. Apart from a strong version of Kornblum—
Artin theorem, we had to carry through rather meticulous calculations depending
on the explicit formula of the reciprocity law for power-residue symbols.

Now, we have to first reduce the long root embedding to such an embedding
whose entry is a square, then (following Bass—Milnor—Serre and Tavgen) reduce
it to a short root embedding, and, finally, perform (more difficult!) calculations
to express a matrix from SL(2, R) in the short root embedding as a product of
elementary unipotents in Sp(4, R). As a result, the bound we get is worse than for
other rank 2 cases.

This eventually leaves us with the [exaggerated] bound

wE(G(C2,Fq[t])) ≤ 79.

and we challenge the reader to improve it, along the lines of [19].
Quite amazingly, C2 is the only difficult case! For groups of types Bl and

Cl, l ≥ 3, we have found much easier proofs, based on the fact that either a long
root, or a short one can be embedded in a root system of type A2, so that we can
proceed directly from [19].

In particular, for groups of rank 3 one gets better bounds than for C2, viz.

wE(G(C3,Fq[t])) ≤ 72, wE(G(B3,Fq[t])) ≤ 65.

Some bounds for the elementary bounded generation for all Chevalley groups
can be easily derived from the above form of Tavgen rank reduction theorem.
For instance, it can be derived from the existence of two types of embeddings of
A2 ≤ F4, the long root embedding and the short root embedding, that

wE(G(F4,Fq[t])) ≤ 216,

but this bound seems not to be the best possible.
For SL(n,R) there is a realistic bound of the width in elementary generators,

in terms of stability conditions, taking into account the elementary fact that for
Dedekind rings sr(R) = 1.5. The above proof of Theorem A gives us occasion
to return to the stability arguments for all Chevalley groups, and obtain bounds
which are substantially better than the ones that could be obtained via Tavgen’s
trick.

Alternatively, Theorem A can be restated in the following equivalent form.
The difference is that in this case the computations of many authors, subsumed
and expanded by Andrei Smolensky [25], allow to produce short explicit bounds.

Theorem C. Let G(Φ, R) be a simply connected Chevalley group of type Φ, rk(Φ) ≥
2 over R = Fq[t]. Then G(Φ, R) is of finite commutator width L, where

• L ≤ 5 for Φ = Al, for l ≥ 2, or Φ = F4,;
• L ≤ 6 for Φ = Bl, Cl, Dl, for l ≥ 3 or Φ = E7, E8, or, finally, Φ = C2, G2

under the additional assumption that 1 is the sum of two units in R (which is
automatically the case, provided q 6= 2);

• L ≤ 7 for Φ = E6.
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We believe that the bound for E6 could be also improved to L ≤ 6, but we
were strongly discouraged by the extent of explicit calculations needed to do that.

2. Bounded generation of G(Φ,Fq[t, t
−1])

In fact, ulterior applications to Kac—Moody groups that we have in mind do not
need the full power of Theorems A and C. We only need a similar result for the
equally classical but much easier example of Laurent polynomial rings Fq[t, t−1]
with coefficients in finite fields.

For Chevalley groups over such rings bounded generation can be derived
from Theorem A. Yet, the bounds thus obtained will not be the best possible
ones. However, the multiplicative group of the ring R = Fq[t, t−1] is infinite. This
means that bounded generation — with much better bounds! — follows already
from the result by Clifford Queen [23]. Let us state the most surpising finiteness
result in terms of unitriangular factors obtained along this route.
Theorem D. Let R = OS be the ring of S-integers of K, a function field of one
variable over Fq with S containing at least two places. Assume that at least one of
the following holds:

• either at least one of these places has degree one,
• or the class number of R, as a Dedekind domain, is prime to q − 1.

Then any simply connected Chevalley group G = G(Φ, R) admits the following
decompositions

G = UU−UUU− = U−UU−UU−.

The key case here are the groups SL(2, R), for which the result follows from
Theorem 2 of [23]. It is stated there correctly, but the proof at the very last
page contains a minor inaccuracy and would imply that G admits a unitriangular
decomposition of length 4, which contradicts the main result of [35]. The reason is
that at a certain stage of the calculation one obtains an invertible element ε ∈ R∗,
whereas [23] takes this element to be 1. Slightly rearranging the proof, one gets the
correct (and best possible!) bound, that any element of SL(2, R) is a product of
≤ 5 elementary transvections. Theorem C now follows by Tavgen’s rank reduction
trick.

In particular, this theorem allows to dramatically reduce bounds for groups
over Fq[t, t−1], to

wE(G(A2,Fq[t, t−1])) ≤ 15, wE(G(C2,Fq[t, t−1])) ≤ 20,

wE(G(G2,Fq[t, t−1])) ≤ 30,

via unitriangular factorisations. Stability results that we mentioned before afford
even better bounds, such as, for instance,

wE(G(A2,Fq[t, t−1])) ≤ 12, wE(G(C2,Fq[t, t−1])) ≤ 15,

wE(G(G2,Fq[t, t−1])) ≤ 25.
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As above, using the technology of [25], we can derive from Theorem D esti-
mates for the commutator width.

Theorem E. Let R be as in Theorem D. Then the commutator width of the simply
connected Chevalley group G = G(Φ, R) is ≤ L, where

• L = 3 for Φ = Al, for l ≥ 2, or Φ = F4,;
• L = 4 for Φ = Bl, Cl, Dl, for l ≥ 3 or Φ = E7, E8, or, finally, Φ = C2, G2

under the additional assumption that 1 is the sum of two units in R (which is
automatically the case, provided q 6= 2);

• L = 5 for Φ = E6;

This kind of sharp bounds were quite unexpected for us. In particular, Cheval-
ley groups over such arithmetic rings have the same commutator width as Cheval-
ley groups over rings of stable rank 1, see [25].

3. Applications and possible generalisations
Primarily, we have in mind the following two types of applications, that are de-
scribed in [14].

• Estimates of the width of Kac—Moody groups defined over a finite field
with respect to commutators and other natural generating sets.

•Model-theoretic applications. Bounded generation implies a lot of important
logical properties of groups. In our case the groups G(Φ,Fq[t]) and G(Φ,Fq[t, t−1]),
rk(Φ) > 1 turn out to be first order rigid, quasi-finitely axiomatisable and logically
homogeneous.

Here are some generalisations of the above theorems A—E that we plan to
address in the next papers.

• For all ranks rk(Φ) ≥ 1 remove the remaining restrictions on the ring R in
Theorems D and E.

• For ranks rk(Φ) ≥ 2 prove analogues of Theorems A and C for all Dedekind
rings of arithmetic type. This should be possible, but might be difficult, since many
of the requisite arithmetic facts are not as easily available, as in the number case.

• For classical groups, reduction to smaller ranks is well-known. We are in
possession of similar reduction results, based on effectivisation of [27, 21, 22, 9].
These results give pretty sharp bounds also for exceptional cases. But calculations
with columns of height 26, 27, 56 and 248 are quite a bit more involved, and spread
over several dozen pages.

In the next paper we plan to produce all details for the stability reduction for
the exceptional cases F4, E6, E7, E8 in the same spirit as we have done in [14] for
G2, Bl and Cl. The goal is obtain new explicit bounds for the elementary width
in these cases, which are better than the known ones even in the number case.

• Another very challenging problem would be to perform scrupulous analysis
of the proofs to reduce the number of elementary moves. We are pretty sure that
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our bounds are far from being optimal. Even without attempting to get sharp
bounds, we believe that we could improve the bounds in the present paper, and
other related results.

However, to get the best possible bounds one might need to perform exten-
sive computer search/computer calculations. However, to get such optimal bounds
would be extremely difficult, no such bounds are in sight even in the number case,
even for such groups as SL(3,Z).

• Partial positive results, such as bounded expressions of elementary con-
jugates and commutators in terms of elementary generators — decomposition of
unipotents, Stepanov’s univeral localisation, and the like, [29, 30, 28]. It seems one
should be able to obtain similar results also for other word maps.

• Let us mention yet another extremely pregnant generalisation, bounded
reduction. In fact, even below the usual stability conditions and even in the absense
of the bounded generation for G(Φ, R), it makes sense to speak of the number of
elementary generators necessary to reduce an element g of G(Φ, R) to an element
of G(∆, R), for a subsystem ∆ ⊆ Φ.

One such prominent example are polynomial ringsR[t1, . . . , tm], where bounded
reduction holds starting with a rank depending on R alone, not on the number of
indeterminates. For the case of SL(n,R[t1, . . . , tm]) this is essentially an effectivi-
sation of Suslin’s solution of the K1-analogue of Serre’s problem, explicit bounds
were obtained in the remarkable paper by Leonid Vaserstein [33], which unfortu-
nately remained unpublished. For other split classical groups such bounds were
recently obtained by Pavel Gvozdevsky [10].

• Most of the results so far pertain to the absolute case alone. However,
it makes sense to ask similar questions for the relative case, in other words for
the congruence subgroups G(Φ, R, I), and the elementary subgroups E(Φ, R, I)
of level I E R. The expectation is to get similar uniform bounds in terms of the
elementary conjugates x−α(η)xα(ξ)x−α(−η), α ∈ Φ, ξ ∈ I, η ∈ R. Some results
in this direction are contained in the paper by Sinchuk and Smolensky [24]. As a
more remote goal one could think of generalisations to birelative subgroups, see
[11].

We intend to return to [some of] these subjects in the full version of the
present paper, and in its [expected] sequel.
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Mathematics for Non-Mathematicians:
an Idea and the Project

Vladimir Khalin, Nikolai Vavilov and Alexander Yurkov

Abstract. Mathematical education, both mass education, and university ed-
ucation of non-mathematicians, are in an abominable state, and rapidly de-
grading. We argue that the instruction of non-mathematicians should be dra-
matically reformed both as substance and style. With traditional approach,
such a transformation would take decades, with unclear results. But we do
not have this time. The advent of Computer Algebra Systems gives the math-
ematics community a chance to reverse the trend. We should make a serious
attempt to seize this opportunity.

