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Abstract
This article is devoted to the development of stochastic

methods of global extremum search. The modification
of the annealing simulation algorithm [Ermakov and Se-
menchikov, 2019] is combined with the covariance ma-
trix adaptation method [Ermakov, Kulikov and Leora,
2017]. In this case, an effective computational approach
[Ermakov and Mitioglova, 1977] is used for modeling
the multivariate normal distribution. The special algo-
rithms of covariance matrices adaptation are suggested
to avoid the obtaining a local extremum instead of a
global one. The methods proposed are successfully ap-
plied to the problem of nonlinear regression parameters
calculation. This problem often arises in physics and
mathematics and may be reduced to global extremum
search. In particular case considered the extremum of
ravine function of 14 variables was found.
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1 Introduction
Computational and machine learning methods, among

them extremum search algorithms, are widely dis-
cussed in the literature [Ermakov, Kulikov and Leora,
2017; Hansen and Ostermeier, 1996; Igel, Hansen and
Roth, 2007; Sergeenko, Yakunina and Granichin, 2020;
Granichin, Volkov, Petrov and Volkova, 2021]. The
problems of finding the extremum of smooth convex
functions with a small number of variables are well stud-
ied [Zhiglyavsky, 1985; Nesterov, 2010]. Stochastic
methods are especially effective in solving problems of
large dimensions.

For uniformly distributed trial points, the probability of
getting into ε-neighborhood of the extremum point has
the order ε1/s, where s is the dimension of the search

area. An optimization problem with a large number of
variables becomes especially difficult for multi-extreme
and ravine functions. Therefore, only adaptive methods
such as simulated annealing [Metropolis, Rosenbluth,
Teller A. and Teller E., 1953] and related genetic algo-
rithms can count on success. Two examples may be pre-
sented.

A. Let us consider an objective function
f(X): f(X)>0, |f(X)|≤M , X∈D⊂Es , where
M is a constant, D is a bounded domain in Euclidian
space Es. The sequence of probability densities may be
introduced [Vladimirova and Ovsyannikov, 2019] :

p̄(T,X)=C(T ) exp

(
−f(X)

T

)
, (1)

where T is real parameter, T∈E1,
C(T )=1

/ ∫
D
e−

f(X)
T dX is normalization constant.

The sequence (1) converges weakly as T→∞ to the
Dirac δ-function concentrated at the global minimum
point of the function f(X). The objective function is
supposed to have a unique minimum, otherwise the
situation gets more complicated. The extremum search
algorithm uses simulation by the Metropolis method
[Metropolis, Rosenbluth, Teller A. and Teller E., 1953;
Vladimirova and Ovsyannikov, 2019].

B. One of the adaptive methods that have been suc-
cessfully used in recent years is the covariance matrix
method, which was originally proposed in 1977 in [Er-
makov and Mitioglova, 1977]. This method was used to
find the maximum of target function f(X), and another
density of the type (1) was proposed:

p(X, ν)=
fν(X)∫

D
fν(X)dX

. (2)

It is assumed that f(X)>0, the integral
∫
D
fν(X) dX

exists and is finite for any finite integer degree ν. If the
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global maximum of the function f(X) is unique, then
the densities (2) also weakly converge (as ν→∞) to the
δ-function concentrated at the point of the global maxi-
mum f(X). The behavior of density (2) in the general
case can be complicated. To simplify the simulation of
density (2), the authors of the paper [Ermakov and Mi-
tioglova, 1977] replaced it with a similar density

p̄(X, k)=Ckf(X)N(X,X(k)
max, B

(k)), k = 1,K. (3)

Here k is iteration number; K is the total num-
ber of search stages; Ck is normalization constant;
N(X,X

(k)
max, B(k)) is normal distribution density; the

mean X
(k)
max is the estimate of f(X) extremum point

calculated at (k−1)-th iteration; B(k) is covariance ma-
trix estimate obtained at (k−1)-th iteration. At every
iteration this matrix reflects the properties of the func-
tion f(X). The disadvantage of this method is the need
to decompose B(k) into the product of two triangular
s2-dimensional matrices to simulate the normal density
N(X,X

(k)
max, B(k)) at each stage of the search. Some ad-

ditional difficulties can arise when the covariance matrix
is close to degenerate.

