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Abstract—The author gives an overview of his discoveries along the lines of new laws and new phenomena. In-
cluded are the following sections: explanation of atmospheric phenomena, such as the occurrence of atmospheric 
electricity and the presence of precipitation at low supersaturation of water vapor in the atmosphere; development 
of classical laws of thermodynamics (Laplace, Young and Kelvin equations, phase rules, Gibbs adsorption equa-
tions and laws of Konovalov), consideration of nano-corrections to the Gibbs–Curie principle and the Gibbs phase 
equilibrium condition for a soluble solid particle. Section of new phenomena open surface properties of water and 
wetting anisotropy. A significant part of the review is the section “Mechanochemistry: laws and new phenomena.” 
Here the tensors of chemical potential and chemical affinity are characterized, the mechanochemical effects of dis-
solution and stress corrosion, mechanochemical effects in redox reactions involving iron and the mechanochemical 
effect sign of deformation in wetting phenomena are described. The theme of new phenomena is continued by the 
strong dependence of the contact angle on the pressure in the liquid and the temperature pinning of the contact angle. 
The final part tells about the discovery of a new thermodynamic potential, called the J-potential. The necessity of 
introducing such a potential is manifested in the thermodynamics of solid or mixed systems subjected to complex 
mechanical stresses. Three applications are demonstrated for J-potential: in the derivation of the classical Gibbs 
and Neumann equations, in the thermodynamics of thin films and in the theory of strength of materials.
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Science is the most important, the most beautiful and

necessary in a man’s life, it has always been and

will be the highest manifestation of love, only with it

alone man will conquer nature and himself.

A.P. Chekhov

1. INTRODUCTION

Science and technics (technology in chemistry) 
are things different but closely related. Scientists do 
science, they make discoveries and are advanced team of 
researchers. Engineers are engaged in technology. They 
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are thinking about using discoveries for the benefit of 
mankind and make inventions. During the time of Peter 
I and Lomonosov, crafts were called arts (Lomonosov 
considered metallurgy as the most important of the 
arts). Therefore, with creation of the Russian Academy 
of Sciences and Arts, Peter I shrewdly expected that 
the simultaneous going to the academy of scientists 
and engineers will be a favorable background for the 
development of science. But he distinguished between 
these categories of members of the academy: significant  ly 
higher payments were made to scientists, than to “artists.” 
This difference would quickly disappeared over time. 
Science has never been and never will be understandable 
neither to ordinary people, nor to journalists, nor to power 
structures. Often it is the technique that is taken for 
science, and, therefore, holding such a graduation within 
the academy became unrealistic.

In Soviet times, there was no difference between 
scientists and engineers as members of the Academy 
of Sciences of the USSR (on the contrary, the category 
of administrators imperceptibly increased, which now 
is especially intensified after the forcible introduction 
of physicians and agricultural workers in the Russian 
Academy of Sciences). On the contrary, the difference 
between discovery and invention was colossal. For 
an ordinary invention (we will not discuss patenting 
issues here), it was a fee of 150 rubles (how can we not 
remember the toilet here, pasted over with copyright 
certificates, in the Soviet film “Genius!”). The payout 
for a discovery was incomparably large and amounted 
to several thousand rubles. Even more important was the 
halo of glory and honor that surrounded every discovery. 
Becoming an author of a discovery with receiving the 
corresponding certificate from the Institute of Patent 
Examination was the dream of every Soviet scientist.

But let us see if it is really necessary to register 
discoveries. If an invention is something new, invented 
by man, then a discovery (like the discovery of America) 
is what is always was, but was invisible and unknown. 
To make a discovery, you need to be very careful and 
thoughtful, not to mention that you just need know a lot. A 
thousand scientists may pass by some fact and not notice 
it, and the thousand and one will notice. But if he does 
not notice, he will have someone to follow, for if anything 
is really exists, it will be discovered sooner or later. 
The destiny of discoveries and inventions is completely 
different. If the discovery is reported immediately and 
how broadly as possible, the invention is kept secret 

for the time being. The discovery priority is determined 
by the date of the first publication. In this way, when a 
scientist applied for a discovery, he already was definitely 
its author. Only unresolved the question is whether it is 
possible to qualify an established new scientific fact as 
a discovery.

Here we come to the well-known position that not 
every novelty is a discovery, although every scientific 
publication must have novelty. A discovery on the empty 
place should correspond to hold something fundamental 
and very important new to science. A discovery in some 
developed department of knowledge should turn over 
the known conceptions. All this was to be assessed by 
an expert, and, you see, subjectivism is not due to run. In 
the late 80s, we applied for registration of the discovery 
of wetting anisotropy (more on this below) and received 
a negative review prepared by the V.A. Kabanov’s chair 
at the Moscow State University. After my meeting with 
him at the chair and the clarifications made, the review 
was changed to positive. I am afraid to make a mistake, 
but by then, discoveries were being registered only 
in three countries (except the USSR, I still remember 
in Spain and Mongolia). In the rest of the world such 
registration was considered a pointless bureaucratic 
procedure. I then (since 1989) was a People’s Deputy of 
the USSR and submitted to the Council of Ministers of 
the USSR memorandum with a proposal order to stop the 
registration of discoveries. The corresponding decision 
was made. In this way, not in Russia, but still in the USSR, 
a decision was made on the termination of the registration 
of discoveries.

This was a blow to the scientific bureaucracy, now 
incredibly expanded. Now to calculate salaries, the value 
of publications is estimated from power of scientometrics, 
but the discovery in it is not even mentioned. The value 
of an article is not determined by its content, but by the 
journal in which it is published. But the inalienable right 
of the author is decide where to publish. There was a 
time when President RAS Yu.S. Osipov urged to publish 
in domestic journals. Now the situation different, and 
when I even ask my associates to publish something in 
a Russian journal, they answer that they are afraid of 
losing their salary. Returning to discoveries, I want to 
note that there is a journal for publishing discoveries 
in Russia. These are Doklady (Reports) of the Russian 
Academy of Sciences. At least that was for sure in the 
“Physical Chemistry” section, where I, for many years, 
was (together with academician I.I. Moiseev) member of 
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the editorial board. Although this circumstance and the 
role of Doklaly could be taken into account in the Russian 
scientometrics to make it more active and fair.

Patent experts believe that there are two kinds of 
discoveries: the discovery of new laws and discovery of 
new phenomena. As you know, the most general laws are 
established by thermodynamics. At 19 century it was the 
central and most fashionable science, but now has lost its 
brilliance, although nobody canceled its meaning. Now to 
engage in thermodynamics is dishonorable and archaic, 
but a true connoisseur in thermodynamics is extremely 
difficult to be found. In the region of surface phenomena, 
among my peers in the world, such specialists could 
be count on fingers, and almost all of them were my 
friends. And my personal property to this elite group of 
scientists was due the fact that I myself was a product 
of the St. Petersburg thermodynamic school (headed 
by A.V. Storonkin in my time). I would call this school 
great and comparable in the world only with the van 
der Waals thermodynamic school in Holland (for more 
details, see [1, 2]). My qualification turned into a kind of 
curse because the ability to see thermodynamic mistakes 
at first sight often lead to spoilage human relations with 
proud authors, who did not attach much importance to 
thermodynamics. Or, even worse, I had to fix the mistakes 
of our great scientists of the past (such as academicians 
A.N. Frumkin [3] and B.V. Derjaguin [4]), I wrote that I 
“execute myself” by doing this.

And what about the classics, Gibbs and van der Waals, 
did they have any mistakes? There is a famous legend 
about Gibbs as a scientist without a single mistake, 
and this is almost truth. Having studied Gibbs up and 
down (we are talking about his famous work “On the 
equilibrium of heterogeneous substances”), I found only 
one error in the section on the elasticity of liquid films [5]. 
The creator of the only correct chemical thermodynamics 
really worked practically without mistakes. As for van 
der Waals’ errors, I did not specifically deal with them, 
but noticed the presence of an error associated with an 
excluded volume in the equation of state [6]. Well, am 
I myself absolutely sinless? If! I think about a dozen 
errors in publications (the number of my publications 
approaches 800), but all of them are fixed by now. The 
fact is that my mistakes do not strike the eye, but are 
visible to me, so, in basically, I found them myself. There 
was only one exception, when my mistake was found by 
our common with F.M. Kuni postgraduate student A.K. 
Shchekin (now Corresponding Member of the Russian 

Academy of Sciences), which required to reformulate the 
foundations of nucleation thermodynamics on charged 
centers [7].