In the present talk we present two closely related such projects imple-
mented at the St Petersburg State University:

• Developing education materials for teaching mathematics with the
help of the existing Computer Algebra Systems, primarily Mathematica and
Maple, as reflected in our book[32].

• Creating a new open source general purpose Computer Algebra Sys-
tem, with multilingual front-end, that could be used in teaching mathematics
at the high school and university levels.

Introduction
We believe that the current situation with mathematical education, and the grow-
ing abyss between mathematicians and layman, even the educated ones, constitute
an immediate desperate danger for our profession, and, eventually, for the whole
human civilisation.

Over years, our efforts to incorporate computer algebra into mathematical education were sup-
ported by various bodies and institutions, including the St Petersburg State University, the
Russian Ministry of Science and Higher Education, the Russian Foundation for Fundamental
research (FRBR), and the Government of St Petersburg. The finalisation of the textbook [32]
was sponsored by Vladimir Potanin’s Foundation, grant GK180000694. At present, our work is
supported by an educational project of the RFBR N. 19-29-14141.
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The problem has been aggravated by the advent of computers, which can
address vast majority of the traditional tasks, where Mathematics is applied, and
whose mathematical software has no user serviceable parts. This has created a
wide-spread illusion that now for the end-users there is no need to study any
Mathematics whatsoever.

Our own assessment of the situation is exactly the opposite. To suc-
cessfully function within their subject fields most professionals would now need to
grasp much more Mathematics, and at that much deeper and more advanced Math-
ematics. Teaching non-mathematicians the necessary Mathematics in the same
style we did before is simply not feasible.

We believe though, that, being part of the problem, computers can be also
a decisive part of its solution. We describe a current project “Mathematics and
Computers” implemented at the St Petersburg State University for the last 15
years. The concept is to focus exclusively on understanding and big ideas, while
replacing most of the proofs and actual computational skills — apart from the most
basic and the most enlightening ones — by computer calculations, experiments,
and visualisation. The hard part was, of course, to develop a set of a few hundred
test problems that would require both mathematical and algorithmic thinking. A
fraction of our experience in this direction is reflected in the recent textbook [32].

Although we mostly discuss our teaching experience in St Petersburg, the
problem itself seems to be of a very general nature, apparent in all technologically
developed societies for several decades now. Compare, for instance, the 1981 lecture
by Vladimir Rokhlin [27] or the 1990 article by William Thurston [29], which starts
with the constatation: Mathematics education is in an unacceptable state.
The interest of non-mathematicians in taking mathematics courses was constantly
fading even then, see [16, 12]. However, it seems to us that the situation has
dramatically exacerbated over the last 10–15 years, after computers have turned
the tables.

1. Mathematics in human culture
Let us start with some self-evident truths:
• Spiritually and noetically, mathematics is, together with other higher creative

arts, such as music or visual arts, the paramount manifestation of human
culture.

• On the other hand, pragmatically we live in the world created by mathematics
and science, in the first place by the mathematische Naturwissenschaft .

• Overall, it would not be a great exaggeration to assert, as Oswald Spengler
did, that the level of a civilisation is largely determined by the level of its
mathematics.

Unfortunately, these simple facts are rarely — if at all! — fully recognised not only
by the general public, such as taxpayers, entrepreneurs, and polititians, but even
by philosophers, journalists, educationalists and other discoursemongers.
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In fact, most of the things around us, inlcuding ourselves, could not have ex-
isted in the present form without science. It starts simply with the sheer numerical
strength of the human race (and other synanthropic animal species, such as cattle,
pig, or sheep), which by several orders of magnitude exceeds the population
of any other animal species of comparable body mass, and which would had been
impossible to maintain without science.

Similarly, it is impossible to maintain — let alone to develop! — many of
the present-day technologies without a large number of individuals deeply
congnisant in mathematics and science.

At various periods of history, Mathematics has been extremely successful in
fostering the development of natural sciences, initially Astronomy and Physics,
later on also other sciences and engineering.

We strongly believe that nowadays Mathematics could play a similar role in
the development of life sciences, such as Biology and Medicine, as also in Linguis-
tics, Psychology, Economics, etc.

Today, we even have most of the requisite tools and computational resources.
What is lacking, however, is the awareness on the part of those who have to apply
Mathematics in the respective subject fields. They do not know any Mathematics,
they do not understand it, and they do not even understand why it is relevant —
that Mathematics is the only feasible mediator between spirit and reality.

2. Mathematical education
The above explains an absolutely exceptional role played by mathematical educa-
tion in the functioning of a society. As Jean Pierre Kahane stated it: in no other
science has teaching and learning such social importance (cited in [4]).

Here, one should clearly distinguish
• Pre-university level — spectators;
• Mathematics for non-mathematicians — gentlemen;
• Mathematics for mathematicians — players.

Of these three, training professional mathematicians is the least problematic.
We fully agree with Rokhlin that teaching mathematics to the would-be
mathematicians is infinitely easier than teaching mathematics to non-
mathematicians, see [27]. If you know, understand and love your subject, and
if you are honest with your students, it does not matter, whether you are an
accomplished teacher, and what you do exactly, and how you do it. If they are
already interested in Mathematics, you can relax, since you are bound to get
through, regardless.

However, when working with the general public, or with other professionals,
you should be at all time aware that you are working at three completely different
levels:
• Mathematics as part of general culture;
• Mathematics per se;
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• Mathematics for specific applications.
The fundamental flaw of the traditional mathematical education is that it is fo-
cusing on, and advertising the third aspect alone, which is invariably the least
important one of all, mostly the least interesting one of all, and usually fictitious.

In our view, the single most important aspect of teaching mathematics at
the elementary level is the cultivation of intellectual honesty. In other words, the
ability to distinguish what you understand from what you don’t, what was defined
and has a precise meaning from what doesn’t, what is said from what is intended,
plausible from improbable, true from false, proven from conjectured, etc.

Another equally important aspect is the callisthenics of mind, as preparation
to solve any kind of difficult problems. From this prospective, mathematics is a
workout1 that allows to develop, train and maintain inner vision, aesthetic taste,
memory, tenue, concentration, the abilities to observe, compare, generalise and
specialise, draw conclusions, follow and construct chains of arguments, etc.

What becomes progressively more important at further stages, especially
when you train professionals in other fields, is the mathematical mode of thinking
itself. The ability to start with the first principles, to take the simplest possible
case and build up from there, to express things in a different language, to use
analogies, to argue symbolically, to compress huge bulks of arguments, etc.

If we are trying to sell specific applications, we lose! That’s exactly what is
happening now, with devastating effects.

3. Utilitarian prospective
It is our deep conviction that utilitarian principle destroys education. The
best possible education is the useless one. The same applies to the mathematics
education, of course.

In Europe the controversy between the supporters of a comprehensive ap-
proach to education, and the proponents of the practically-oriented one never
subsided for the last 5 centuries, it seems. It suffices to recall the discord over the
study of Latin and Greek in schools. Of course, this is indeed a huge social and
economical issue, as we allude below.

But the debate itself is terribly much older than that. The polemic between
Mo Di and Chuang-tze is still as relevant today, after 24 centuries, as it was in
their life-time. But we are on the side of Chuang-tze, anyway: everybody knows
the usefullness of useful things. Nobody knows the usefullness of
useless things.

As we all know, Mathematics is an art form working with ideas, see [18], and,
as Oscar Wilde observed, all art is quite useless. It is amazing, how often the
word “useful” is repeated in Hardy’s “Apology”, dozens of times. Here is the most
famous such instance, and the one most applicable to education:

1When asked “What kind of exercise do you prefer?”, our colleague Timothy O’Meara responded:
“Well, I’m exercising my brain”.
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One rather curious conclusion emerges, that pure mathematics is on
the whole distinctly more useful than applied. A pure mathematician
seems to have the advantage on the practical as well as on the aes-
thetic side. For what is useful above all is technique, and mathematical
technique is taught mainly through pure mathematics.
Let us illustrate Hardy’s thought in a typical example. Oftentimes, the time

lapse between the initial idea and the subsequent discovery, and then between the
discovery and its technical application, takes decades, or centuries. It would had
been impossible to discover lasers in nature, they had to be invented on the ba-
sis of Quantum Mechanics. In turn, Quantum Mechanics could not have emerged
without the preceding development of physics and mathematics, including, in par-
ticular, complex numbers, differential equations, or matrices.

However, the Italian XVI century algebraists, who introduced complex num-
bers, have done it for fun and for sport, rather than any practical applications.
They have not been considering the possible role of complex numbers in Quantum
Mechanics or lasers — or, for that matter, even in the alternating current or radio.

If you can summarise the XX century social and educational ideas with one
word, that word would be “oversimplification”. Yuri Manin [25] makes an in-
cisive comment to this effect:

The core intrinsic contradiction of the market metaphor (including the
outrageous “free market of ideas”) is this: we are projecting the multidi-
mensional world of incomparable and incompatible degrees of freedom
to the one-dimensional world of money prices. As a matter of principle,
one cannot make it compatible with even basic order relations on these
axes, much less compatible with non-existent or incomparable values of
different kinds.

In this respect, the most oxymoronic use of the market metaphor
is furnished by the expression “free market of ideas”.

Only one idea is on sale at this market: that of “free market”.
Similarly, “useful education” is trying to sell you only one idea: that of “usefulness”.

4. Mathematics for the general public: sociology

Around 1905–1915 there were elite schools in St Peterburg, Gymnasia, whose
students were studying Algebra from textbooks by Dmitry Grave, which started
with the notion of field, complex numbers, and the like, and stopped short of
Galois theory — that was his next textbook, for the University. Unfortunately,
the mathematical awareness of the less privileged population strata was much
lower than that.