In [Ermakov and Semenchikov, 2019], the method is
proposed that is free from these drawbacks. This method
was successfully applied to beam dynamics optimiza-
tion problem reduced to quality criterion minimization in
search area of dimension 84. [Vladimirova, Zhdanova,
Rubtsova and Edamenko, 2020]. Now in our paper we
suggest essential modifications of the method mentioned
to avoid too rapid contracting of the scattering ellipsoid
and obtaining local extremum instead of global one.

2 Global extremum search method
We will consider the problem of extremum point find-

ing for a function f(X) defined in a bounded domain
D : X∈D⊂Es. Suppose we are talking about a global
minimum, which is attained at a single point Xmin from
the region D:

f(Xmin)= min
X∈D

f(X). (4)

The method for solving problem (4) is to construct a
sequence of sample point generations to provide a con-
densation of points in the neighborhood of the minimum
point. So the algorithm consists of a number of stages.
Let us present the iterative part of algorithm.

0-th generation. If we have no a priori informa-
tion on the location of global extremum point and the
behavior of objective function, we will scan D us-
ing the uniform distribution of s-dimensional vectors
and calculate f(X) at the points obtained. Let N0 be
the number of trial points composing the zero genera-
tion. After that we choose among them m “best” points
X1, X2, . . ., Xm corresponding to the smallest values of
the objective function, and determine the minimum point
X

(0)
min= arg minX1,...,XN0

f(X):

f
(
X

(0)
min

)
=f(X1) < f(X2) < · · · < f(Xm). (5)

k-th generation. At k-th stage we calculate Nk points
of the k-th generation by formulae

Zj=
1

m

m∑
i=1

η
(i)
j (Xi − X̄) + X̄, j = 1, Nk, (6)

using the “best” pointsX1, X2, . . ., Xm of previous gen-
eration. In formulae (6)

X̄=
1

m

m∑
i=1

Xi=
(
x̄(1), . . . , x̄(s)

)
, (7)

η
(i)
j , i=1,m, j=1, Nk are independent standard normal

variables:

η
(i)
j ∼N(0, 1), Mη

(i)
j =0, M

(
η
(i)
j

)2
= 1,

M
(
η
(i)
j η

(l)
j

)
=0 (i 6= l), i=1,m, j = 1, Nk.

(8)

After that, we perform the selecting of m “best” points
of k-th generation and determine the minimum point
Z

(k)
min= arg minZ1,...,ZNk

f(X):

f(Z
(k)
min)=f(Z1) < f(Z2) < · · · < f(Zm). (9)

After renaming Z to X , the next iteration can be per-
formed.

Covariance matrix estimation. Let us estimate the
parameters of normal distribution at k-th stage.

MZj =
1

m

m∑
i=1

(
Mη

(i)
j

)
(Xi−X̄)+X̄ =

(6−8)
X̄. (10)

(Cov(Zj))
(α,β)

=
(6−8,10)

= 1
m2

m∑
i=1

m∑
l=1

M
(
η
(i)
j η

(l)
j

)(
x
(α)
i − x̄(α)

)(
x
(β)
l − x̄(β)

)
=

= 1
m

m∑
i=1

(
x
(α)
i −x̄(α)

)(
x
(β)
i −x̄(β)

)
, α, β=1, s.

(11)
The results (10), (11) allow us to draw the following con-
clusions.

1) Zj , j=1, Nk are normally distributed vectors with
covariance matrix (11) and expected value (10).

2) The estimates of covariance matrix elements depend
only on “best” points X1, X2, . . . , Xm of the previ-
ous generation.

3) The method presented for random vectors Zj ,
j=1, Nk simulation allows not to calculate and store
the covariance matrix (which is difficult for large
dimension s of search space). There is no need to
decompose the covariance matrix, for example, into
triangular ones. (If the matrix is close to degenerate,
its decomposition would be difficult.)
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The convergence of this algorithm for a unimodal
objective function is proved in [Ermakov and Se-
menchikov, 2019].

