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Introduction

Constrained matrix factorization finds wide use in various areas of data analysis [1],
such as recommendation systems and image processing. In many applications it is
essential to use the factorization by matrices of unit rank (rank-one factorization)
[2, 3], which involves the approximation of matrices by products of column and
row vectors.

We consider a problem of constrained factorization that can be formulated
as the minimization problem

min  d(A,zy”),

(1
s.t. a<x<b c<y<<d,

where d is an approximation error, A is a given matrix under factorization, x

is a column vector, y~ is the row vector obtained from a column vector y by

transposing and replacing each nonzero element by its inverse, and a, b, ¢, d are

given column vectors.

In this paper we assume the matrix A to be positive and take the Chebyshev
distance in the logarithmic scale as an error function d. To find all solutions of the
minimization problem we apply methods of tropical (idempotent) mathematics,
which deals with the theory and applications of idempotent semifields. We extend
the solutions obtained under different assumptions in [4, 5] for an unconstrained
rank-one factorization problem to constrained problem (1), where the matrix A
can contain missing elements. We start with necessary definitions and notations
of tropical mathematics. Next, we formulate and solve a constrained tropical op-
timization problem under different assumptions. Finally, the obtained solution is
applied to the constrained factorization problem in question.

This work was supported in part by the Russian Foundation for Basic Research, Grant No.
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1. Tropical algebra

We begin with a short overview of basic definitions, notations and preliminary
results of tropical mathematics from [6, 7], which are used for the formulation and
solution of a tropical optimization problem in the next section. Further details on
tropical mathematics can be found, for example, in [8, 9, 10].

Consider a nonempty set X equipped with addition @& and multiplication ®,
which are both associative and commutative, and have respective neutral elements,
zero 0 and identity 1. The addition & is idempotent, which means that x ® x = x
for all z € X. The multiplication is distributive over the addition and is invertible,
implying that each nonzero z € X has its inverse ! such that z ® 27! = 1.
Together with the operations @ and ®, and their neutral elements, the set X forms
the algebraic system, which is usually referred to as the idempotent semifield. In
what follows we omit the multiplication sign for the sake of brevity.

The addition induces on X a partial order such that the relation < y holds
if and only if z @ y = y. The partial order is considered as extendable to a total
order, and so we assume the semifield to be linearly ordered. Further the relation
symbols and optimization problems are considered in the sense of this order.

Below, we use a real idempotent semifield, which is commonly called max-
algebra. This semifield is defined on the set of non-negative real numbers and has
maximum in the role of addition, and usual arithmetic multiplication in the role
of multiplication. Neutral elements coincide with the usual arithmetic 0 and 1.
The relation < agrees with the natural linear order on the set of non-negative real
numbers. The concepts of the inverse and the power are conventional.

Let X™*™ be the set of matrices over X, with m rows and n columns. A
matrix with all zero elements is the zero matrix 0. A square matrix with 1 on the
diagonal and O elsewhere is identity matrix I. In the case of max-algebra, zero and
identity matrices have the usual form. Any matrix without zero columns (rows) is
called column (row)-regular.

Matrix addition and multiplication and multiplication by scalars follow the
standard entry-wise formulas with the arithmetic operations replaced by @& and ®.

The multiplicative conjugate transposition of a nonzero matrix A = (a;j) €
AmX" yields the matrix A~ = (a;;) € X" ™ with the elements a;; = a;il if
aj; # 0, and a; = 0 otherwise.

Consider a square matrix A = (a;;) € X**". The trace of the matrix A is
calculated astr A =a11 D --- D anp-

The spectral radius of a matrix A is the scalar A =tr A @ --- @ tr'/"(A").

For a square matrix A we define the matrix A* =T @®--- @ A"~ L.

The set of column vectors of order n is denoted by X™. Any vector without
zero elements is called regular. In max-algebra, the regularity of a vector means
that the vector is positive.

The multiplicative conjugate transposition of a nonzero column vector x =
(z;) yields the row vector = = (x; ), where z; = z; ' if #; # 0, and x; = 0
otherwise.
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2. Tropical optimization problem

We consider a problem of tropical optimization with constraints, which is used
below in factorization of matrices. Given a matrix A € A™*" and vectors a,
be XM, ¢, de X", the problem is to find all regular vectors * € X™ and y € X"
that achieve the minimum
min x  Ay®y A «x,
oY (2)
s.t. a<xz<b c<y<d.
The following result gives a complete solution in an explicit vector form to
problem (2) for any nonzero matrix.

Theorem 1. Suppose that A is a nonzero matriz and p is a spectral radius of the
matric AA~. Let a and ¢ be vectors, b and d be regular vectors such that b~ a < 1
and d~¢ < 1. Denote r = (m +n)/2 and define a scalar

vl
b=n?e@ (b AU A cad A (447 a) /P Vg
k=1

—

)
e @ (b~ (AA Yasd (A~ A)ke) '™ (3)

E

=1
Then, the minimum in problem (2) is equal to 6 and all regular solutions are
given by

x=02AA v DI TABTPA A 'w = (0T2AA ) (v D I Aw),
y=0"T1A"(0PAA v (02A A)'w=(02A"A)" (0 A v w),
where v and w are vectors that satisfy the conditions
a<v<((b-@0'd A7) (072AAT)),
c<w< (07" Aad ) 2A-A)*)".

In the case of a column-regular matrix, a complete solution of problem (2)
can be obtained in a different form as follows.

Theorem 2. Suppose that A is a column-regular matrixz and p is a spectral radius
of the matric AA~. Let a and c be vectors, b and d be regular vectors such that
b~a <1 and d”c < 1. Then, the minimum in problem (2) is equal to (3) and all
reqular solutions are given by

x=(0"2AA 'y, a0 tAc<u<((b- @0 'd A0 ZAAT)),
0 'A zpec<y< (GflmfA od).
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If the matrix A does not contain zero rows, a complete solution can be written
in the following form.

Theorem 3. Suppose that A is a row-regular matriz and p is a spectral radius of
the matric AA~. Let a and ¢ be vectors, b and d be reqular vectors such that
b~a <1 and d~c < 1. Then, the minimum in problem (2) is equal to (3) and all
reqular solutions are given by

y=(02A"A)u, c®0 A a<u<((d 00T A)(I2ATA)),
0 'Ayda<z< (@ 'y A ob ).

3. Application to matrix factorization

Let A = (a;;) be a positive matrix with missing elements. First, we fill the missing
elements of A with zeroes and consider problem (1), where = (x;) is a column
vector and y~ = (y; ') is a row vector. We define the function d as the log-
Chebyshev distance between the matrix A and the rank-one matrix xy~. With
the logarithm of a base greater than 1, which is monotone increasing, we have

-1y _ -1 =1 -1
i,]‘IE?;);éO |loga;; —logziy; | = IOgi,jr:l}li-};o max(z;  aijy;, Tia; y; )

Since logarithm is monotonic, the minimization of the logarithmic function
is equivalent to minimizing the argument of this function. After eliminating the

logarithm, we rewrite the objective function in terms of max-algebra to obtain
P (@ lagy; @ wialy;) =z Aysy Az,
1,j:ai70
Thus, we can reduce the constrained problem of factorization of the positive

matrix A to that of the form

min T Ay by A x,

z,y

s.t. a<x<b c<y<d.

As a result, we obtain the problem in the form of (2), which has complete
solutions given by theorems 1, 2, and 3. In the application of the solutions to the
factorization problem, the minimal error is calculated as the logarithm of (3).
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