Here is how Alexandre Borovik describes the corresponding choice nowdays,
see [6], reiterated in [7]:

Democratic nations, if they are sufficiently wealthy, have three options:
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(A) Avoid limiting children’s future choices of profession, teach rich
mathematics to every child—and invest serious money into thorough
professional education and development of teachers.

(B) Teach proper mathematics, and from an early age, but only
to a selected minority of children. This is a much cheaper option, and
it still meets the requirements of industry, defence and security sectors,
etc.

(C) Do not teach proper mathematics at all and depend on other
countries for the supply of technology and military protection.

Which of these options are realistic in a particular country at a
given time, and what the choice should be, is for others to decide.

I am only calling a spade a spade.
We do not immediately see, what it has to do with democracy — or wealth, for
that matter — option (B) is not that much cheaper, after all. But the choice is
obviously there, anyway.

In the 1990-ies one of us was teaching Matematica generale to a class of 200
economics and management students at the Università commerciale Luigi Bocconi .
Then, he was shocked by the fact that in the same class there were students from
ragioneria, who have never seen logarithms before, and other students from liceo
scientifico, who were quite proficient with multiple integrals. In the last decades,
Russia has rapidly evolved in the same direction, from option (A) to option (B),
so that a similar lack of uniform preparation is now routine at some departments
of our university. But again that was a social choice as much as an economic one.

What moderates the situation in Russia, and what makes recruiting excel-
lent Mathematics2 students relatively easy, is the system of specialised Physics
and Mathematics Schools, operating in all major Russian cities, starting with
Moscow, St Petersburg, Novosibirsk, etc. The first such schools were created by
Andrei Kolmogorov, Dmitry Faddeev, Mikhail Lavrentiev and others some 60 years
ago and they are still by far the best, the most functional, and the most efficient
component of the whole Russian educational system. The Presidential Liceum 239
is for St Peterburg what Lyceé Louis-le-Grand is for Paris, with all social implica-
tions. See the recent paper by Nikolai Konstantinov and Alexei Semenov [23] for
a detailed description of the principles, the history, and the current state of the
Physics and Mathematics Schools.

However, all of our gut instincts suggest that the sharpest possible form of
option (A) is the only correct answer. We do believe, that comprehensive and pro-
found universal education in mathematics and exact sciences would be an excellent
idea. It was never attempted before in the history of mankind, and we agree with
Rokhlin [27] that:

Somehow we feel intuitively that it would be good if our children and
grandchildren were familiar with the logical culture, with the mathe-
matical culture, if they could understand the exact sciences better.

2Well, actually, Mathematics and Computer Science, see https://math-cs.spbu.ru/en/
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5. Mathematics for the general public: instruction
The present day elementary mathematics instruction is encumbered by an overly
rigid tradition, and is not up to the requirements of the XVI century. It may sound
too dramatic, but we strongly believe this is the case. The existing curricula are
mostly oriented towards the development of [obsolete] computational skills and
mechanical use of a small number of [outdated] standard algorithms.

In the past, such similar needlework was of undeniable value, but today the
need for mass training in ancient craftsmanship looks suspicious. It is akin to
extracting fire by friction: you may have to use it once in your lifetime — probably
not! — but it would be stupid to practice it each and every day.

Of course, it’s up to you, how far you are prepared to go. Do we have to
memorise the multiplication table 100× 100? What about 10× 10? Our viewpoint
is as follows. It is useful to understand the idea of long multiplication — to get
a clear understanding of the relative size of numbers, that the decimal notation
is logarithmic [— or to multiply two 8-digit numbers that nobody has multiplied
before, to get some feel of probability]. But it is pointless to systematically practice
this skill — none of today’s schoolchildren will have to perform such operations
manually, simply because any computing device makes it faster, in a more efficient
and more reliable way.

5.1. Curricula
With respect to the actual inner architecture of mathematics, or its current ap-
plications, the choice of the subject matter in school curricula seems to be rather
arbitrary and bizarre. Of course, in many cases such oddities have a historical
explanation, sometimes more than one.

Thus, for instance, the prevalence of trigonometry is easily explained by the
needs of ballistics, and navigation. Here is what Alexandre Borovik [7] writes in
merit:

It is worth to remember that in the first half of the 20th century, school
mathematics curricula in many nations were dictated by the Armed
Forces’ General Staffs – this is why trigonometry was the focal point
and apex of school mathematics: in the era of mass conscription armies,
it was all about preparation for training, in case of war, of a suffi-
cient number of artillery and Navy officers and aircraft pilots. With this
legacy, we still cannot make transition to a more human mathematics.

That’s obvious, and obviously true. However, it does not explain why trigonometry
is being taught in such an antediluvian manner, without complex numbers.

Of course, all of school trigonometry becomes immediately obvious once you
explain that addition formulas for cosine and sine are precisely multiplication
formulas for complex numbers, in various national traditions this is called Euler
formula, or de Moivre formula, whatever. The father of one of us (who was an
electrical engineer) explained this to him at the age of 10–11 years within half an
hour.
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This is not how it is done at schools, however. Instead, a child is forced to
learn by rote dozens of seemingly unrelated special cases, and nobody explains the
true meaning of signs, etc., one just has to memorise all of it.

The venial explanation due to Henri Lebesgue [24], is that this is done out
of pure sadism, just to torment and humiliate the child. A much more sinister
interpretation is articulated by Yuri Neretin [26], who believes this was done on
purpose, as part of a market strategy to create a separate field of knowledge,
elementary mathematics.

The business plan behind is roughly as follows:
• to use mathematics as a barrier and filter — the so called entrance mathe-
matics, or exam mathematics.

• to create a market for private or semi-private educational services – prepara-
tory courses, private tutors, and the like + the corresponding literature, sites,
etc.

Further, Neretin also observes that since this new field of knowledge does not have
any relation whatsoever to any other branch of mathematics, pure or applied, the
person who has perfectly mastered entrance mathematics does not thereby acquire
any knowledge or skill remotely useful in mathematics or science.

Imagine the kind feelings the poor children and their parents must share
towards that sort of mathematics! What is much worse, many of them are in-
duced to think, this crossbreed of military training, bookkeeping and penmanship
is authentic mathematics!

5.2. False rigour and misguided proofs
In many cases educators insist on obsolete ways of teaching certain things. It is
obvious to all mathematicians for more than half a century now that one aspect
of the school curriculum that should be completely revised, is geometry. Such a
reform will not eliminate geometry, but, to the contrary, enhance and invigorate
it! In fact, most of the geometric proofs along Euclid’s line, which schoolchildren
have to memorise for the sake of presumed rigour, are either incomplete, or
incorrect, or incomprehensible.

At the same time, we all know that the XVII century approach by de Fermat
and Descartes removes all such difficulties, and makes the whole subject transpar-
ent, open-ended and useful. It was clear to every competent mathematician for
40–60 years that this is how geometry should be taught at a mass school. Let us
quote Jean Dieudonné [14], who was an exuberant advocate of this approach:

For the trained mathematician of today, it is a triviality that the funda-
mental theorems of Euclidean geometry (in any number of dimensions,
by the way) are very easily derived from the concept of a vector space
equipped with a positive definite quadratic form. Why shouldn’t this
method be made available (in two or three dimensions) to high school
students instead of the incredible, apparently irrelevant dissections of
triangles, where every step is made to appear to be a conjurer’s trick?
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Nothing has changed since.
What is worse, many of the alleged proofs in the school geometry textbooks

— including most of the proofs on lengths, areas and volumes — are overtly fake or
fallacious. There are passionate narratives to this effect in the books by Lebesgue
and Grothendieck [24, 17]. In 1981 Rokhlin [27] mentions it casually, as a common
knowledge:

I went to high school (perhaps, it’s still the same now), I was told what
the area of a circle is. I was told that this is some sort of limit, and then
something was written or was stated, and we got a formula for the area
of the circle. What was said was difficult to understand then, but when
I became a mathematician, it became totally clear to me, why it was so
difficult to understand. It was all sheer nonsense.

Again, nothing has changed since.

5.3. Elementary mathematics
What annoys us most about hierophants of the so called “elementary mathemat-
ics”, however, is their chicanery and hairsplitting. For us, trained as professional
mathematicians, all of their discussions seem to be completely devoid of meaning,
and extremely artificial.

Russian educational networks burst with messages of the following type.
When you count, how many beer bottles are there in 3 boxes of 6 bottles each,
should you muliply 3× 6, or 6× 3? It turned out, there is a sacral order, approved
by a certain Areopagus some centuries ago, and they actually lower grades to the
poor children who do it otherwise, even getting the right answer. Only that we
could never memorise, which order of operations they consider correct.

Wu Hung-Hsi [33] describes this outrageous situation as follows:

One of the flaws of the school mathematics curriculum is that it wastes
time in fruitless exercises in notation, definitions, and conventions, when
it should be spending the time on mathematics of substance. Such flaws
manifest themselves in assessment items which assess, not whether stu-
dents know real mathematics, but whether they could memorize arcane
rules or senseless conventions whose raison-d’être they know nothing
about.

At a later stage there comes all that fuss about staying real, all that harass-
ment conserning “the domain of allowable values”, and suchlike. As Felix Klein
observes [22], the elementary mathematics of this sort is a late invention, not ear-
lier than the last quarter of the XIX century. Before that the XVIII and XIX
century classics were always working in the complex domain.

Yuri Neretin [26] concludes: the above-mentioned science causes in a
normal young man only tedium and disgust, or, what is incomparably
worse, torpidity.
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6. Mathematics for non-mathematicians: what it is

The situation with training other professionals at the university level is similarly
disgraceful. Obviously, in many executive respects it is much less odious than the
mass mathematical education. But in terms of teaching content it is dominated
by an obsolete tradition, which oftentimes makes it even less meaningful.

Historically, these “higher mathematics” courses are just diluted (or, as Rokhlin
designates it, “watered-down”) early XX century courses for mathematicians. These
courses start with the same sequences, series and limits, and then pass on to the
same derivatives, integrals, differential equations, etc., dealed with in a sterile and
perfunctory manner.