Covariance matrix adaptation. Consider the formu-
lae (6) for new generation constructing.

Remark 1. Instead of the vector X̄ , it is more efficient
to use X(k−1)

min that is “the best” sample point of previous
(k−1)-th generation.

Remark 2. With search stage number increasing, the
scattering ellipsoid of normally distributed vectors Zj ,
j=1, Nk quickly contracts to a point and the search prac-
tically does not occur. Therefore, the following two op-
tions are proposed.

1) At each stage we will multiply standard normal ran-
dom variables η(i)j , i=1,m, j=1, Nk in equations
(6) by some constant σ. The optimization expe-
rience shows that this constant can depend on the
stage number: σ=σ(k). As a result, the scattering
ellipsoid of vectors Zj , j=1, Nk, will cover a suffi-
cient part of the domain D and the search will con-
tinue. The value σ(k) is to be determined specially
for each objective function f(X).

2) When modeling, we divide the vectors Zj , j=1, Nk

into L groups, consisting of N (1)
k , . . . , N

(L)
k vectors

correspondingly, N (1)
k + · · · + N

(L)
k =Nk. We ap-

ply different constants σ(l)(k), l = 1, L for differ-
ent groups (l is the group number). So the formulae
for sample points simulation take the form:

Zj=
σ(l)(k)
m

m∑
i=1

η
(i)
j (Xi − X̄) + X̄,

j=1, N
(l)
k , l = 1, L.

(12)

Further, we select ml “the best” sample points from
N

(l)
k points of l-th group, l = 1, L. It is clear that

m1 + · · · + mL = m. After renaming Z to X , we
have the set X1, X2, . . ., Xm of selected points for
the next stage.

Remark 3. To isolate the global extremum, the objec-
tive function is raised to some power p, and the problem
under study takes the form: fp(X)→ min.

The effectiveness of the modifications proposed is con-
firmed by numerical results.

3 Parameters estimating problem for nonlinear
parametric regression

Consider the exponential regression

η(x, θ) =

n∑
k=1

βke
−λkx (13)

with parameter vector θ=(β1, λ1, . . ., βn, λn) of the di-
mension s=2n. Let the vector y=(y1, . . ., yI) be the re-
sult of observations of the experiment at the preassigned
points xi, i=1, I , where I>0 is a given number; vec-
tor x=(x1, . . ., xI) is regression plan. We will estimate

the regression parameter vector θ using the least squares
method:

θ̂ = arg min
θ∈P⊂Es

I∑
i=0

(yi − η(xi, θ))
2
. (14)

Here P is some compact in Euclidean space Es.
The observation values yi, i = 1, I , are simulated as

follows. Let θ̄ be some given vector of parameters. We
will introduce

yi=η(xi, θ̄)+εi, (15)

where εi, i=1, I , are random measurement errors. These
values are independent normally distributed and cen-
tered:

Mεi=0, Mεiεj=0, i 6=j, Dεi=v2, i, j = 1, I. (16)

To find the solution θ̂ of extremal problem (14),
genetic algorithm with covariance matrix adapta-
tion is chosen. For a given plan x=(x1, . . ., xI)
and result vector y=(y1, . . ., yI), the objective
function f(θ)=

∑I
i=0(yi−η(xi, θ))

2 depends
only on s-dimensional vector of parameters
θ=(β1, λ1, . . ., βn, λn). Such a problem arises in
the field of analysis of the experiment results in various
fields of science: mathematics, physics, chemistry,
biology, etc.

4 Numerical results
Regression function and experimental data. The

number of terms in the function (13) is n=7; conse-
quently, the number of parameters s=2n=14. The val-
ues of independent variable x for I=14 are as follows:

x = (0.07, 0.11, 0.14, 0.18, 0.24, 0.27, 0.38,
0.43, 0.44, 0.50, 0.65, 0.96, 1.28, 1.65).