It should be noted here that errors can be different. 
It is one thing to make a mistake due to inattention and 
still beyond the principles, and another thing is to repeat 
rippling frontal attacks on Gibbs’ thermodynamics. 
Homegrown “geniuses” create their own variants of 
thermodynamics and exhibit a greater inventiveness 
in their defense. Butler [8] was one of the first, 
whose theory (with rigid adsorption layer) was quite 
slender, but incompatible with Gibbs’ thermodynamics.  
A.A. Zhukhovitsky was Butler’s follower in the USSR  
[9, 10], whose school is still operating. But there are other 
followers of Butler in the world, against which I had to 
speak. My criticism [11] was published in the Journal 
of Physical Chemistry along with a short answer by the 
authors of type “the fool himself” without delving into my 
arguments [12]. Outraged J.C. Ericsson (Sweden), one of 
the world leaders in thermodynamics, tried to intervene in 
this story, but the editor-in-chief of the journal answered 
him: the both points of view are published, a reader will 
decide for himself which of them is right. A very weak 
position! Only a completed discussion would be useful 
to the reader. Here’s a contrasting example: paired with 
the same Ericsson, we fought for Gibbs’ thermodynamics 
versus some kind of “Hermann’s thermodynamics” in a 
grueling discussion with a group of Western scientists on 
the pages of the journal Surface Science (I provide a link 
only to our first article in this series [13]). The discussion 
went to its logical conclusion, and, I think, was very 
instructive for readers. I have brought only two examples, 
but they were many. The protection of Gibbs’ authentic 
chemical thermodynamics was a noble cause throughout 
my life and remains so today [14] (now together with my 
pupils, which makes me happy).

Since the vast majority of my researches is of a 
thermodynamic nature, they are so or otherwise associated 
with the discovery of new laws. In thermodynamics of 
surface phenomena, it is difficult to find a pattern that 
would not be subjected to clarification by my efforts. 
But the clarification of something already discovered 
can hardly be considered as a new discovery, although 
everything depends on the significance of the clarification. 
In this part, below will be presented only the most 
significant results. With another hand, thermodynamic 
work can pretell new phenomena and stimulate their real 
discovery. This has happened more than once and will be 
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also presented below. The discovery of new phenomena 
often happens by chance, and not every experimentalist 
can immediately understand what he has done. It was 
repeatedly that I had to explain to people what they 
discovered, create a theory of a new phenomenon and put 
new experiments for its better disclosure. Thus, I became 
a full-fledged participant of the discovery team. It will be 
nice to present similar discoveries below.

Finally, another type of important or even the most 
important works related to the explanation of phenomena 
observed by mankind from time immemorial. On a 
historical scale, experiment was introduced into science 
(through the efforts of Galileo and other pioneers) 
relatively recently. Before scientists simply observed 
nature and generalized their observations within the 
framework of natural philosophy (remember the 
8-volume physics of Aristotle). But there are grandiose 
phenomena such as atmospheric electricity, which even 
after that remained just to observe, and, of course, try to 
clarify. If for millennia there was no strict explanation of 
this phenomenon, and we succeeded, then it is something. 
This is where I will start.

2. EXPLANATION OF ATMOSPHERIC  
PHENOMENA

Once I was walking with a participant in many 
experiments with clouds, an outstanding professor of 
meteorology V.G. Morachevsky, and pointing to a large 
cloud, he asked: “How much water do you think is in it?” 
I answered at random: “I think more than a ton,” and was 
immediately corrected and stunned: “There are a hundred 
thousand tons of water in this cloud.” Yes, reader, we are 
invading the scientific field, where everything is grandiose 
and the gigantic forces of nature demonstrate their power. 
Atmospheric electricity forms a particularly clear and 
impressive picture.

2.1. Atmospheric Electricity

Of course, humanity has been thinking about thunder 
and lightning throughout its history, but it became 
possible to talk about atmospheric electricity only after 
the discovery of electricity itself, i.e. after 1800, when 
the world’s first battery,”voltaic pile,” appeared. The “age 
of electricity” that followed was marked by an incredible 
number of important discoveries and inventions, which 
finally led to the discussion of atmospheric electricity 
with the creation of more than a dozen theories and the 
involvement of prominent physicists and Nobelists in 

the discussion. I will quote two of them. The first one, 
the discoverer of the electron, Joseph Thomson, believed 
that if it was possible to prove that an external electric 
field affects the surface tension of water with its sign (he 
himself failed in this), then the origin of atmospheric 
electricity would be explained [15] (looking ahead, I note 
that this is exactly what we managed to do). Thomson 
proceeded from the fact that when water condenses on 
atmospheric ions, a drop is formed with a charge in the 
center; therefore, the surface of the drop is in the electric 
field.

Another Nobelist, one of the founders of quantum 
electrodynamics, Richard Feynman, in his famous course 
of theoretical physics (published in our country in the 60s 
in the form of a 9-volume series of “Feynman Lectures on 
Physics”) singled out a whole chapter on the problem of 
atmospheric electricity [16]. Unlike Thomson, Feynman 
did not put the problem of nucleation at the forefront and 
considered the discovery of cosmic rays to be the most 
important in this area. He analyzed the ascending and 
descending currents of air and water vapor, taking into 
account many transient factors. It is quite impressive 
that Feynman explained the sudden onset of a cold 
wind before a thunderstorm. However, some facts were 
taken from the experiment and simply used as a given. 
The most important of these are the negative charge of 
the Earth, the polarization of the clouds in spite of this 
(with a positive charge at the top and a negative charge 
at the bottom), and the predominantly negative charge of 
rain. Obviously, the latter follows from the penultimate 
one, and the negative charge of rain contributes to the 
negative charge of the Earth. But Feynman believed that 
the charge of the Earth is formed by lightning (during 
a thunderstorm, the difference in electrical potentials 
between the lower part of the cloud and the Earth reaches 
one hundred million volts). One can argue here: about 
300 thunderstorms occur on Earth every year, and there 
are an innumerable number of simple rains. However, it 
does not matter, because both factors work in the same 
direction. As regards the separation of charges in a cloud, 
Feynman cited two explanations available in the literature 
and criticized them. In essence, he sharpened the problem, 
but did not solve it. The question remains: what kind of 
gigantic power is this machine that, despite the charge of 
the Earth (creating a potential gradient of 100 V/m near 
its surface), separates the charges in the cloud?

For further progress, it was necessary to develop the 
theory of nucleation (condensation) of water on charged 
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centers, taking into account the surface potential of 
water. This value, denoted as Δφ0 represents a jump 
in the electric potential during the transition from air 
to water and is due to the spontaneous orientation 
of the dipoles of water molecules on its surface (the 
subscript “zero” indicates the absence of an external 
electric field). There have been talks about Δφ0 for 
a long time. Frenkel considered it to be the result of 
dipole-quadrupole interaction [17, p. 329], and the head 
of our (we can safely add the world) electrochemistry 
A.N. Frumkin determined it experimentally as + 0.1 V  
[18], i.e. with a positive sign. However, even with 
regard to the sign of the water potential, there was wide 
disagreement in the world. To overcome it, we (I mean 
the staff of the Laboratory of Surface Phenomena of the 
Faculty of Chemistry of Leningrad State University) 
chose to measure the potential on a water jet, i.e. under 
dynamic conditions, clearly showing in which direction 
the sign of the potential changes when equilibrium is 
established. Surprisingly, the obtained the result + 0.1 V 
exactly coinciding with the result of [18]. This pleased 
A.N. Frumkin, and he submitted our paper to Doklady 
[19], but said that he would have done it even if the 
sign of our potential turned out to be opposite. Thus, the 
dispute about the sign of the surface potential of water 
was resolved.