Calculus textbooks, when they attempt at proving anything, are full of direct
mathematical mistakes anyway, see [30]. Only that “higher mathematics” textbooks
are usually worse than that, since they remove all deeper theorems and mathemat-
ically interesting examples, making the leftovers unsavoury, boring and impossible
to digest3.

Traditional mathematics courses for non-mathematicians — not just the ab-
solutely stale and futile calculus courses, but most of the archaic service mathemat-
ics courses in linear algebra, differential equations, probability theory and discrete
mathematics – are also focused almost exclusively on the mechanical exercise of
rudimentary computational skills, without any deeper understanding of the true
structure of the subject, its applications, its current state, or wider context.

Let us give an illustration of how slavishly the textbooks of higher mathemat-
ics follow traditional courses for mathematicians. We were shocked by seeing in a
mathematics textbook for philosophers trigonometric substitutions, derivation of
the function x 7→ xx, and the like. We recognise that the idea of functorial-
ity and the chain rule themselves could be extremely useful for philosopers. But
we do not see any use in teaching them specific technical tricks for calculation of
derivatives and integrals, whose gist they won’t be able to grasp anyway.

As in school, there is a lot of insistence on “foundations” and the false “rigour”.
One of such completely artifical roadblocks is the “theory of limits”. The emphasis
on limits creates conceptual difficulties for many students, and it is absolutely
irrelevant both for exposition of analysis itself, and for applications4. Here is what
Rokhlin [27] says:

. . . the limits are part of the course that is most difficult to understand,
and, what is interesting, absolutely unnecessary. Differential calculus,
integral calculus, and, in general, all the classical mathematics, to say
nothing of the finite mathematics, can be easily explained without the

3What Peter Taylor [28] says of the school curriculum is even more applicable at the univer-
sity level: “The secondary-school mathematics curriculum is narrow in scope and technical in
character; this is quite different from the nature of the discipline itself”.
4This discussion is not new either. Already “Lüshi Chunqiu” compiled not later than III century
B.C. mentions that a true scientist does not know limits.
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limits. More than that, they are not needed there. They are an abso-
lutely extraneous phenomenon, extraneous subject that has been in-
troduced into this area by the people who wanted to build a proper
foundation for analysis.

7. Proofs and other evidence
We believe that the teaching of mathematics to non-mathematicians should be
completely reformed. We do not see, why it should stay a downgraded version of
training of mathematicians, either as far as the subject matter, or as style.

7.1. Proofs in education
Traditionally, it is claimed that most results stated in the elementary courses must
be accompanied by complete proofs. Such a viewpoint seems to us hopelessly
outdated, unrealistic and hypocritical.

As it happens, in most cases, the presence or absence of proofs does not
influence the confidence of students in the results themselves. We believe that the
primary role of proofs in lectures and textbooks for non-mathematicians amounts
to the following:
• To convince the students that they correctly understand the statement.
• To clarify the purport of a statement and its connection with other state-

ments.
In the training of professional mathematicians proofs may have also other func-
tions:
• To drill general patterns of mathematical reasoning (induction, reduction,

partition into cases, general position, specialization, . . . ) and standard tech-
niques in a specific area.

• To develop a habit and taste for precise arguments as such, and to exercise
the ability to distinguish assumptions, evidence and plausible guesses from
well-established facts.

• As they say in Cambridge, to illustrate some of the tedium.
All of these goals might be pursued also when teaching non-mathematicians —
with some moderation, though, especially the last one!

In many cases proofs in educational literature, especially long, badly struc-
tured and purely computational ones, merely disorient the student, hazing and
alienating the meaning. In research papers, bad proofs are better than none, but
in teaching it’s the other way round.

7.2. Other evidence
What many mathematicians seem to ignore, is that there is nothing sacrosanct
about the current (“modern”) forms of mathematical expression. The ways how we
organise and record our arguments are provisional and historically determined. For
the purposes of education, our present day “proofs” are no better, than the ancient
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Egyptian “proofs”, or ancient Chinese “proofs”, or ancient Indian “proofs” — or
ancient Greek “proofs”, for that matter, they are just different . And, more probably
than not, our current standards of reasoning and exposition are as transitory as
these older forms.

A traditional proof, even less so a formal proof, are not the only ways to
understand a mathematical result, and even for a professional mathematician they
are rarely the best ways. There are smart proofs that explain things, that make
us wiser, and such proofs should be cherished.

But otherwise to understand a statement you should look at examples, spe-
cial cases, corollaries, experiments, heuristic arguments, analogies, applications,
visualisation, etc. — this will usually tell you more about the true nature of a
mathematical result, than most proofs. Much more so for students!

Just 100–150 years ago many mathematicians would claim that they verify
the proofs of all results they quoted5. Today, a similar claim would sound pathetic.
We have to rely always more on the work of others, and that’s a one-way road. It
is inevitable that we distribute our trust, see [9]:

In all these settings, modern computational tools dramatically change
the nature and scale of available evidence. Given an interesting identity
buried in a long and complicated paper on an unfamiliar subject, which
would give you more confidence in its correctness: staring at the proof, or
confirming computationally that it is correct to 10,000 decimal places?

It is ridiculous to pretend that the students can meet the standard we have long
abandoned ourselves.

8. Mathematics for non-mathematicians: what should we teach,
really?

Our short answer to the question in the section heading is: we do not know —
and nobody does! There are several possible answers, the following most immediate
ones:
• The same as always — whatever, limits, eigenvalues, . . .
• What is used in the corresponding subject field today — well, between “the

same as always”, and “nothing”.
• Nothing — no joke! This viewpoint has more and more supporters!
• The mathematics of mathematicians.

Our answer is that we should teach mathematics as we, mathematicians, under-
stand it. What we think important — the language, some general concepts that
would allow to assimilate further concepts, and, above all, the mathematical think-
ing itself: basic techniques, some most productive arguments and ways of reasoning,
some classical constructions, etc.

5Whether they were actually doing that, is a completely different story. We bet, not [30].
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As far as the subject matter, it is our belief that it does not matter much,
what exactly we teach. Nobody knows what exactly will be used in a specific field
— certainly we do not know, but, as we said, nobody does.

We believe that the only way for the science and technology to advance, is to
expose the professionals in these fields to more mathematics, more advanced math-
ematics — and, above all, meaningful mathematics, both classical and modern. But
to do it differently , focusing on conceptual aspects, understanding, applications,
rather than on technical details of the proofs or specific computational skills.

It’s not that they should stop studying mathematics relegating all compu-
tations to computers instead — quite to the contrary, they should be exposed to
richer and deeper mathematics.

9. Mathematics and computers

We have already quoted, on several occasions, the following observation by Doron
Zeilberger [34]:

The computer has already started doing to mathematics what the tele-
scope and microscope did to astronomy and biology.

We cannot agree more! In fact, we are convinced that mathematicians today have
better access to the mathematical reality, than most experimental sciences have
to physical reality, see [20, 31]. And we tend to agree with Borovik [8] that the
current ineffectiveness of Mathematics in Biology and other applications might be
explained by the fact that the requisite Mathematics is simply too large for an
individual human mind.

9.1. Mathematics for end-users
Computers have already completely redefined the applications of mathematics, the
way in which mathematics will be handled in any predictable future by most end-
users. We should be completely honest with ourselves that none of our students will
ever again solve a system of linear equations, invert a matrix, calculate an integral
or graph a function by hand , outside of the mathematics class. Why should we
insist that they do it without the use of computing machines in the mathematics
class?

They say that the mother of Carl Friedrich Gauß could observe with the
naked eye phases of Venus and some moons of Jupiter. Unfortunately, for the vast
majority of the usual people this is not possible, they have to resort to the help of
magnifying machines.

This is clear to the end-users in the corresponding fields, as this is absolutely
clear to our students. But we still prefer to pretend that we are doing something
useful by feeding them badly chewed cardboard, which they do not need, and
cannot digest anyway. As a result, many end-users start to complain, louder and
louder.
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In the last years, we’ve heard from more than one engineer, and not some
imposters, but rather serious professionals, that there is no need to teach mathe-
matics to [all of] engineering students anymore, just computers. We know they are
wrong and that even the present day imperfect and retarded mathematical instruc-
tion is better then none. And a real sensible course of conceptual mathematics —
mathematics of mathematicians would start a Golden Age in some subject fields.
But at the end of the day, they will decide!

9.2. Mathematics for players
There is another closely related aspect, which we do not touch here, and which
will eventually change the scene completely.

Most mathematicians tend to dramatically underestimate to which extent the
development of mathematics is determined by the external circumstances, in the
first place by the available computational resources. But whether we appreciate it
or not, mathematics itself is in the process of an immense metamorphosis, one of
the greatest in its history.

Already today the progress of computers and Computer Algebra Systems
strongly influences research in many areas of pure mathematics itself — such
as group theory, combinatorics, number theory, commutative algebra, algebraic
geometry, etc. Predictably, in the nearest future this influence will expand to all
of pure mathematics and will produce Umwertung aller Werte: radical revision of
research directions and style.

10. Existing Computer Algebra Systems
For us, it is obvious that teaching science and engineering students to calculate
derivatives and integrals, to solve algebraic or differential equations, to multiply
or invert matrices by hand, or the like, is a sheer waste of time. These skills are as
osbolete as the use of a slide rule or a logarithm table.

As of today, the default tools for all these things are the general purpose
CAS = Computer Algebra Systems.

• There are a huge number of elementary low-end products with limited
functionality, used at the elementary stages of teaching mathematics, at the level of
elementary and secondary schools. Some of them, such as MathCad, are essentially
text editors, not much different in their functionality from Excel. Some others are
quite useful, interesting and funny, but none of them is vertically integrated or
systematically expandable by the end-user. Thus, they cannot be used in teaching
any serious mathematics at the university level.