(17)

The result of observations is given by vector

y = (196.22, 191.39, 187.86, 183.26,
176.61, 173.38, 162.10, 157.25, 156.30,
150.74, 137.78, 114.82, 95.60, 77.83).

(18)

The resulting vector y is obtained using simulation by
formula (15) for given vector of parameters

θ̄ = (5.0, 0.1, 10.0, 0.3, 25.0, 0.35, 30.0,
0.5, 35.0, 0.55, 40.0, 0.7, 60.0, 0.9).

(19)

The standard deviation of random measurement errors
is v=0.02. Parameter vector values belong to compact
P :

θ∈P={5≤βi≤70, 0≤λi≤1, i = 1, 14}.
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Figure 1. Dependence of the objective function on iteration number
for five launches of the program.

Genetic algorithm parameters. The numerical ex-
periments were performed for the following values of
method parameters. The number of individuals at each
generation is N=5000. The number of “the best”
vectors at every stage is m=100. The number of
groups of sample points at each iteration is L=2. The
constant multipliers in formulae (12) are σ(1)(k)=1,
σ(2)(k)=k

√
k, where k is generation number. Search

stop criterion is εf=10−5; if fk−1−fk≤εf , then the
search stops.

The results of the genetic algorithm in figures. A
number of plots are presented below to show the work of
the genetic algorithm under consideration.

Figure 2. Five generations of sample points obtained by formulae (6).

Fig. 1 shows fast decreasing of target function with it-
eration number increase. The plot is presented for five
launches of the program.

Fig. 2-4 represent the sample points distribution for
different variants of algorithm. Multivariate normal
distribution is presented graphically for the parameters
λ1, λ2. Each plot shows several generations of trial
points, and the images of the generations are overlap-
ping.

Fig. 2 illustrates the results obtained for the whole sam-
ple simulation by formulae (6) (i.e. N (1)

k =N ,N (2)
k =0 in

formulae (12)). In this case the search area contracts to
a point.

The next case is as follows. At each iteration, the set of
test points was divided in half: N (1)

k =N
(2)
k . For the first

part σ(1)(k)=1, and for the second one σ(2)(k)=k
√
k,

where k is the iteration number. Now scattering ellip-
soids do not contract to a point, which can be seen in
Fig. 3.

Figure 3. Five generations of trial points obtained using the division
of every generation in half.

The next figure (Fig. 4) presents the distribution of
trial points simulated by formula (12) with N (1)

k =Nk/4,
N

(2)
k =3Nk/4. The objective function is raised to the 5th

power. In Fig. 4, one can see that the sample does not
contract to a point with increasing the iteration number.

Figure 4. Seven generations of sample points obtained by formu-
lae (12) for two unequal groups.

All results obtained are gathered in the Table. The best
result is marked with the asterisk.
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Table 1. Optimization results

Two groups of trial points Objective function value

after minimization

N
(1)
k =5000, N

(2)
k =0 0, 1319 · 10−2

N
(1)
k =0, N

(2)
k =5000 0, 5638 · 10−4

N
(1)
k =2500, N

(2)
k =2500 0, 2053 · 10−4 (∗)

N
(1)
k =3750, N

(2)
k =1250 0.2098 · 10−4

N
(1)
k =0, N

(2)
k =5000 0, 4819 · 10−4

Raising to the 5thpower

N
(1)
k =1250, N

(2)
k =3750 0, 3111 · 10−3

Raising to the 5thpower

5 Conclusion
We present genetic stochastic algorithm using normal

distribution with covariance matrix adaptation and in-
troduce some modifications. This method allows one
to avoid calculating the covariance matrix, and this is a
great advantage. We offer a number of modifications, the
effectiveness of which is tested on a practical problem.
The method in several variants was applied to param-
eters estimating problem for nonlinear regression. The
worst result was obtained for the method [1] without
any modifications. In this case one can observe scat-
tering ellipsoid contracting to the point, and trial points
cannot leave the vicinity of the local extremum point.
First of modifications is introduction of correcting mul-
tiplier in sample points modeling formula. Second is
using different multipliers for different groups of sam-
ple points. (One can consider the using of multipliers to
be mutations of individual properties.) As a result, the
trial points cover a sufficient part of the domain D and
avoid the contraction to local extremum point. These
modifications led to significant improvement in the re-
sult. Third modification is raising the objective function
to a sufficiently large degree, which makes it possible
to isolate the global extremum point. This is a useful
technique that requires further research. When all indi-
viduals were divided into two equal parts with using the
factors σ(1)(k)=1, σ(2)(k)=k