Inspired, I rushed to formulate the thermodynamics 
of water condensation on charged centers, published a 
series of articles here and abroad, and, it seems, explained 
everything. This was sympathetically observed by my 
friend and classmate in the Faculty of Physics, the 
outstanding theoretical physicist F.M. Kuni (a student 
of Academician V.A. Fock, who explained to me in his 
student years that the difference between an Academician 
and a professor is the same as between a professor and 
a student). In view of the importance of the topic, we 
decided to continue it by taking a joint postgraduate 
student. It turned out to be A.K. Shchekin, and the reader 
already knows the rest from the introduction: my whole 
theory went into the wastebasket. Instead, publications 
appeared that corrected the situation [7, 20] and developed 
the theory further [21–25].

History is very instructive, because in order to give a 
correct theory, it was necessary to go through one more 
discovery that overturned the existing ideas. Let me 
explain this in more detail. Applying thermodynamics to 
solids, Gibbs discovered the dualism of surface tension, 
which consists in the fact that the thermodynamic 

definition of surface tension as the work of formation of 
a unit of a new surface (Gibbs’ own designation σ) and 
the mechanical definition as surface force per unit length 
(our designation γ) lead to different σ ≠ γ. At the same 
time, for liquids, as it was believed, always σ = γ. So it 
turns out not always, as evidenced by the formula for a 
spherical drop with a charge in the center [7, 20]

Fig. 1. A drop of liquid α of radius r with a central charge q 
in a gas-vapor mixture β.

(1)

where Р is the excess surface polarization of the drop and 
D is the electric induction (for a spherical drop of radius r 
with a central charge q we have D = q/r2). At one time this 
was not noted, but now I state that Eq. (1) is a discovery. 
The discovery of the dualism of surface tension for liquids 
in an electric field, which turned the then prevailing ideas 
(on the basis of which the first version of the theory was 
created). Taking into account Eq. (1), both the surface 
tensions can be monitored in theory, but, on the other 
hand, any ratio can be expressed in terms of either σ or 
γ. I note that in these works the electric field is directed 
along the normal to the surface of the liquid. The general 
case of an arbitrary direction of the electric field towards 
the liquid surface was considered in [26].

Let us now turn directly to the results of [20–25]. The 
object of consideration is a drop of radius r with a bulk 
phase α and a central charge q, located in the gas phase 
β (Fig. 1). In a spherically symmetric system, the radial 
direction is considered positive, so now we will estimate 
the jump in the electric potential during the transition from 
the liquid phase to the gas phase (in particular, for water, 
one should write Δφ0 = –0.1 V). Surface polarization can 
be written as [22]

(2)
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where Р0 = 4πΔφ0 is the spontaneous surface polarization 
in the absence of an external electric field and r is the 
droplet radius. The coefficients of linear and quadratic 
polarizability of the surface layer were estimated as

and will be proportional to exp(–W/kT). In this case, all 
the above terms linear in charge are eliminated.

To reveal the effect of the sign of the charge, the 
expression for the chemical potential of the condensate 
is more useful and clear [22]

(3)

where ε is the permittivity, ρ is the number of molecules 
per unit volume, Γ is the adsorption of the condensate, 
the indices α and β refer to the liquid and, respectively, 
to the gas phases, the subscript ∞ marks the quantities 
related to the flat liquid-vapor interface in the absence of 
an electric field, the numerical factor κ depends on the 
nature of the condensate (κ ~ 1.4 for water).

The expression for the work of drop formation has the 
form [7, 20, 22, 23]

(4)

(5)

where Ωn is the minimum work of ion transfer from the 
gas phase to the liquid phase. Small parameters are given 
by expressions

where μ is the chemical potential of liquid molecules. In 
Eq. (4) there are linear in charge terms –4πР0∞q, 8πγ∞r2δ5 
and Ωn, which were so lacking for J. Thomson. It would 
seem that their presence should also be preserved in the 
expression for the nucleation rate, which is proportional 
to exp(–W/kT) in the case of homogeneous nucleation. 
However, in contrast to homogeneous nucleation in 
supersaturated vapor, condensation of droplets around 
ions occurs even in unsaturated vapor. This means that 
the work W of drop formation on an ion has not only a 
maximum W(rmax) at a certain radius r = rmax, but also 
a minimum W(rmin) with a negative value of W at r = 
rmin. In this case, the nucleation rate is set not by the 
work of nucleus formation, but by the activation barrier 
of nucleation ΔW, which is determined as the difference 
between the indicated values:

( ) ( )max min ,W W r W r∆ = − (6)

(7)

(8)

in which, in comparison with Eq. (4), the parameters 
are added

where χ is the compressibility of the liquid phase. Let us 
now compare the chemical potentials μ+ and μ– of liquid 
molecules in drops of the same size, but with charges 
opposite in sign. For their difference from Eq. (7) we 
obtain in the leading order

(9)

The sign of the right side of Eq. (9) is opposite to the 
sign of Δφ0. For water Δφ0 = –0.1 V, and, consequently, 
the right side of Eq. (9) is positive, i.e. the chemical 
potential of molecules in a drop with a positive charge is 
higher than in a drop with a negative charge. Substance 
always moves from places of higher chemical potential 
to places of lower chemical potential. This means 
that if identical drops of water were randomly formed 
on ions of different signs, then the pumping of water 
from a positively charged to a negatively charged drop 
would immediately begin. In other words, under normal 
(equilibrium) conditions, negatively charged droplets 
should be larger than positively charged ones. Larger 
means heavier, and then the gravitational field carries 
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negatively charged drops to the lower part of the cloud, 
which explains the separation of charges. Thus, Eq. (10) 
makes it possible to explain the separation of charges in 
a cloud.

The whole process of charge separation can be traced 
as follows. Due to the ionizing action of cosmic rays, the 
atmosphere always contains a diverse set of free ions 
and other charged particles. In the presence of water 
vapor, they all become condensation centers. Due to 
the existence of the surface potential of water, droplets 
on negatively charged centers grow faster and become 
larger and heavier than positively charged droplets. 
Then the gravitational field of the Earth, overcoming the 
polarizing effect of its own charge, transfers negatively 
charged drops to the lower part of the cloud. Negatively 
charged rain pours from it and lightning strikes, giving 
our planet a negative charge. From this explanation, it is 
clear that the mysterious super-powerful machine that 
separates charges in the atmosphere is nothing but the 
Earth’s gravitational field.

2.2. Precipitation at Low Supersaturation  
of Water Vapor in the Atmosphere

In addition to the origin of atmospheric electricity, 
there are other mysteries in meteorology. The most 
important of them strikes with the simplicity of the 
question: why is it raining? Rain is a phase process 
(water condensation), which requires a certain degree 
of supersaturation of the parent phase (water vapor) 
for its implementation, i.e. so that the partial pressure 
of water vapor p or the chemical potential of vapor μ 
are respectively higher than the equilibrium values р∞ 
and μ∞ for a flat surface. The degree of supersaturation  
ζ ≡ (р – р∞)/р∞ and the chemical potential are related by 
the relationship

To better explain the problem, let us see how the 
chemical potential of water changes as the condensate 
film thickens on a spherical wetted particle [27, 28]. On 
Fig. 2 μ is the chemical potential of water molecules in the 
film and h is the film thickness, μ∞ is the value of μ in an 
equilibrium macroscopic water-vapor system with a flat 
interfacial surface. This state corresponds to saturation, 
and supersaturation corresponds to the difference  
μ0 – μ∞ > 0. Consider the dependence of the chemical 
potential on the thickness of the condensate film. In the 
region of small h and undersaturation μ – μ∞ < 0, we 
obviously have according to the laws of adsorption: the 
higher the chemical potential, the thicker the adsorption 
film. In the region of large h, the macroscopic drop must 
obey the Kelvin equation (we will return to it later), 
according to which (taking into account the fact that 
the drop radius also increases with the film thickness)  
dμ/dh < 0. An increase at small and a decrease at large 
h means the presence of a maximum of the chemical 
potential at some value μ0 (Fig. 2). The difference 
corresponds to the limiting (we will say “threshold,” 
because the word “limiting” is usually associated with 
the spinodal) supersaturation, above which the energy 
barrier of nucleation disappears, and water condensation 
occurs freely. Below, each value of the chemical 
potential corresponds to two nuclei: stable (point 1), 
which is formed spontaneously without the expenditure 
of work, and unstable (point 2), the transition to which 
requires work, called the energy barrier of nucleation. 
In the previous section, we encountered such a situation 

(10)

According to experiments with a cloud chamber, the 
condensation of water even on ions requires a 4.5-fold 
supersaturation (an 8-fold supersaturation is required for 
a purely homogeneous condensation). There is no such 
degree of supersaturation in clouds. Water condensation 
occurs at an insignificant degree of supersaturation (say, 
ζ = 0.02), i.e. almost barrier-free (according to (10), at 
small ζ, the chemical potential measured in units of kT 
from is also small). It would seem that there should not be 
any rain, but it is. Where does such a miracle come from?