• There are also many specialised CAS, which are simply fantastic at do-
ing some things, such as polynomial calculations, or linear algebra, but do not
cover the full range of symbolic mathematics. Of course, there are a huge num-
ber of extremely flexible and powerful specialized systems, such as GAP, Magma,
CoCoA, Singular, Pari, Lie, etc., specially created for computing in specific areas
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such as number theory, group theory, representation theory, commutative algebra,
algebraic geometry, etc.

What is essentially missing is the intermediate sector, general purpose Com-
puter Algebra Systems covering a wide range of different branches of mathematics
at the high intermediate level.

• Dropping the systems that are experimental, obsolete, not powerful enough,
not supported anymore, too complicated or too expensive, do not have convenient
Front End, or do not support graphics, you are left with an amazingly limited
choice, essentially only four products: Axiom, Maple, Mathematica, and SageMath.

All of these four systems are very very good. All of them are, in the first
place, very high-level programming languages, whose expressive power approaches
fragments of a natural language. All of them can perform all usual computations,
anything that a non-mathematician is likely to see in any possible present day
application.

Nowadays, teaching top end computer scientists or mathematicians we would
probably choose Axiom and SageMath, with some reservations. Purely mathemati-
cally, as far as its expressive power, Axiom might be the most interesting Computer
Algebra System of all. However, after the death of its creator Richard Jenks, Axiom
was for a long time not supported, and has not developed convenient intuitive
front-end. To the contrary, SageMath is actually not an independent system, but
a convenient front-end that provides a qualified user with access to several dozen
specialised systems.

Thus, for a number of reasons, teaching non-mathematicians you have to
choose between Maple and Mathematica, which is purely a matter of taste. In our
courses we used both, but for a number of extra-mathematical reasons eventually
opted for Mathematica.

11. The course “Mathematics and Computers”

In 2005 we started to teach a two-semester course “Mathematics and Comput-
ers” at the Economics Department of St Petersburg State University, the Spring
semester of the 1st undergraduate year + the Fall semester of the 2nd undergrad-
uate year.

For administrative reasons6 the second semester of this course was sometimes
called “Mathematical Software”, but it was a direct sequel of the same course
anyway, so that one should think of our course as “Mathematics and Computers,
I” and “Mathematics and Computers. II”.

6The absurd bureaucratic requirement that courses in different semesters should have different
names.
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The course was taught not to all economics students, just to those specialising
in “Mathematical Methods in Economics”7 and in “Applied Informatics
in Economics”8, about 25 students per year each, 50 students per year total.

Another person actively involved in the development of this project at the
initial stage was Oleg Ivanov. Later he and Grigory Fridman have launched a
similar project at the St Petersburg State University of Economics and Finance,
see [19], for instance.

A normal class was mixed format. It usually started with introducing some
new mathematical concepts and ideas, and a few key statements with occasional
proofs. The proofs were only explained when they were especially short and trans-
parent and contained powerful general ideas which work in many situations. After
that we gave suggestions for further reading, for those who wanted to study these
concepts deeper and passed to algorithms and computer demonstrations, computa-
tions, graphics, etc. After that we distributed small standard problems and larger
semi-research projects, both individual and for small groups of 2–3 students. Both
were subsequently discussed in the class, very selectively, though, sometimes only
in case of difficulties, otherwise only answers, ideas, and/or parts of the code.

The course would concentrate on basic mathematical ideas, rather than spe-
cific applications. Below we list the topics which were covered sort of each year.
Otherwise, we allowed a lot of flexibility and any given year could mention different
examples and subject fields.

12. Some tapas of Computer Algebra
We would usually start our class with a dozen or so demonstrations, of what is
mathematics, really, and how computer can help. The actual examples would vary
each year, below we reproduce some typical computations we were showing to our
students at the first lecture, as a warm up for our course.

12.1. Elkies counter-example
Obviously, our students heard of Fermat problem. So we asked them whether they
heard that Euler suggested a broad generalisation of that. Namely, he claimed that
for m ≥ 4 the equation

xm + ym + zm = um

does not have solutions in natural numbers. That for m ≥ 5 the equation

xm + ym + um + vm = zm

does not have solutions in natural numbers, etc.
However, in 1988 Noam Elkies [15] discovered that

26824404+153656394+187967604 = 180630077292169281088848499041 = 206156734.

7This major was created at St Petersburg State University in the 1930-ies, by Leonid Kantorovich.
8This major was relatively new, and only created in the early 2000-ies. Presently it changed the
name to “Business Informatics”.
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Of course, finding such a solution with a home computer without knowing some
rather advanced algebraic number theory and algebraic geometry is not feasible.

However, a similar counter-example for the fifth powers

275 + 845 + 1105 + 1335 = 61917364224 = 1445

can be found by any student by brute force, within a few hours.

12.2. Ramanujan for low-brows
Polynomials can tell you many stories as well. Let us reproduce the famous 6-10-
8-Ramanujan identity, see [5]. Set

fn(x, y) = (1 + x+ y)n + (x+ y + xy)n−
− (1 + x+ xy)n − (1 + y + xy)n + (1− xy)n − (x− y)n (1)

Then
64f6(x, y)f10(x, y) = 45f8(x, y)

2

Of course, we would demostrate this by brute force, simply by opening all brackets
and evaluating both sides to

46080x2y2 + 322560x3y2 + 887040x4y2 + 1128960x5y2 + 241920x6y2 − . . .
Ramanujan identities are in a sense most peculiar, since even for a mature

mathematician it is not always easy to guess what goes on inside. But otherwise
usually any of the Liouville identites, or even the corollaries of the Newton—
Waring identities suffice to impress a student.

12.3. High precision fraud
We would usually show a couple of examples illustrating the difference between the
mathematical and computational viewpoints, and the need for infinite precision
calculations.

For instance, eπ
√
163 is so close to being an integer, that even the calculation

with 12 positions after the decimal point still does not allow to tell, whether it’s
integer, or not

262537412640768743.999999999999

Of course, this only looks weird. Every competent mathematician knows that there
is an obvious explanation, consisting in the fact that O−163 is a principal ideal
domain. The numbers eπ

√
67 and eπ

√
43 are also very close to integers, though not

with such marvellous precision.

12.4. BBP-formulas
Another highlight of Computer Mathematics is the formula which allows to com-
pute any hexadecimal digit of π separately, without computing the previous ones,
see [2, 3]:

π =
∞∑

k=0

1

16k

( 4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.
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12.5. Inverting a 1000× 1000 matrix
As another tapas, we would generate a random real 1000 × 1000 matrix, with
values in the range, say [−10, 10], machine precision. And then invert it, machine
precision, which would normally take 3–4 seconds. Then we would comment that
the amount of numerical computation involved in this individual evaluation far
exceeds all numerical computation that all students in the class will perform, or
could possibly perform, during their life-time.

Usually, the students were shocked, excited and amazed. We told them we
could not teach them discover such things, but within a year or so we can certainly
bring them closer to understanding and appreciating some of the mathematics
behind such examples, and perform such similar calculations — and in fact all
usual calculations! — with confidence. Thereafter, we usually had their attention.

We do not know, how to teach students who are not impressed by this kind
of examples. It is our belief that in such extreme cases any medicine is powerless.
As observed at the very beginning of the treatise [11] by Nicolas Bourbaki:

Nous ne discuterons pas de la possibilité d’enseigner les principes de
mathématique à des êtres dont le développement intellectuel n’irait pas
jusqu’à savoir lire, écrire et compter.

13. Borwein’s joke
Here is a similar (fancier!) example we were not showing to our students. But next
time we certainly will! Consider the following sequence of integrals, see [10]:

∞∫

0

sin(x)

x
dx =

π

2
,

∞∫

0

sin(x)

x

sin(x/3)

x/3
dx =

π

2
,

∞∫

0

sin(x)

x

sin(x/3)

x/3

sin(x/5)

x/5
dx =

π

2
,

∞∫

0

sin(x)

x

sin(x/3)

x/3

sin(x/5)

x/5

sin(x/7)

x/7
dx =

π

2
,

∞∫

0

sin(x)

x

sin(x/3)

x/3

sin(x/5)

x/5

sin(x/7)

x/7

sin(x/9)

x/9
dx =

π

2
,
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∞∫

0

sin(x)

x

sin(x/3)

x/3

sin(x/5)

x/5

sin(x/7)

x/7

sin(x/9)

x/9

sin(x/11)

x/11
dx =

π

2
,

∞∫

0

sin(x)

x

sin(x/3)

x/3

sin(x/5)

x/5

sin(x/7)

x/7

sin(x/9)

x/9

sin(x/11)

x/11

sin(x/13)

x/13
dx =

π

2
.

Guess the value of the next one.
Well, actually the pattern breaks at the next step:

∞∫

0

sin(x)

x

sin(x/3)

x/3

sin(x/5)

x/5

sin(x/7)

x/7

sin(x/9)

x/9

sin(x/11)

x/11

sin(x/13)

x/13

sin(x/15)

x/15
dx =

467807924713440738696537864469

935615849440640907310521750000
π.

The reason is of course that
1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
< 1, but

1

3
+

1

5
+

1

7
+

1

9
+

1

11
+

1

13
+

1

15
> 1,

and it’s a [highly non-trivial!] exercise in harmonic analysis and integral transforms
to work out what goes on here! There are more such remarkable examples, see
[1, 13, 21] and references there.

14. Actual curriculum of the course “Mathematics and Computers”

Usually, we started with warm up material on subjects which were [partly] familiar
to many of the students — but not to all of them! Part of the idea was that the
students begin facile coding with topics where mathematics is either familiar or
amusing [or both!], and feel some initial confidence.