√
k, where k is generation

number, the best value of the objective function was ob-
tained for a given stop criterion εf=0.1·10−4. The num-
ber of iterations in all the cases does not exceed 9.

The objective function near a minimum has a ravine-
type shape; this is indicated by the elongated shape of the
scattering ellipsoid. The proposed modified method suc-
cessfully coped with minimization problem. Attempts to
use the gradient method in this task were unsuccessful.

The research under discussion was presented by oral
contribution at the 10th International Scientific Confer-

ence on Physics and Control (PHYSCON 2021, 4-8 Oc-
tober, 2021, Fudan University, Shanghai, China).

Acknowledgements
The work is supported by Saint Petersburg State Uni-

versity, project ID: 93024916.

References
Ermakov, S.M., Kulikov, D.V. and Leora, S.N. (2017).

Towards the analysis of the simulated annealing
method in the multiextremal case. Vestnik St. Peters-
burg University, Mathematics, 50(2), pp. 132–137.

Ermakov, S.M. and Semenchikov, D.N. (2019). Ge-
netic global optimization algorithms. In Communica-
tions in Statistics, Part B: Simulation and Computa-
tion. https://doi.org/10.1080/03610918.2019.1672739.

Ermakov, S.M. and Mitioglova, L.V. (1977). On extreme
search method based on the estimation of the covari-
ance matrix. Automation and Computer Engineering,
5, pp. 38–41 (in Russian).

Granichin, N., Volkov, G., Petrov, Y. and Volkova, M.
(2021). Randomized approach to determine dynamic
strength of ice. Cybernetics and Physics, 10(3),
pp. 122–126.

Hansen, N. and Ostermeier, A. (1996). Adapting arbi-
trary normal mutation distributions in evolution strate-
gies: The covariance matrix adaptation. In Proc. of
1996 IEEE Conference on Evolutionary Computation
(ICEC’96), Berlin, Germany, May, pp. 312–317.

Igel, C., Hansen, N. and Roth, S. (2007). Covariance ma-
trix adaptation for multi-objective optimization. Evolu-
tionary Computation, 15(1), pp. 1–28.

Vladimirova, L., Ovsyannikov, D. (2019). Random
search for global extremum of a function using Markov
chains simulation. Journal of Physics: Conference Se-
ries. 1238, 1, 012073.

Metropolis, V., Rosenbluth, M., Teller, A. and Teller, E.
(1953). Equations of state calculations by fast comput-
ing machines. J. Chem. Phys. 21, pp. 1087–1092.

Nesterov, Y. (2010). Convex optimization methods.
Moscow: MCCME (in Russian).

Sergeenko, A., Yakunina, M. and Granichin, O. (2020).
Hamiltonian path problem solution using DNA com-
puting. Cybernetics and Physics, 9(1), pp. 69–74.

Vladimirova, L.V., Zhdanova, A.Y., Rubtsova, I.D. and
Edamenko, N.S. (2020). Genetic stochastic algorithm
application in beam dynamics optimization problem.
Stability and Control Processes. In Proc. of the 4th In-
ternational Conference Dedicated to the Memory of
Professor Vladimir Zubov, Springer International Pub-
lishing (Lecture Notes in Control and Information Sci-
ences - Proceedings).

Zhigljavsky, A.A. (1991). Theory of Global Random
Search (Mathematics and its Applications, 65), edited
by J.D. Pinter. Springer-Verlag, Dordrecht.