Fig. 2. Dependence of the chemical potential μ on the thickness 
of the germ film of water h on the insoluble core. Points 1 
and 2 correspond to a stable and unstable germ, respectively.
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for drops on charged nuclei. Now we see that it is 
characteristic of any condensation nuclei, not necessarily 
charged ones.

It is clear from the consideration that if we find the 
reason why the limiting supersaturation of water in the 
atmosphere can actually become very small, then we 
will explain the existence of rain. The thermodynamic 
theory also solved this problem, and it turned out that 
two independent mechanisms can lead to ultralow 
limiting supersaturation. The first is disjoining pressure 
(a term from colloid science associated with the play of 
molecular forces in a thin film) during the formation of 
a thin film nucleus on a wetted core (most often silicate 
sand particles originating from numerous deserts). The 
second mechanism is the dissolution of the nucleus itself 
during the formation of the nucleus (the role of such nuclei 
is played by salt particles formed in the atmosphere when 
ocean spray dries up). Let us consider both mechanisms 
separately.

Disjoining pressure. In the 1930s, B.V. Deryagin 
discovered one of the most important quantities of 
colloidal science, the disjoining pressure of thin films Π. 
One of his definitions reads [29]

where vα is the molecular volume of the liquid, which 
is practically constant far from the critical point. The 
integration of Eq. (13) gives

(11)

(12)

where рα is the pressure in the equilibrium mother bulk 
phase α of a thin film at the same temperature and 
chemical potentials as in the film, and рβ is the external 
pressure on the film. Equation (11) implies that the film 
is flat. When passing to a spherical film of radius r, the 
relation [30, p. 70]

where the first term on the right hand side is the Laplace 
capillary pressure (we will talk about it in more detail in 
another section). The value γ∞ is the surface tension of a 
macroscopic drop (at r = ∞). It should be noted that the 
concept of disjoining pressure, like the phenomenon itself, 
is beyond the scope of Gibbs chemical thermodynamics. 
The task of introducing disjoining pressure into the 
thermodynamic apparatus and determining its place in 
chemical thermodynamics fell to my lot [31, 32].

Let us now show how to build a quantitative theory for 
a one-component germ in the form of a liquid film on the 
nucleus [27, 28]. Under isothermal conditions, the Gibbs-
Duhem equation for the phase α is simplified to the form

(13)

(14)

(15)

Substituting Eq. (12) into Eq. (14), taking into account 
the equality of phase pressure рα

∞ and рβ
∞

 and the 
constancy of the external pressure рβ (due to the presence 
of air in the atmosphere), leads to the relation

where rn is the radius of the wetted core (obviously,  
rn + h = r). Eq. (15) characterizes the dependence μα(h) in 
Fig. 2. True, above we described the ascending branch in 
adsorption terms (assuming the film of the nucleus to be 
an adsorption layer), and now (assuming the nucleus to 
be a thin film) in terms of the disjoining pressure. There 
are two opposing terms in square brackets, leading to the 
appearance of a maximum.

Equation (15) can be written as

(16)

(17)

For water films on quartz, the experiment gives a 
dependence of the form [33]

where K and l are constants. Taking into account Eq. (17), 
using the experimental values of K and l, from Eq. (16) 
for a wettable core with a radius of 10 nm, the threshold 
supersaturation ζ0 ≈ 0.1 was calculated [27]. This confirms 
the role of the disjoining pressure in the creation of rain 
at ultra-low supersaturations in the atmosphere.

Soluble condensation nuclei. Let us now complicate 
the problem by assuming that the core is soluble. Then 
the nucleus will be not just a liquid film, but a film of 
a solution of the substance of the core, and Eq. (15) is 
replaced by the expression [34]

(18)
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where b ≡ (μ – μ∞)/kT, x is the mole fraction of the core 
substance in the solution and is the partial molar volume 
of water in the solution. Figure 3 illustrates the situation 
for the soluble core graphically. The difference r – rn 
is taken as an independent variable. Until the core is 
dissolved, this difference is the thickness h of the film 
of the nucleus, and, after the complete dissolution of 
the core (rn = 0), the radius of the drop of the solution 
of the substance of the nucleus. The dotted line shows 
the contributions of individual terms in Eq. (18). Of 
particular interest is the contribution from the solubility 
of the nucleus. It can be seen that the dependence b(h) 
in the presence of the nucleus even differs qualitatively 
(in the sign of the derivative) from the dependence b(r) 
in the case of complete dissolution of the core. It is also 
interesting that there are two maxima in b (in fact, it was 
discovered in [34] that the threshold supersaturation may 
not be the only one).

Using a formula like Eq. (17), in [34], numerical 
estimates of threshold supersaturations were carried out 
in the presence of cores of NaCl, Na2SO4, and CaSO4 
salts with decreasing solubility at a temperature of  
271 K. All of them indicate that the threshold 
supersaturation is small. For example, for the original 
CaSO4 core containing 125000 undissociated molecules, 
0.13 was obtained. The values we are talking about now 
correspond to the left maximum in Fig. 3. The theory 
is constructed similarly for the right maximum, when 
the core has completely dissolved and now exerts its 
influence through a fixed amount of the substance of the 
core present in the solution drop [35, 36]. The behavior of 
surfactant cores, the effect of adsorption layers, and many 
other nuances for soluble cores can be found in [37–40].

Finally, concluding the section related to the 
explanation of atmospheric phenomena, we note 
the following. As was mentioned above, there are 
other theories. However, only our theory is built on a 
thermodynamic basis, which means that it is the most 
justified. The rigor that comes from thermodynamics 
cannot be refuted.

3. DEVELOPMENT OF THE CLASSICAL LAWS  
OF SURFACE PHENOMENA

Everything that was done in the theory of surface 
phenomena before Gibbs is called the traditional theory 
of capillarity. In essence, it is formed by the equations of 
Laplace and Young for surface tension. The outstanding 
mathematician, mechanic and astronomer Pierre-Simon 

Laplace was 24 years older than Thomas Young, who 
was almost the same age as Napoleon. Both of them 
treated Laplace with great reverence. Joung wrote an 
article about Laplace in the Encyclopædia Britannica, and 
Napoleon (he was a corresponding member of the Paris 
Academy of Sciences, where he became close to Laplace) 
tried to involve him in government activities and even 
included him in the government for a while. Compared 
to (the count under Napoleon and the marquis after the 
restoration) de Laplace, in an embroidered gold uniform 
with stars, Young looked very modest, and I would 
characterize him with only one word: genius. Starting to 
do something from the age of two, at the age of 21 he was 
elected to the Royal Society as a doctor for his work on the 
accommodation of the lens of the eye. Later, he explained 
color vision and made contributions to various fields of 
science, and not only natural ones. Young’s modulus in 
mechanics, the wave theory of light, that’s all he is, but 
how do you like the decoding of Egyptian hieroglyphs! 
One of Young’s obituaries was entitled “The Last Man 
Who Knew Everything.”