• Arithmetics. We started with integers, rational numbers, real and complex
numbers, and modular arithmetics. Various formats, basic algortihms, ele-
mentary functions, calculation of powers, Euler formula and de Moivre the-
orem, roots of 1, congruences up to, say, Euclidean algorithm, finite fields
and Chinese Remainder Theorem. Sometimes this part included some fancier
topics, like continuos fractions, denesting of radicals, harmonic numbers,
Bernoulli numbers, etc.
• Basic number theory. That would normally include primes, Eulcid’s theo-

rem and the Fundamental theorem of Arithmetics, some dainties like Fermat
and Mersenne primes, the prime number theorem and Dirichlet theorem on
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primes in arithmetic progression9, Fermat and Euler theorems, pseudoprimes,
Legendre symbol, quadratic reciprocity. We would mention also some clas-
sical problems in additive number theory, but no part of that was required
for the exam, it served only as a source of research projects in the style of
recreational mathematics.

The part on discrete mathematics and combinatorics was the central part of the
course, at least the focus of the 1st semester, in view of the fact that we were
teaching prospective high-end computer users.

• Combinatorics I. That would normally include factorials, raising and falling
factorials, binomial and multinomial coefficients, Stirling and Bell numbers,
Catalan numbers, generating functions, and the like. Here, we would present
as many proofs as possible, to practice such ideas as induction, partition into
cases, Dirichlet principle, recurrencies, etc.

• Discrete Mathematics I. Lists: generation of lists, parts of a list, basic struc-
ture manipulations, nested lists, trees and other data structures, various al-
gorithms for sampling, search and sorting. Sets and multisets: subsets, chains
and antichains, Boolean operations, Cartesian products, enumeration theory,
inclusion-exclusion, partitions, Gray code.

• Discrete Mathematics II. Maps: functions, Dirichlet principle, surjective and
injective maps, pure and anonymous functions, λ-calculus, compositions and
iterations, orbits, trajectories, and fixed points. Relations: Binary relations,
graphs, equivalence relations, order relations, Hasse diagrams, Möbius inver-
sion, Ramsey theorem, Hall theorem (with proofs!)

• Combinatorics II. Permutations: algebra of permutations, symmetric group,
generation of permutations, lexicographically and otherwise, transpositions,
change ringing, sign of permutations via decrement and inversions (with
proofs!), alternating group, involutions. Cycles: canonical decomposition, long
cycles, multiplication of cycles, cycle type and conjugacy classes, statistics of
cycles, maximal order, and the like.

That would normally take most of the first semester, after which most students
would feel quite confortable in translating mathematical problems into fully func-
tional code in Mathematica, and eager to apply this skill to other fields of math-
ematics which they studied.

The end of the first semester, and the beginning of the second semester were
a medley of further basic mathematics and [mathematical] applications. Here, we
would normally cover some further basic constructions, and various somewhat
deeper topics.

Typically, this material would start with the two following classical construc-
tions, with some proofs (but by far not all of them!)

9Both without the faintest sketch of proof, just as experimental facts! The students had to verify
them up to certain limits and in certain special cases as experimental facts.
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• Polynomials. Structure manipulation with polynomials, rational functions,
power series, and the like, coefficients, roots, effective evaluation, fast multi-
plication and division, convolution, various flavours of interpolation (Newton,
Taylor, Lagrange, Hermite,. . . ), fast Fourier transform, algebraic equations
and factorisation of polynomials, Gauss theorem, Chebyshev polynomials, cy-
clotomic polynomials, classical orthogonal polynomials, etc. Polynomials in
several variables, symmetric polynomials (Viète, Newton, Waring,. . . ), etc.

• Matrices. Structure manipulations with rows, columns, matrices and other
tensors, parts of a matrix, multipication of matrices and other operations,
matrices and linear maps, eigenvalues and eigenvectors, various notions of
rank, elementary transformations, systems of linear equations, inverse ma-
trix, various classical types of matrices (symmetric, orthogonal, circulant,
etc.), block matrices and efficient algroithms, Kronecker product and sum of
matrices, determinants and other invariants, canonical forms.

As applications we would usually mention some further topics, discussing them
very briefly in the class, and offering all more complicated themes as projects
for homework (at this stage it was assumed that the students spend at least 3
homework hours for each class hour).

• Calculus. Derivatives, integration, differential equations, whatever.
• Linear Algebra. Aplications to geometric and/or applied problems of linear

algebra.

In the second semester, we would also discuss the topics required to produce
a document containing complex mathematical formulas and computations, and,
maybe something else, text, graphics, and other elements.

• Algorithms with strings. Transformation of text, formulas and tables: search,
sorting, formatting, etc., rudimentary typesetting issues.

• Basic Graphics. Graphs of functions of one and two variables, geometric trans-
formations of objects in 2 and 3 dimensions: translations, rotations, symme-
tries. Usually up to, say, regular and semi-regular solids, tilings and wallpaper
groups.

This was a rather intensive course, and we do not believe we could do much
more than that within a year at such an early stage, given the preparation of the
students, and the share of their time they could devote to our course.

15. Can this project be scaled?

Overall, we judge this project as a complete and overwhelming success. It was
certainly a refreshing and gratifying experience for ourselves. Much more fun than
teaching the usual service courses anyway!

With active participation and interest on part of students we succeeded in
covering much more Mathematics, more varied Mathematics, more interesting and

141



22 Vladimir Khalin, Nikolai Vavilov and Alexander Yurkov

useful Mathematics, with much better results, than would ever be possible with
more traditional approaches.

It was, as we know, quite an experience for our students, many of whom
later indicated that as a result of our course they understood what mathematics
was about, stopped being scared by mathematics, started to love formulas, num-
bers, graphs, and as a result routinely use specialised mathematics tools for other
courses.

Whether a similar project is portable and would be equally successful at a
different university and/or within a different subject field, is not quite clear to us.
We believe this is necessary, but should be addressed with caution.

In fact, we fully realise that here at the St Petersburg State Univ. we were
in a privileged position in more than one respect.

1. It is one of the two universities in Russia (the other one being the Moscow
State Univ.) that enjoy full academic autonomy. We can introduce new
courses without any authorisation or approval of the Ministry of Science
and Higher Education, or any other administrative body.

2. The project had full support of the Dean’s office, both administrative, and
financial. We had to present the course at the Teaching committee and the
Departmental council, but essentially we had free hand as far as its outline
and contents.

3. We had two fully equipped computer classes, with blackboards and 25+1
computers joined to a local network, with licenced copies of Mathematica,
Maple and other necessary software installed + friendly technical support.

4. The programs “Mathematical Methods in Economics” and “Applied Informat-
ics in Economics” are fairly competitive and select [mostly] good students,
who were prepared to work with computers anyway. Many of them had pre-
ceding experience of programming in low level languages.

5. Many of these students were coming from good St Petersburg schools and had
previous exposure to some calculus, vector analysis and the like at school,
others were taking traditional courses of calculus and/or linear algebra in
parallel.

6. Virtually all of the students had home computers with some mathematical
software, and full access to the departmental computers with licensed copies
of Mathematica, Maple, etc., outside of the class hours.

7. Most of the students had good working command of English, so that we did
not have to translate for them help files, problems, instructions, jokes, etc.

Obviously, any of these points could break even at an equally excellent uni-
versity, and all of them will break if you consider passage to lower level education.

In fact, it is not feasible that every school class could be equipped with
comparable hardware, to install licenced commercial CAS such as Mathematica,
Maple or Axiom. One of the points to start should be creation of a simpler and less
demanding CAS with front end in national languages.
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16. Our conclusions concerning teaching of non-mathematicians

Below, we outline our general convictions about teaching mathematics to non-
mathematics students, summarising a few decades on teaching experience.

1. Teaching of Mathematics for non-mathematicians must be fascinating, vivid,
inspiring. It is much more important to demonstrate the beauty and power of
Mathematics, than to teach any specific topic. Mathematics is fun, any teach-
ing that ignores this basic fact is harmful in times of peace, and dangerous
in wartime.

2. The choice of specific content is mostly immaterial, since we do not know
what kind of mathematics they will use during their careers anyway. The
mathematical culture, the mathematical way of thinking themselves, positive
attitude and willingness to study new topics and to use Mathematics are way
more important.

3. The value of most of specific computational skills is negligible. Most of the
students will never use these skills during their careers. Most of the specific
calculations will be relegated to a computer, and difficult cases require pro-
fessional advice anyway. Conceptual understanding and awareness are by far
more valuable.

4. Most of the proofs have subordinate value. The student can understand a
mathematical concept or result and sensibly use it without knowing the
proofs. In most cases examples, special cases, corollaries, applications, ana-
logues, experimental data, visualisations can do as much or more to explain
a result, than a formal proof.

5. Computers have dramatically changed applications of mathematics. But com-
puters have not made Mathematics obsolete. They have made obsolete only
the current teaching of mathematics that was obsolete anyway, even before
the advent of computers. Quite to the contrary, today we have to teach
most professionals more Mathematics, more profound Mathematics, more
advanced Mathematics, but we have to do it differently.

6. If you cannot beat them, join them. We have to welcome symbolic calcula-
tions and Computer Algebra Systems in mathematics class, and widely use
them as a medium of instruction. Of course, the corresponding conversion
of all mathematical courses, curricula, tests, exams, etc. will require a lot of
work. But if done right it entails no dangers for mathematical education, just
possibilities.

To finish on a slightly more cheerful note, let us quote Asterix:

Gauls! We have nothing to fear; except perhaps that the sky may fall
on our heads tomorrow. But as we all know, tomorrow never comes!!

Tomorrow does come. It is almost there. Our only hope is that its arrival is leisurly
enough to give us, the mathematical community, time to adapt and reform the
teaching of mathematics before it is too late.
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17. Computer Mathematics at large

Speaking about the role of computers in mathematics, many people limit them-
selves, on the one hand, to the role of numerical calculations in applications and,
on the other hand, to systems of formal inference (automatic theorem proving,
formal verification of proofs, etc.). In these directions, especially in the first one,
there are well-established schools and serious achievements in Russia.

