Using Tropical Algebra to Solve a Minimax Optimization Problem in Project Scheduling

Nikolai Krivulin

Abstract. We apply tropical optimization techniques to derive a complete analytical solution to a time-constrained project scheduling problem.

1. Time-Constrained Project Scheduling Problem

Consider a project that involves n activities (jobs, tasks, operations) to be performed in parallel, subject to a set of temporal constraints, including the release time and deadline constraints, as well as start-start and start-finish relationships. The scheduling problem is to find an optimal schedule that minimizes the maximum deviation of the start time of all activities.

For each activity i = 1, ..., n, we denote the start times by x_i and the finish time by y_i . Given release times g_i that specify the earliest allowed time for activities to start and deadlines f_i that define the latest time for activities to finish, the release time and deadline constraints take the form of the inequalities

$$g_i \leq x_i, \quad y_i \leq f_i, \qquad i = 1, \dots, n.$$

The start-start constraints indicate the minimum allowed time lag between the start of one activity and the start of another. Given parameters b_{ij} , the startstart constraints are represented as

$$\max_{1 \le j \le n} (b_{ij} + x_j) \le x_i, \qquad i = 1, \dots, n.$$

The start-finish constraints determine the minimum allowed time lag between the start of one activity and the finish of another. Given parameters a_{ij} , the startfinish constraints are represented as

$$\max_{1 \le j \le n} (c_{ij} + x_j) \le y_i, \qquad i = 1, \dots, n.$$

Considering the deadlines $y_i \leq f_i$, these constraints can be replaced by

$$\max_{1 \le j \le n} (c_{ij} + x_j) \le f_i, \qquad i = 1, \dots, n.$$

Nikolai Krivulin

If some parameters g_i , b_{ij} and c_{ij} are not defined, we set them equal to $-\infty$. The maximum deviation of the start time of activities is defined as the interval between the earliest and the latest start times of activities and is given by

$$\max_{1 \le i \le n} x_i - \min_{1 \le i \le n} x_i = \max_{1 \le i \le n} x_i + \max_{1 \le i \le n} (-x_i)$$

The scheduling problem with the parameters g_i , h_i , b_{ij} and c_{ij} given for all i, j = 1, ..., n, is to find start times x_i that solve the minimax problem

$$\min_{\substack{i_1,...,x_n \\ s_1,...,x_n}} \max_{\substack{1 \le i \le n}} x_i + \max_{\substack{1 \le i \le n}} (-x_i), \\
\text{s.t.} \quad \max_{\substack{1 \le j \le n}} (b_{ij} + x_j) \le x_i, \quad \max_{\substack{1 \le j \le n}} (c_{ij} + x_j) \le f_i, \\
g_i \le x_i, \quad i = 1, \dots, n.$$
(1)

We observe that problem (1) can be represented as a linear program, and then a numerical solution of the problem can be obtained using one of the computational algorithms available in linear programming. To derive a complete analytical solution to the problem, we formulate it in terms of tropical algebra and apply methods and results of tropical optimization.

2. Elements of Tropical Algebra

I

Let \mathbb{X} be a set that is equipped with two distinct elements: zero \mathbb{O} and identity $\mathbb{1}$, and closed under associative and commutative binary operations: addition \oplus and and multiplication \otimes . Addition is idempotent which means that $x \oplus x = x$ for all $x \in \mathbb{X}$. Multiplication distributes over addition and is invertible which provides each nonzero $x \in \mathbb{X}$ with an inverse $x^{-1} \in \mathbb{X}$ such that $x \otimes x^{-1} = \mathbb{1}$. Finally, the set \mathbb{X} is assumed to be totally ordered by an order relation consistent with that induced by idempotent addition using the rule: $x \leq y$ if and only if $x \oplus y = y$.

The algebraic system $(\mathbb{X}, \oplus, \otimes, 0, \mathbb{1})$ is usually referred to as the idempotent semifield. In what follows, the multiplication sign is omitted to save writing.

As an example, one can consider the real semifield $(\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0)$, which is usually called the max-plus algebra. In this semifield, the operations are defined as $\oplus = \max$ and $\otimes = +$, and the neutral elements as $\mathbb{O} = -\infty$ and $\mathbb{1} = 0$. For any $x \in \mathbb{R}$, the multiplicative inverse is equal to the opposite number -x in the standard representation. The power x^y coincides with the usual product $x \times y$. The order relation \leq corresponds to the natural linear order on \mathbb{R} .

The scalar operations \oplus and \otimes are extended to vectors and matrices over \mathbb{X} in the usual way. All vectors are assumed column vectors unless transposed. A matrix (vector) with all entries equal to \mathbb{O} is the zero matrix (vector). A vector that has no zero elements is called regular. Any matrix without zero columns is called column-regular. A vector with all elements equal to $\mathbb{1}$ is denoted by $\mathbf{1} = (\mathbb{1}, \dots, \mathbb{1})^T$. Multiplicative conjugate transposition of a nonzero vector $\mathbf{x} = (x_i)$ yields the row vector $\mathbf{x}^- = (x_i^-)$, where $x_i^- = x_i^{-1}$ if $x_i \neq \mathbb{0}$ and $x_i^- = \mathbb{0}$ otherwise.

A square matrix that has all diagonal elements equal to 1 and off-diagonal to 0, is the identity matrix denoted by I. The power notation is defined as follows: $A^0 = I$, $A^p = AA^{p-1}$ for any square matrix A and integer p > 0.