Young survived both the great Frenchmen and died in 
1829, and 10 years later J.W. Gibbs was born. But, since, 
unlike Young, Gibbs published at a very mature age, a 
half-century intermission formed in the development of 
the theory of capillarity. However, while the theory of 

Fig. 3. Dependence of quantity b ≡ (μ – μ∞)/kT on the 
difference r – rn in the case of a soluble core (solid line) 
according to Eq. (18) [34]. Dashed lines 1, 2, and 3 are the 
contributions of the first, second, and third terms on the right 
hand side of Eq. (18).
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capillarity was languishing in anticipation of Gibbs, it 
was visited by the “king of Victorian physics” William 
Thomson (the future Lord Kelvin) and left there his 
famous equation (we will call it the Kelvin equation so 
as not to be confused with the work of Joseph Thomson) 
about the vapor pressure of a small drops [41]. In fact, 
we have already used it in explaining atmospheric 
phenomena (for example, the second term on the right 
hand side of Eq. (18) in the previous section). The Kelvin 
equation is the central relation of the theory of nucleation, 
and is adjacent to the main laws of the traditional theory 
of capillarity.

It must be said that during the period of this 
intermission in the development of the theory of capillarity, 
thermodynamics itself developed by leaps and bounds. 
The appearance of Gibbs’s work marked the creation of 
chemical thermodynamics due to the introduction of the 
chemical potential (the main quantity of chemistry in 
general). Gibbs published the work already mentioned 
above “On the Equilibrium of Heterogeneous Substances” 
in two parts: the first (thermodynamics of heterogeneous 
systems) in 1876, and the main law here was the phase 
rule. The second part (1878) was precisely the theory of 
capillarity, where the Gibbs adsorption equation was the 
main law. Thus, we have already accumulated five laws. 
We will start with them, and then add something else.

3.1. The Laplace Equation

The Laplace equation is best known in its simplest 
classical form

where p is the hydrostatic pressure, α and β are symbols 
of contacting phases separated by a spherical surface with 
tension γ and radius R. Equation (19) is the condition of 
mechanical equilibrium between two isotropic phases 
separated by a curved interfacial surface. There have been 
many attempts to generalize the Laplace equation (we 
refer the interested reader to the author’s reviews [42, 43]). 
When considering the general case of anisotropic phases, 
the most complete analogue of the Laplace equation was 
given in [44, 45], but the relation given there is only one 
component of the complete condition of mechanical 
equilibrium on a curved surface. The complete condition 
of mechanical equilibrium was obtained in [46, 47], and 
we will dwell on this in more detail.

The most general approach assumes the anisotropy of 
the mechanical state both in the bulk and on the surface. 
The mechanical state is specified at each point of the 
bulk phase by the pressure tensor p̂ or, equivalently, 
by the stress tensor Ê ≡ –p̂, and at each point of the 
surface by the surface tension tensor γ̂ (not necessarily 
two-dimensional). In this case, it should be taken into 
account that the gradient of the surface curvature may be 
accompanied by a gradient of the surface tension tensor. 
In addition, the result must be consistent with the general 
equilibrium condition of continuum mechanics

Fig. 4. Element of a non-spherical interface.

(19)

(20)

(21)

where  is the vector gradient operator, and p̂ is the total 
pressure tensor (taking into account external fields). 
Equivalent to Eq. (20), the condition of mechanical 
equilibrium inside an element of a two-phase system with 
an interfacial surface (Fig. 4) can be written as

where –p̂ is the local stress tensor, dA = vdA is the element 
surface differential vector (v is the unit vector of the outer 
normal to the surface element, A is the area), –P = – p̂v is 
the force vector applied to the element surface unit (stress 
vector), integration is carried out over the entire enclosed 
surface. Detailing Eq. (21) leads to the relation [46, 47]

(22)



RUSSIAN  JOURNAL  OF GENERAL  CHEMISTRY  Vol.  92  No.  4  2022

549MY DISCOVERIES

where l1 and l2 are the lengths of the coordinate lines 
in the curvilinear coordinate system, and the additional 
subscript “zero” indicates that they belong to an 
arbitrarily chosen dividing surface (to which, of course, 
the surface tension tensor is related). The designations γ1 
and γ2 correspond to the force definition of the surface 
tension vector on the cross sections of the surface layer 
perpendicular to directions 1 and 2. The physical meaning 
of γ1 and γ2 is that for each of the cross sections of the 
surface layer, they represent excess stresses on the lines 
l20 and l10, respectively.

Equation (22) surprises with the simplicity that is 
achieved due to the representation in a vector (not in 
a tensor) form (how can one not recall Gibbs’s saying 
that each researcher should choose such a point of view 
so that the subject appears in the greatest simplicity). 
In terms of compactness, Eq. (22) is in no way inferior 
to Eq. (19), and in terms of generality, it significantly 
exceeds both the Laplace equation itself and all its 
earlier generalizations. In its form and (vector) nature,  
Eq. (22) differs significantly from the Laplace equation 
and cannot be called its generalization. Another thing is 
that the latter can be deduced as one of the consequences 
of this relation. By the successive scalar multiplication of  
Eq. (22) by the orts of an orthogonal curvilinear 
coordinate system using differential geometry, Eq. (22) 
is detailed by three scalar equalities

where σ is the thermodynamic (in contrast to the 
mechanical γ in the Laplace equation) surface tension, 
θ is the contact angle, the subscripts S, L and V refer to 
the solid, liquid and gaseous (or second liquid) phases, 
respectively, and their double combinations refer to the 
corresponding surfaces (Fig. 5). The development of the 
Young equation has a long history, and we again refer the 
reader to reviews [42, 43]. Here we note that the work 
took place in a number of areas. The first one is related to 
taking into account the (thermodynamic) linear tension κ, 
which appears due to the presence of a three-phase contact 
line. First, an additional term κ/r appeared in the Young 
equation, where r is the radius of the three-phase contact 
line, and then (for the first time in [48]) is the derivative 
∂κ/∂r at constant temperature and chemical potentials. 
In the same work, the generalized Young equation was 
derived, corrected for linear tension [48]

Fig. 5. A drop on the surface of a solid body: θ is the contact 
angle, r is the radius of the three-phase contact line.

(23)

(24)

(25)

The last equality is the generalization of the Laplace 
equation obtained earlier in [44]. In [45, 47], attention was 
paid to the three-dimensional aspect of surface tension, 
which is illustrated in Eqs. (23)–(25) by the quantities γ31 
and γ32. If surface tension were a purely two-dimensional 
tensor, these components would not exist.

3.2. The Young Equation

The Young equation refers to the phenomenon of 
incomplete wetting of a solid surface, when the liquid 
forms a contact angle with it. In its classical form, the 
Young equation appears as

(26)

(27)

where φ is the angle between the substrate and the local 
plane of the three-phase contact line (taking into account 
the relief of the wetted surface). It should be emphasized 
that the derivative ∂κ/∂r is an important factor in the 
generalization of the Young equation, and its unmotivated 
rejection is unacceptable. In particular, this derivative 
reflects the dependence of surface and linear tensions on 
the position of the dividing surface (radius R). This can 
be seen from the relation [49]

(28)
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where direct brackets mark the derivatives corresponding 
to the mental displacement of the dividing surface.

The second direction in the development of the 
Young equation is taking into account the roughness 
and mosaicity of the surface of a solid body and, as a 
consequence, the roughness of the three-phase contact 
line. The surface roughness coefficient is defined as

the effective linear tension (which is orders of magnitude 
higher than the usual linear tension on non-deformable 
surfaces) as the work of deformation per unit length of 
the three-phase contact line. Everything else can then be 
calculated using the generalized Young equation (31).

3.3. The Kelvin Equation

Although, as already noted, the Kelvin equation 
for the vapor pressure of a drop belongs to pre-Gibbs 
thermodynamics, it received its full sound (impossible 
without the concept of chemical potential) in Gibbs 
thermodynamics. The classical Kelvin equation has the 
form

(29)

(30)

(31)

where A is the visible and A′ is the real surface area of the 
solid (it is assumed that the roughness coefficient does 
not change upon wetting). Similarly, the line roughness 
coefficient is introduced

where L is the apparent and L′ is the real length of the 
three-phase contact line, and the line roughness can 
manifest itself even on a smooth, but microheterogeneous 
(mosaic) surface. Taking into account these two types 
of roughness, the generalized Young equation takes the 
form [42, 50, 51]

Neglecting the linear tension (κ = 0), Eq. (31) 
transforms into the well-known Wenzel equation [52], so 
that relation (31) is also a generalization of the Wenzel 
equation.