In our view, Computer Mathematics is far from being reduced to these two
subfields. In particular, in the near future, systems of symbolic computation and,
in particular, Computer Algebra Systems will acquire much greater importance
both for mathematics itself and for its applications.

In particular, in recent years it has become clear that for many real world
industrial projects, not the traditional applied mathematics and numerical meth-
ods are in demand, but various areas of fundamental mathematics and advanced
computer technologies.

There are also strong research groups in these areas, especially in Dubna,
Moscow and St. Petersburg, they have extensive experience in creating Computer
Mathematics tools tailored to perform special types of calculations for specific
applications, usually in mathematics itself, physics and astronomy, partly engi-
neering.

However, the functions implemented in these tools are usually rather spe-
cialised, limited to a specific problem, and do not even cover sufficiently broad
areas of mathematics. Thus, these packages themselves cannot be directly used in
general mathematical education.

In addition, in Russia, among mathematicians themselves, there is a wide-
spread distrust of the capabilities of symbolic computing systems, it is customary
to point out “errors in Computer Algebra Systems”. From our viewpoint, pre-
dominantly all such “errors” are absolutely fictitious and are associated, on the
one hand, with misunderstanding of the basic principles of computer calculations,
and, on the other hand, with the objective difficulties of interpreting their results
in traditional mathematical terms.

It should be honestly admitted that in this respect Russian mathematics
visibly lags behind the world level.

18. The need for a new Computer Algebra System

18.1. Mathematica and Maple

As we mentioned in § 10, there are very few full-fledged general purpose Computer
Algebra Systems = general purpose CAS, that can be used in education.

Two of these systems, Mathematica and Maple, are commercial. These are
absolutely wonderful, great software products that, at the time of their creation
in the 1980s, represented an outstanding achievement in Computer Mathematics
and became the de facto standard for organizing such systems.
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On the other hand, some fundamental decisions regarding their general archi-
tecture, organization of calculations, data structures, etc., taken at that moment,
later turned out to be impossible to change, precisely due to the commercial nature
of the systems and the need to ensure backward compatibility.

In addition, changes in the latest versions of these systems are increasingly
focused not on aspects that are important from the point of view of mathematics
itself, but on various purely marketing points: various specific extra-mathematical
applications, computer graphics, music, animation, etc.

Unlike the Axiom system, both of these systems do not have simple and
natural language tools for describing mathematical structures in terms of axioms
or properties. Some extremely important mathematical constructions (symbolic
polynomials, symbolic matrices, etc.) were included in them only post factum,
with not the most efficient algorithms.

18.2. What has happened since?
However, over the past 30–40 years there has been tremendous progress in un-
derstanding the principles of Computer Mathematics. At present, it has become
ideologically and technically possible to create systems whose language, in terms
of vocabulary and expressive power, is much closer to the language actually used
by mathematicians (= human mathematicians).

• Such a language should make it possible to describe mathematical struc-
tures in a way that is actually done in mathematical books (with a slightly more
rigid syntax). This would allow, in particular, to implement the front-end of such
systems in any national language.

• In addition, in many cases, more efficient algorithms and methods for or-
ganizing calculations have been proposed that allow calculations to be carried out
faster and using less resource. In particular, parallel algorithms that were not used
in traditional CAS have received significant development.

• Functional quantum computers do not yet exist, despite numerous decla-
rations in this direction. Nevertheless, we are convinced that already today it is
necessary to develop quantum algorithms of Computer Algebra and train special-
ists in this field. Traditionally, one only addressed issues of accelerating numerical
computations. However, quantum algorithms could equally dramatically acceler-
ate symbolic computations. It could be said that the presence of fast quantum
algorithms makes it possible to consider Post Quantum Computer Algebra as a
separate topical area of research.

• Over the past decades, the difficulties of translating the results of symbolic
calculations into the language of traditional mathematics have been much better
understood and, to a large extent, overcome.

18.3. Our project towards creation of a next-generation CAS
This feeds rather realistic expectations for the possibility of creating a modern
symbolic computing system with the internal language and expressive power much
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closer to the traditional mathematical language. The results of computation in such
a system would be much easier to interpret in traditional mathematical terms. In
particular, such a system could easily afford front-end in any natural language,
specifically in our case, in English and Russian (and the next option we would
consider, is, of course, Chinese).

Such a system could be vertically integrated and, on the one hand, accord-
ing to the requirements for equipment and user qualifications, accessible even to
schoolchildren, and on the other hand, allow very sophisticated mathematical ap-
plications that are interesting to professional mathematicians.

In addition to the actual scientific interest, the creation of a system would
become an essential element both in scientific research, also outside mathematics,
and would be of great importance for mathematical education at various levels.

Preferably, such a system should be open (open-source), with a clear separa-
tion of the core, libraries of algorithms, supporting various areas of modern pure
and applied mathematics, a developed data type system that allows, at the lan-
guage level, to construct objects of new types using language constructs as close
as possible to the language of modern mathematics, as well as various interfaces
with the ability to modify parts of the code by a qualified user.

We have started to work towards creating front-end software that would pro-
vide support for cloud computing, parallelisation of algorithms, as well as inter-
faces for interacting with other Computer Algebra Systems, such as Mathematica,
Maple, Wolfram Alpha and others.

We would have in mind the availability of such a system for use at all levels
of mathematical education in Russia and, potentially, in other countries, from
secondary schools to the training of professional mathematicians.

In a sense, the newest and least technologically developed here would be
precisely the intermediate level, i.e. teaching mathematics to non-mathematicians:
both engineers, physicists, chemists, biologists, and representatives of economic
disciplines, and humanities

In cooperation with the colleagues from St. Petersburg, Moscow, Dubna and
Canada we have started preliminary planning and research towards developing
such a system. Our initial ambition is to create a Computer Mathematics Lab
at the Department of Mathematics and Computer Science of the St Petersburg
State University primarily dedicated to the development of the architecture, and
preliminary design of such a system, and the study of various related scientific,
technological, and educational issues.

Of course, an actual creation of such fully functional CAS along these lines
would be an extremely ambitious project, that would require coordinated effort of
dozens of people, both mathematicians, and computer scientists, over many years.

146



Mathematics for Non-Mathematicians 27

Acknowledgements

A major inspiration for us were numerous discussions with Sergei Pozdniakov
and Alexei Semenov on the educational aspects of this work, and with Arsen
Khvedelidze, Alexei Semenov, Alexander Tiskin and Nikolai Vasiliev on the cur-
rent state and prospects of Computer Mathematics in general, and specifically
of various aspects of symbolic computation. We thank Vladimir Kondratiev for
his valuable technical support. Also, we thank Grigory Fridman, Boris Kunyavski
and Alexander Merkurjev for very careful reading of our original manuscript and
important corrections.

A tribute

In the previous list of acknowledgements, two key persons are missing. Over the
last two years, we lost two great masters, Oleg Ivanov, who was instrumental in
advancing computers into mathematical education, and Vladimir Gerdt, who was
maybe the most knowledgeable expert in all aspects of computer mathematics and
its applications. We very much miss them, their keen judgement and advice.

References
[1] D. H. Bailey, J. M. Borwein, Experimental mathematics: examples, methods and

implications, Notices Amer. Math. Soc.,52 (2005), no. 5, 502–514.

[2] D. H. Bailey, J. M. Borwein, P. B. Borwein, S. Plouffe, The quest for Pi. Math.
Intelligencer, 19 (1997), no. 1, 50–57.

[3] D. Bailey, P. Borwein, D. Plouffe, On the rapid computation of various polylogarith-
mic constants. Math. Comput., 66 (1997), no. 218, 903–913.

[4] H. Bass, Mathematics, mathematicians, and mathematics education. Bull. Amer.
Math. Soc., New Ser. 42 (2005), no. 4, 417–430.

[5] B. C. Berndt, S. Bhargava, Ramanujan for low-brows, Amer. Math. Monthly, 100
(1993), 644–656.

[6] A. V. Borovik, Calling a spade a spade: Mathematics in the new pattern of division
of labour, In Mathematical Cultures: The London Meetings 2012–14 (B. Larvor, ed.).
Trends in the History of Science. Springer, 2016, 347–374. ISBN 978-3-319-28580-1.
DOI 10.1007/978-3-319-28582-5_20.

[7] A. V. Borovik, Mathematics for makers and mathematics for users, In Humanizing
Mathematics and its Philosophy: Essays Celebrating the 90th Birthday of Reuben
Hersh (B. Sriraman ed.), Birkhauser, 2017, 309–327. DOI 10.1007/978-3-319-61231-
7_22. ISBN 978-3-319-61231-7.

[8] A. Borovik, A mathematician’s view of the unreasonable ineffectiveness of math-
ematics in biology. Biosystems, 205 (July 2021), 104410, https://doi.org/
10.1016/j.biosystems.2021.104410

147



28 Vladimir Khalin, Nikolai Vavilov and Alexander Yurkov

[9] J. M. Borwein, Implications of experimental mathematics for the philosophy of math-
ematics. In Proof and Other Dilemmas: Mathematics and Philosophy. Providence,
RI: Amer. Math. Soc., 33–61, 2008.

[10] D. Borwein, J. M. Borwein, Some remarkable properties of sinc and related integrals,
The Ramanujan Journal, 5 (2001), no. 1, 73–89.

[11] N. Bourbaki, Éléments de mathématique. Tous les 28 tomes, y compris le dernier
tome Topologie Algébrique Chapitre 1–4. 2017, Berlin: Springer, 7902p., ISBN 978-
3-662-53102-0/pbk.

[12] D. M. Bressoud, Is the sky still falling? Notices Amer. Math. Soc. 56 (2009), no. 1,
20–25.

[13] A. D. Burazin, V. Jungić, M. Lovric, A cultural challenge: teaching mathemat-
ics to non-mathematicians. Maple Trans. 1 (July 2021), no. 1, Article 14144, 11p.
https://doi.org/10.5206/mt.v1i1.14144

[14] J. Dieudonné, Should We Teach "Modern" Mathematics? American Scientist,
January-February 61 (1973), no. 1, 16–19.