The trace of a square matrix $\mathbf{A} = (a_{ij})$ of order n is given by

$$\operatorname{tr}(\boldsymbol{A}) = a_{11} \oplus \cdots \oplus a_{nn} = \bigoplus_{i=1}^n a_{ii}.$$

A tropical analogue of the matrix determinant is defined as

$$\operatorname{Tr}(\boldsymbol{A}) = \operatorname{tr} \boldsymbol{A} \oplus \cdots \oplus \operatorname{tr} \boldsymbol{A}^n = \bigoplus_{m=1}^n \operatorname{tr} \boldsymbol{A}^m$$

If the condition $Tr(A) \leq 1$ holds, the Kleene star matrix is calculated as

n

$$A^* = I \oplus A \oplus \cdots \oplus A^{n-1} = \bigoplus_{m=0}^{n-1} A^m.$$

For any matrix $\boldsymbol{A} = (a_{ij})$ and vector $\boldsymbol{x} = (x_i)$, tropical norms are given by

$$\|\boldsymbol{A}\| = \boldsymbol{1}^T \boldsymbol{A} \boldsymbol{1} = \bigoplus_{i,j} a_{ij}, \qquad \|\boldsymbol{x}\| = \boldsymbol{1}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{1} = \bigoplus_i x_i,$$

which coincide in max-plus algebra with the maximum entries of A and x.

3. Algebraic Solution of Scheduling Problem

We now present a complete analytical solution of the scheduling problem of interest, obtained in the framework of tropical algebra [1]. Other related examples of applications of tropical optimization can be found, e.g., in [2, 3, 4, 5].

Consider the minimax optimization problem at (1) and represent the problem in scalar form in terms of max-plus algebra to write

$$\min_{x_1,\dots,x_n} \quad \bigoplus_{1 \le i \le n} x_i \bigoplus_{1 \le j \le n} x_j^{-1}, \\
\text{s.t.} \quad \bigoplus_{1 \le j \le n} b_{ij} x_j \le x_i, \quad \bigoplus_{1 \le j \le n} c_{ij} x_j \le f_i, \\
g_i \le x_i, \quad i = 1,\dots, n.$$
(2)

With the following matrix-vector notation:

$$\boldsymbol{B} = (b_{ij}), \qquad \boldsymbol{C} = (c_{ij}), \qquad \boldsymbol{x} = (x_i), \qquad \boldsymbol{g} = (g_i), \qquad \boldsymbol{f} = (f_i),$$

problem (2) takes the vector form

$$\min_{\boldsymbol{x}} \quad \boldsymbol{x}^{-1} \boldsymbol{1}^{T} \boldsymbol{x},$$
s.t. $\boldsymbol{B} \boldsymbol{x} \leq \boldsymbol{x}, \quad \boldsymbol{C} \boldsymbol{x} \leq \boldsymbol{f},$
 $\boldsymbol{g} \leq \boldsymbol{x}.$

$$(3)$$

Nikolai Krivulin

Application of tropical optimization techniques developed in [2, 3, 4, 5] leads to the next result, which offers a complete analytical solution to problem (3).

Lemma 1. Let B be a matrix with $Tr(B) \leq 1$ and C a column-regular matrix. Let g be a vector and f a regular vector such that $f^-CB^*g \leq 1$.

Then, the minimum of the objective function in problem (3) is equal to

$$heta = \|oldsymbol{B}^*\| \oplus igoplus_{0 \leq i+j \leq n-2} \|oldsymbol{f}^- oldsymbol{C} oldsymbol{B}^i\|\|oldsymbol{B}^joldsymbol{g}\|,$$

and all regular solutions are given in parametric form by

 \boldsymbol{x}

$$= Gu, \qquad g \leq u \leq (f^-CG)^-,$$

where u is a vector of parameters and

$$oldsymbol{G} = oldsymbol{B}^* \oplus igoplus_{0 \leq i+j \leq n-2} heta^{-1} oldsymbol{B}^i oldsymbol{1} oldsymbol{1}^T oldsymbol{B}^j.$$

This work was supported in part by the Russian Foundation for Basic Research grant number 20-010-00145.

References

- N.K. Krivulin and S.A. Gubanov, Algebraic solution of a problem of optimal project scheduling in project management, Vestnik St. Petersburg University, Mathematics, 54(1), 58-68 (2021). http://doi.org/10.1134/S1063454121010088
- [2] N. Krivulin, A constrained tropical optimization problem: Complete solution and application example, in *Tropical and Idempotent Mathematics and Applications*, ed. by G. L. Litvinov and S. N. Sergeev, AMS, Providence, RI, 2014, 163–177 (Contemp. Math., vol.616). http://doi.org/10.1090/conm/616/12308
- [3] N. Krivulin, Extremal properties of tropical eigenvalues and solutions to tropical optimization problems, *Linear Algebra Appl.*, 468, 211-232 (2015). http://doi.org/ 10.1016/j.laa.2014.06.044
- [4] N. Krivulin, Tropical optimization problems in time-constrained project scheduling, Optimization, 66(2), 205-224 (2017). http://doi.org/10.1080/02331934.2016. 1264946
- [5] N. Krivulin, Tropical optimization problems with application to project scheduling with minimum makespan, Ann. Oper. Res., 256(1), 75-92 (2017). http://doi.org/ 10.1007/s10479-015-1939-9

Nikolai Krivulin Faculty of Mathematics and Mechanics St. Petersburg State University St. Petersburg, Russia e-mail: nkk@math.spbu.ru