Another direction in the development of the Young 
equation is to take into account the deformation of the 
substrate caused, on the one hand, by the excess Laplace 
pressure inside the drop, which leads to the punching 
of the substrate, and, on the other hand, by the surface 
tension of the drop, which leads to the stretching of the 
substrate and the formation of a welt along the line of 
the three-phase contact. In the classical Young equation, 
such effects are not taken into account, because the 
wetted body is assumed to be absolutely rigid. But for a 
rubber type substrate or, even better, a gel, they need to 
be taken into account. The theory of wetting of elastic 
bodies was formulated in [48, 51–58]. Since the work of 
deformation is directly related to the three-phase contact 
line, it is convenient to include it in the thermodynamic 
linear tension. Thus, the theory is reduced to calculating 

(32)

where p is the equilibrium vapor pressure over a spherical 
surface of a liquid of radius r, р∞ is the value of p for 
a flat surface (at r = ∞), γ∞ is the surface tension of a 
liquid for a flat surface, R is the gas constant, T is the 
temperature, and ρ∞ is the molar density of the liquid in 
the bulk phase. The “plus” sign refers to a convex, and 
“minus” to a concave surface of the liquid. In the case 
of a drop, its vapor pressure increases with decreasing 
drop size (this case is illustrated by curve 2 in Fig. 3). The 
smaller the drop, the more noticeable the effect described 
by Eq. (32), and, therefore, it is often called the equation 
for the vapor pressure of small drops. In fact, the Kelvin 
equation is an asymptotic relation just for large drops in 
the sense that their radius must be much larger than the 
molecular sizes. The case of nanodroplets, and, moreover, 
limit r → 0 cannot be discussed within the framework of 
the Kelvin equation.

Nevertheless, if the Kelvin equation is an asymptotic 
relation, then, in addition to the main asymptotic term 
represented by Eq. (32), there must also be a correction 
term (of the next order in terms of curvature). This 
correction was found and gave the Kelvin equation the 
form [59]

(33)

where χ is isothermal compressibility and Γ is adsorption.

Be that as it may, with or without correction, the 
Kelvin equation remains an asymptotic relation for large 
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r. The case of small particle sizes is not covered by it. 
Moreover, there is experimental evidence of nanoparticles 
behaving in direct opposition to the Kelvin equation. Such 
particles are, for example, surfactant micelles, for which 
it is precisely established that their size increases with the 
surfactant concentration in the solution, and, hence, with 
the chemical potential (not to mention the vapor pressure) 
[60–62]. Micelles do not have a macroscopic analog, 
and it is impossible to say how they behave in the range 
of the Kelvin equation. However, small particles often 
form equilibrium populations, and, as it turned out, it is 
the thermodynamics of aggregative equilibrium that can 
predict the behavior of the chemical potentials of small 
particles. The equilibrium population is characterized 
by the size distribution of molecular aggregates. Of 
particular importance are the extrema on the distribution 
curve: they correspond not only to aggregative (like all 
other points on the distribution curve), but also to phase 
equilibrium [63, 64].

In the theory of aggregative equilibrium, a remarkable 
relation was found [65]

behave in the same way at large and small sizes (which 
depend on the degree of supersaturation of the parent 
phase): their chemical potential always increases with 
decreasing nucleus size.

Equation (34) is of fundamental importance for the 
thermodynamics of aggregative systems, and it can be 
safely attributed to the main laws of colloidal science. The 
establishment of such a law [65] should be considered 
a discovery.

3.4. Phase Rule

It seems that the phase rule is the most famous result 
of all the infinitely many things that Gibbs did. In its 
classic formulation, it reads

(34)

where μ is the chemical potential of the substance in the 
aggregative system, n is the aggregation number, ne is 
the aggregation number corresponding to the extremum 
on the distribution curve, and an is the activity of the 
molecular aggregate with the aggregation number n. The 
derivative on the left characterizes the dependence of the 
chemical potential on the extreme particle size. This is 
a real physical addiction. The right derivative refers to 
the curve of the equilibrium distribution of the activities 
of molecular aggregates according to their sizes. And 
this is already amazing: just looking at the distribution 
curve, using Eq. (34), we determine how the system will 
behave when the physical state changes! The maximum 
corresponds to stable particles, for example, surfactant 
micelles. For it, the second derivative appearing in  
Eq. (34) is negative, and then Eq. (34) predicts an increase 
in the chemical potential of a micelle with an increase 
in its size. This is directly opposite to the prediction of 
the Kelvin equation. In the case of a minimum on the 
distribution curve (corresponding to unstable phase or 
micellar nuclei), the prediction of Eq. (34) agrees with 
the prediction of the Kelvin equation. Thus, phase nuclei 

2,f n r= − + (35)

where f is the variance (number of degrees of freedom) 
of an equilibrium heterogeneous system, n is the number 
of independent components, and r is the number of 
macroscopic phases. The number 2 implies temperature 
and pressure (which, in the case of macroscopic phases, 
is the same throughout the system at equilibrium and 
provided that all interfaces can be considered flat). In 
each case, the phase rule determines not only the number 
of degrees of freedom, but also the maximum possible 
number of phases (for example, the number of phases 
cannot be more than three for n = 1, the well-known triple 
point). Note that Gibbs derived the phase rule from the 
Gibbs–Duhem equation

(36)

where p is pressure, s is the entropy density, T is 
temperature, ci and μi are the concentration and chemical 
potential of component i, respectively, α is the phase 
symbol. The number of variables in Eq. (36) is n + 2, 
and the number of Eqs. (36) coincides with the number 
of phases. Hence, Eq. (35) follows.

Equation (35) refers to a bulk multiphase system. But 
phase transitions can also occur on the surface (they are 
called two-dimensional). In addition, colloidal science is 
characterized by the presence of curved interfaces, and 
it is clear that the phase rule is inapplicable in the form 
of Eq. (35). Initially, its generalization went along the 
lines of taking into account the curvature of interfacial 
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surfaces and two-dimensional phase transitions [66]. For 
example, if all phases are separated by curved surfaces, 
then, in accordance with the Laplace equation, each 
of the phases has its own pressure, different from the 
others. Then the number of variables increases by r – 1, 
and we get f = n + 1. Typical for colloidal systems is the 
simultaneous presence of both macroscopic and dispersed 
three-dimensional and two-dimensional phases. For this 
general case, the author formulated the phase rule [67]

Here the number of components is replaced by the number 
of reactants, and matrices of stoichiometric reaction 
coefficients are used. The main result is written as [70]

0 0 1,f n r p z y= − − + + + (37)

where r0 is the total number of bulk phases having at least 
one flat surface on their boundary; p0 is the total number 
of surface phases having at least one straight line at their 
boundary; z is the number of bulk multiphase regions with 
the same pressure; y is the number of surface regions with 
the same surface tension.

We note the most important special cases of  
Eq. (37). For a system with only flat surfaces and 
rectilinear boundaries [66]

2 ( ),f n r p l= − + − −

1 ( ).f n p l= + − −

0 1.f n r z= − + + (40)

(39)

(38)

where p is the number of two-dimensional phases, l is 
the number of interfacial surfaces. For a system with 
only curved surfaces and geodesic linear boundaries [66]

Finally, in the absence of two-dimensional phase 
transformations, Eq. (36) is simplified to [68]

Everything said above about the phase rule applied 
to open systems. For closed and partially open systems, 
as well as systems in a rigid and/or adiabatic shell, 
both variance and total variance [69] are estimated, 
including phase masses as variables (which, under certain 
conditions, can play the role of state parameters). The 
calculation of both types of variance in capillary systems 
was carried out in detail in the monograph [60–62]. The 
pinnacle of all these generalizations is the variability of 
capillary systems in the presence of chemical reactions. 