[15] N. D. Elkies, On A4 +B4 + C4 = D4. Math. Comput., 51 (1988), 825–835.
[16] S. A. Garfunkel, G. S. Young, The sky is falling. Notices Amer. Math. Soc. 45 (1998),

no. 2, 256–257.
[17] A. Grothendieck, Recoltes et semailles. Réflexions et témoignage

sur un passé de mathématicien10. 1986, 929p. https://jmrlivres.
files.wordpress.com/2009/11/recoltes-et-semailles.pdf

[18] G. H. Hardy, A mathematician’s apology. With a foreword by C. P. Snow. Reprint
of the 1992 edition. Canto Classics. Cambridge: Cambridge University Press (ISBN
978-1-107-60463-6/pbk). 2012, 153p.

[19] O. A. Ivanov, G. M. Fridman, Discrete Mathematics and Programming in Wolfram
Mathematica, Piter Publishers: St Petersburg, 2019, 349p. (in Russian).

[20] A. Jaffe, F. Quinn, Theoretical mathematics: toward a cultural synthesis of mathe-
matics and theoretical physics, Bull. Amer. Math. Soc. (N.S.), 29 (1993), no. 1, pp.
1–13; doi: 10.1090/S0273-0979-1993-00413-0

[21] V. Jungić, A. Burazin, On experimental mathematics and mathematics education.
Amer. Math. Monthly, 128 (2021), no. 9, 832–844.

[22] F. Klein, Elementarmathematik vom höheren Standpunkte aus. Erster Band: Arith-
metik. Algebra. Analysis. Berlin: Verlag von Julius Springer, 1933. Nachdruck 1968,
309S.

[23] N. N. Konstantinov, A. L. Semenov, Productive education in the mathematical school.
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0-1 laws in asymptotic combinatorics and central

markov measures for continuous graphs

Anatoly Vershik

The concepts of continuous (continual) graded graphs of a special type are
introduced. For such kind of continuous graphs the sets of �nite paths are con-
vex �nite-dimensional compacts, and the central measures are de�ned by normal-
ized Lebesgue measures on these compacts. They set co-transition probabilities of
the central measures. The main example of such graphs are Gelfand-Cetlin type
graphs, and graph of spectra of in�nite Hermitian matrices.

The problem of describing central measures on the set of paths of such graphs
acquires a new character in comparison with previous works on this topic (Pick-
rel, Vershik-Olshansky), and reduces to the establishment of surprising 0-1 laws
for non-stationary Markov chains, or in another way to problems of coincidence
or mismatch of geometric and general boundaries of random walks. There is an
amazing internal parallelism between lists of central measures of degenerate type
for Hermitian matrices (Wishart measures) and for Young graph (discrete Thoma
measures) . Even more surprising is the internal similarity between the standard
Gaussian measure (GOA or GUI) on matrices and the Plancherel measure on
in�nite Young diagrams. This work is in progress and partially carried out in
cooperation with F.Petrov.

This work is carried out as part of a project supported by an RNF grant
21-11-00152
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WiseTasks Graphs System

Zaikov D.G. and Pozdniakov S.N.

Abstract. The paper presents a learning resource WiseTasks Graphs, which
allows you to create graph tasks from various modules. The possibilities of
the presented system for various target groups

• of students studying mathematics and algorithms and creating imple-
mentations of system modules are illustrated;

• students who use the resource for research activities related to self-
formulation and problem solving;

• teachers who are interested in creating constructive problems in graph
theory, as well as monitoring the work of students on them;

• students and schoolchildren studying graph theory
The work was supported by the RFBR grant No. 19-29-14141

Introduction
The Wise Tasks Graphs system is designed to create and solve self-testable graph
tasks. A self-testable task is such a task, the verification of the solution of which
occurs not through reconciliation with a previously saved answer, but through
reconciliation with a set condition. For example, if the task is “build a graph that
is complete”, then in order to understand whether such a problem has been solved
correctly, the system needs to check the answer graph for completeness, and not
compare it with the complete graphs that are stored in the database of answers.

The main formulation of tasks that can be set within the framework of the
system: “Construct a graph with the specified properties...". Another formulation
for which the system has verification mechanisms is “specify a subgraph of a given
graph that has the properties ...". Other formulations are also allowed, related not
only to the allocation of a subgraph, but also to the assignment of various types
of marks to its elements, for example, the order of passing edges or vertices of the
graph, edge weights, coloring of vertices or edges.

Modules that describe various graph properties and various algorithms on
graphs are responsible for various graph properties. By combining different mod-
ules, you can create different tasks. This approach allows you to quickly build tasks
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of a fairly wide class, since to create them you only need to combine different mod-
ules. This possibility is provided by the user interface of the “teacher” (note that
the concept of “teacher” is conditional here, since the student or student himself
has the opportunity to set tasks himself). To introduce numerical characteristics
into the problem, in addition to checking for equality with a given number, you
can use more and less relations, for example, “build a graph with more than 5
vertices ...”.

1. Task example
Here is an example of a new task:

1. Let’s choose the modules that we want to add to the task, namely “full graph”
and “number of vertices" (Figure 1).

Figure 1. Choosing modules

2. Look at the condition that was created according to the selected modules
(Figure 2)

Figure 2. Task condition

152



WiseTasks Graphs System 3

3. Let’s choose the name and category of the task (Figure 3)

Figure 3. Creating task

4. Now let’s solve this problem (Figure 4).

Figure 4. Solving task

5. If there are errors in the solution, the system will indicate exactly what the
error was (Figure 5)

Figure 5. Creating mistakes
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2. Technical aspects
To work with different types of tasks, the teacher sets the rights for the one who
will solve it. In total, there are four types of rights available in the system - adding
elements (edges and vertices), setting colors, deleting elements, and setting labels
and weights for elements. For each task, you can select a specific set of rights (for
example, prohibit deleting and adding elements in a graph, which can be useful in
tasks where you want to color an existing graph)

As an example of modules, we will give several properties that are at the
same time the names of the modules of the system (Table 1). We distinguish
three types of properties: binary properties (whether the graph has the specified
properties), numerical characteristics and properties of subgraphs of subgraphs
selected in some way.

Binary properties Numerical characteristics Marked subgraphs
The constructed graph is
a transitive relation graph

Sum of degrees of vertices
of an undirected graph

Edges of an undirected
graph labeled with natu-
ral numbers form an Euler
path (traversal in ascend-
ing order of labels)

The constructed undi-
rected graph is Euler
graph

The clique number ϕ (den-
sity) of an undirected
graph (the number of ver-
tices in the largest clique)

The marked subset of
vertices of an undirected
graph is the maximum in-
dependent

The constructed undi-
rected graph has a
dominant vertex

Vertex connectivity num-
ber k (connectivity num-
ber) of an undirected
graph

The order of traversing
the edges of an undirected
graph marked by natural
numbers is a depth-first
traversal (traversal in as-
cending order of marks)

Table 1. Examples of properties

The system assumes three main types of users:
1. A developer is a user who implements new modules in the system, thereby

increasing the number of possible tasks to compile
2. A teacher is a user who creates tasks using modules
3. A student is a user who solves these tasks

3. Pedagogical aspects
Since the system is an open web resource, anyone can be a student, a teacher, and
a developer, that is, anyone using the web interface can both create modules and
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participate in filling out the task book by graphs, composing new tasks, and can
also solve problems that were compiled by other users.

The “Wise Tasks Graphs” system has already been applied in practice among
2nd year students. 100 tasks were compiled for compiling modules (since the system
is written in Java, the modules should have been written in it). The training
stream of 100 people was divided into teams, each team had a captain (a person
responsible for the correctness of the implementation and testing of modules in the
team). Each student was asked to choose and write one module. When writing the
module, the student learned to apply the algorithms studied in lectures in practice,
which is a good way to consolidate knowledge in the course “Combinatorics and
graph theory". Also, writing modules provided students with the opportunity to
get acquainted with the Java programming language, which is new for students.

Conclusion
1. The Wise Tasks Graphs system provides verification of graph theory tasks

without entering answers to the assigned tasks.
2. The Wise Tasks Graphs system provides conditions for educational and re-

search work on the graph theory course: a student can set and solve problems
independently.

3. The Wise Tasks Graphs system allows distributed filling not only with tasks,
but also with tool modules describing graph properties and algorithms on
graphs.

4. The main problem in filling the Wise Tasks Graphs system is the addition of
new modules, since errors in the implemented algorithms will lead to incorrect
reactions of the system to the tasks compiled in it. At the same time, the
addition of new modules is carried out much less frequently than the addition
of new tasks, so ensuring the correct operation of the system requires only
the support of the module system, but not the task system.

5. The development of systems like Wise Tasks Graphs allows the organization
of new forms of project work of students. So, in the process of filling the sys-
tem with modules, the distributed work of second-year students of ’LETI’ was
organized, who studied the graph theory course and added graph algorithm
implementations written in Java to the system.
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Change and Solve

Eugene V. Zima

Abstract. The change of representation often gives a key to the efficient
solution of problems in both numeric and symbolic computation, or in the
mixed symbolic-numeric framework.
Popular examples of this technique include but not limited to

• change of basis in polynomial computations,
• modular and evaluation homomorphisms (involving Chinese remaindering

or evaluation and interpolation),
• integral representation for computing combinatorial sums,
• fast Fourier transform,
• implicitization of a problem, etc.

In this talk we will give a survey of several popular problems along with
discussion of how and why the change of representation improves the theore-
tical and practical running-time complexity of the employed algorithms. We
will consider problems related to the symbolic summation, high-precision
evaluation of rapidly convergent series, evaluation of closed form expressions
over the regular intervals, and discuss various approaches to their acceleration
based on the change of representation [1] - [24].

Discussion will be accompanied by demonstration of software implemen-
tations in Maple, Java and C programming languages.
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