(41)*,f c k r p x y z b s= − − − + + + − +

where c is the total number of substances; b is the number 
of substances for which the system is closed; k is the 
rank of the matrix of stoichiometric coefficients of all 
substances; r and p are the number of bulk and surface 
phases, respectively; x, y, z are the total number of 
regions homogeneous in temperature, surface tension and 
pressure, respectively; s* is the rank of the concentration-
stoichiometric matrix of immobile substances (which do 
not leave the system).

3.5. Gibbs Adsorption Equation

The equation that Gibbs derived for the surface 
tension of liquids is now commonly known as the Gibbs 
adsorption equation. In its classical form, it is written as

(42)

where s– is the entropy excess per unit of dividing surface, 
and Гi is the absolute adsorption of component i (its 
excess per unit surface). Eq. (42) is an analog of the 
Gibbs–Duhem equation for the two-dimensional case, 
but if in the latter all quantities are uniquely determined 
physically, in the former all excesses depend on the 
position of the dividing surface. For a curved interface, 
the tension surface is chosen as the dividing surface, 
which makes Eq. (42) self-sufficient. In the case of a flat 
boundary, Gibbs considered Eq. (42) together with two 
Gibbs–Duhem equations for adjacent bulk phases, which 
led to a change in the coefficients at dT and dμi and a 
decrease in the number of chemical potentials by unity. 
The modified coefficients are invariant to the position of 
the separating surface, and Eq. (42) acquires a physical 
meaning. Formally, everything looks as if we chose a 
dividing surface from the condition that the absolute 
adsorption of one of the components (usually a solvent, 
such a surface is called equimolecular) is equal to zero. 
Then all other adsorptions become relative, which will 
be assumed below for all adsorptions in Eq. (42).

The development of the Gibbs adsorption equation 
took place in two directions: for an electrolyte solution 
and for a solid.
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Electrolyte solution. Fixing the temperature 
and expressing the chemical potentials in terms of 
concentrations and activity coefficients , we obtain from 
Eq. (42) the equation of the surface tension isotherm

independent components, but they contain common ions, 
so the third term in Eq. (44) cannot be discarded. Note 
that the written equation also reflects the real chemical 
process. When dissolved, the surface-active alkyl sulfate 
ion is adsorbed on the surface and attracts counterions, 
among which the calcium ion will predominate, since it 
is doubly charged and attracted more strongly.

Solid. Since Eq. (42) was derived by Gibbs only for 
a liquid surface, the generalization to the case of a solid 
body suggests itself. The dualism of surface tension 
discovered by Gibbs also requires the dualism of the 
adsorption equation, i.e. its representation in terms of 
both mechanical surface tension γ̂) (generally written as 
a tensor) and thermodynamic surface tension σ. The task 
of finding them was completed by the author to the full, 
but since the expressions for γ are more cumbersome, we 
will restrict ourselves here to formulations in terms of σ, 
referring the interested reader to the review [42].

The first derivation of the Gibbs adsorption equation 
for the thermodynamic surface tension of an isotropic 
solid surface was given by Ericsson [52]:

(43)

which is valid for a liquid mixture of particles of any 
nature, including ions. But for ions, the individual activity 
coefficients are difficult to determine, and therefore, in 
practice, the average activity coefficients of electrolytes 
are used. The corresponding transformation of Eq. (43) 
suggests itself, and one can only be surprised that it was 
not done before the author’s work. However, the result 
looks somewhat cumbersome [71]:

(44)

Here, the subscript r refers to the non-electrolytes 
present in the system, the subscripts k, s and t refer to 
the electrolytes (they run through the same values), and 
the subscript i refers to the ions; νik is the stoichiometric 
coefficient of ion i in electrolyte k (the number of ions 
of type i formed during the dissociation of one molecule 
of electrolyte k) and νk ≡Ʃiνik is the total number of 
ions formed during the dissociation of one molecule of 
electrolyte k. The first two terms on the right-hand side of 
Eq. (44) look rather trivial, but the third one (with triple 
summation) is of interest. Firstly, it does not contain 
activity coefficients, and, secondly, it is realized only if 
different (k ≠ s) electrolytes have common ions (only then 
the product νikνis is nonzero).

We add that the third term in Eq. (44) is also 
insidious, since the possibility of its implementation is 
not immediately visible. Suppose we deliberately take 
two electrolytes that do not contain common ions, say, 
sodium alkyl sulfate NaSO4R (R is the symbol of the 
alkyl group) and CaCl2 and dissolve in water. Both salts 
dissociate completely, and the four ions that they form 
in different combinations give four neutral substances 
related by the equation

2NaSO4R + CaCl2 = Ca(SO4R)2 + 2NaCl.

In the presence of such a coupling equation, only 
three of the four substances presented can be considered 

(45)

For liquids, γ = σ and Eq. (45) goes over to  
Eq. (42). The author generalized Eq. (45) to the case of 
an anisotropic solid surface [53]:

(46)

where êσ is the surface strain tensor and  is the unit tensor. 
Note that all chemical potentials in Eq. (46) refer to the 
fluid phases from which adsorption occurs. The chemical 
potential of a solid body (we denote it as μ̂j, this is also 
a tensor) is not included in these equations, it is hidden 
in the difference of tension tensors, not to mention that 
the dividing surface for a solid body is chosen from the 
condition Гj = 0. It must be said that the tensorial nature 
of the chemical potential enters consciousness chemists 
with great difficulty (this is where the revolution in the 
minds really takes place!). The idea itself does not belong 
to the author (once it was put forward by the Ukrainian 
academician Y.S. Podstrigach), but the author accepted 
it and (in Russia in splendid isolation) actively promoted 
and substantiated [75] (in particular, the concept of the 
chemical affinity tensor was introduced, which is very 
important for the kinetics of solid-state reactions).
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Finally, there is one more important circumstance 
in Eq. (46). The second term on the right-hand side 
disappears not only when passing to fluid phases (when    
 = γ  and γ = σ but also in the case of an absolutely rigid 

body (then dêσ = 0). It turns out that in its classical form 
the Gibbs adsorption equation is applicable not only to 
liquids, but also to solid adsorbents whose deformation 
can be neglected (I imagine the jubilation of a large army 
of adsorption scientists who have been applying the Gibbs 
adsorption equation to solid adsorbents for decades, 
not knowing that it was derived only for liquids!). 
However, in reality, adsorption can be accompanied by 
deformation of a solid adsorbent (this phenomenon is 
called sorbostriction and is actively studied. The theory 
of sorbostriction was formulated in [76].

Let us now return to Eq. (46). It implies that the 
amount of adsorbent (the amount of immobile component 
j) is unchanged. If the adsorbent itself can dissolve or 
sublimate from different sides, then such a change in its 
shape (simulating deformation) should be excluded from 
the strain tensor, which leads Eq. (46) to an even greater 
generalization [74]

conditions, the compositions of the solution and vapor 
change symbatically. The first and third laws operate far 
from the critical point, and the introduction of the concept 
of an azeotrope (a mixture that cannot be separated by 
distillation) is associated with the second.

Since Konovalov’s laws operate with the compositions 
of solution and vapor, the formulation of similar laws 
for surface phenomena requires the introduction of the 
concept of composition for the surface layer as well. It 
is absent in Gibbs thermodynamics, but it arises when 
constructing the thermodynamics of surface phenomena 
by the method of a layer of finite thickness, which was 
initiated by van der Waals. The very concept of the 
thickness of the surface layer is indefinite, and therefore 
it must be chosen large enough (with some margin from 
the adjacent phases) to ensure the existence of the surface 
layer as a physical body. This version of thermodynamics 
is inferior in severity to Gibbs thermodynamics, but quite 
strictly formulates regularities that are not related to a 
specific thickness value, and, most importantly, uses a 
powerful resource of thermodynamics of solutions. The 
development of this approach by the author [31, 68, 77] 
revealed one more advantage in comparison with the 
thermodynamics of surface phenomena based on the 
Gibbs method [78]: the possibility of using not only 
equalities as equilibrium conditions, but also inequalities 
expressing the conditions of stability (to them also 
belongs to the analogue of Konovalov’s third law).

An analog of the Gibbs adsorption equation in terms 
of a surface layer of finite thickness has the form [68]

(47)

where ^Nj is the mass displacement tensor showing 
the change in the amount of component j in different 
directions [43, 75]. This notation guarantees that the 
second term on the right-hand side of the adsorption 
equation (47) gives the work of surface strain.

3.6. Analogues of Konovalov’s Laws  
for Interfacial Surfaces

Academician D.P. Konovalov was the successor to 
D.I. Mendeleev at the head of the Chair of General and 
Inorganic Chemistry at St. Petersburg University and 
the founder of the St. Petersburg thermodynamic school. 
Three laws for the equilibrium of a liquid solution with 
vapor brought him worldwide fame. We present them in 
Storonkin’s formulation [69]: (1) the vapor pressure of the 
solution increases, and the boiling point decreases with 
an increase in the concentration of the component whose 
content in the vapor is greater than in the solution; (2) if 
the pressure and temperature of the coexistence of two 
binary phases have an extremum, then the phases have 
the same compositions; (3) under isothermal and isobaric 

(48)

where a is the molar area of the surface layer; xi is the 
mole fraction of component i (subscripts i and k run 
over the same values), g is the molar Gibbs energy,  
gik ≡ (∂2g/∂xi∂xk)T,p, аnd sασ and νασ are differential molar 
entropic and volumetric effects of adsorption, n is the 
number of components in the system, the superscript α 
refers to the bulk phase, and the superscript σ refers to the 
surface layer. It is essential that all independent variables 
on the right-hand side of Eq. (48) refer to the bulk phase 
and are always known from experiment.

For a binary system (n = 2) under isothermal-isobaric 
conditions, Eq. (48) is simplified to the form

(49)
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from which the analogues of the first and second 
laws of Konovalov immediately follow. From the 
thermodynamics of solutions, it is known that gα

11
 > 0 

according to the stability conditions. Then from Eq. (49), 
we immediately obtain the rule

4. NANO-CORRECTIONS TO BASIC LAWS

Hurricanes are given names, and one, I remember, 
was called El Niño (“baby” in Spanish). In the nineties, 
we were hit by a hurricane that I would call El Nano 
(almost Nanos, “dwarf” in Greek), but it was a flurry of 
social science movement. It originated in Japan and was 
intended to study the particles of matter in the nanometer 
range, where they seem to have special properties. Kitsch 
was formed with the involvement of a mass of researchers 
who did not even suspect the existence of a colloidal 
science dealing with such problems for more than one 
century (the author even had to speak on this issue at a 
general meeting of the Russian Academy of Sciences). 
The creation of a dozen new international nano-journals 
speaks about the power of the movement. The term 
“nano-science” appeared, and in general many words 
beginning with the prefix nano-, and colloidal science, 
a kind of “porphyry-bearing widow”, became barely 
audible. This is not surprising: only colloid scientists are 
engaged in colloidal science, while everyone has begun 
to engage in nanoscience. It was useless to argue and 
defend something here. But there was also a good way 
out for colloid science: to join the ranks of nanoscience 
and, using its advantage, take a leading position in it. 
And so it happened. We used to say “highly dispersed” 
or “ultradispersed,” but now we say “nanodispersed” and 
calmly continue to work. We will start this section with 
the work of 1980, when nanoscience did not yet smell, 
and colloidal science was doing its job in the nanometer 
range as well [80].

4.1. The Gibbs–Curie Principle

In 1956, a postage stamp was issued in the USSR 
with a portrait of the “great French physicist” Pierre 
Curie (dedicated to the 50th anniversary of his ridiculous 
death in a Paris accident). It seems that this fact is enough 
to assess the scale of the personality of Marie Curie’s 
husband. In this case, we are talking about his publication 
[81], where the condition for the surface free energy 
minimum for the equilibrium shape of a crystal was 
established. Seven years earlier, this condition had been 
obtained by Gibbs, but his work became known in Europe 
only half a century later. Slightly digressing, we note that 
such situations are typical for Gibbs. The most amazing 
of them happened with the participation of the author, 
who discovered in the works of Gibbs a completely 
rigorous, but purely verbal (!) proof of the abridged Le 
Chatelier-Brown principle (these authors published much 

(50)

This is nothing but the well-known rule of surface 
activity in colloidal science. It also follows from the 
Gibbs adsorption equation, but now we see that this is 
an analogue of Konovalov’s first law. From Eq. (49), the 
surface azeotropy rule also follows:

(51)

which is an analogue of Konovalov’s second law. Note 
that, typically, the temperature and pressure extrema do 
not coincide with the surface tension extremum, so that 
when the liquid and vapor compositions coincide, the 
composition of the surface layer, as a rule, is different. 
This creates the possibility of separating the components 
of the azeotrope by surface methods. In other terms, 
the rule expressed in Eq. (51) can also be derived from 
the Gibbs adsorption equation. As for the analogue of 
Konovalov’s third law (far from the critical point)

1 1/ 0,dx dxσ α > (52)

then, as noted above, it is a consequence of the stability 
conditions of a real surface layer [31], and therefore it 
is impossible to obtain it from Gibbs thermodynamics. 
As it turned out, condition (52) is practically useful for 
estimating the minimum possible thickness of the surface 
layer. The point is that when calculating the composition 
of the surface layer (from experimental data on surface 
tension or Gibbs adsorption), its thickness is postulated, 
and if it is taken too small, condition (52) is violated [77, 
79]. In this way, for example, it was proved that the surface 
layer of the solution is typically not monomolecular (at 
least two monolayers are needed). This method gives a 
strong increase in the thickness of the surface layer of the 
solution near the separation point, and this prediction is in 
excellent agreement with the results of an ellipsometric 
study [48].
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later). Me and M.M. Schultz translated Gibbs’ proof into 
the language of formulas and published [82]. It can be 
said that Gibbs’s priority was restored over the course 
of a century. But it is necessary to pay tribute to those 
who independently reproduced something from Gibbs, 
thereby, as it were, standing on the same level with him.

In the classical formulation, the Gibbs–Curie principle 
is written as

where F00 is the free energy without taking into account 
the contributions of the translational and rotational motion 
of the particle as a whole, and Qtr and Qrot are the partition 
functions of these contributions given by the expressions

(53)

(54)

where σ is the thermodynamic surface tension (the work 
of forming a surface unit by breaking or cutting) of a 
single crystal face with area A, T is the temperature, V is 
the single crystal volume, m is its mass, and j is the face 
number. From Eq. (53), one can deduce Wulf’s theorem 
(ordinal see [31, 32] for the correct derivation, even  
Yu.V. Wulf’s own derivation was incorrect)

where hj is the distance of face j to some fixed point inside 
the crystal (Wulf’s point). The meaning of the condition 
expressed in Eq. (54) is that the higher the surface tension 
of the face, the farther it is from the Wulf’s point and, 
therefore, the smaller its area. The pattern expressed by 
Eq. (54) was established by Yu.V. Wulf experimentally.

Equation (53) and (54) refer to macroscopic crystals. 
On going to nanocrystals, two types of corrections arise. 
The first is taking into account the thermodynamic linear 
tension κ of the edges of the crystal, which changes the 
Wolfe theorem to the form

00
tr rotln .F F kT Q Q= −

(55)

(56)

where κk is the linear tension of the edge k and Bjk are the 
coefficients depending on the orientation of the faces of 
the single crystal; the summation is performed over all 
edges adjacent to face j. The second kind of corrections 
is related to the fact that macroscopic bodies are at rest 
(and therefore their shape is visible), while nanoparticles 
participate in Brownian motion and, due to Brownian 
rotation, everything appears round. As you know, in order 
to see the shape of a body, you need to stop its rotation.

The free energy F of a nanoparticle can be written as

(57)

where Λ is the de Broglie wavelength and Λrot is its 
rotational analogue, h is Planck’s constant and Ī ≡ 
(I1I2I3)1/3 is the average moment of inertia of the crystal 
(Īi is the three main moments of inertia).

It can be seen from Eq. (56) that only when the 
second term is neglected, the Gibbs equilibrium principle  
δF = 0 reduces to the Gibbs–Curie principle δF00 = 0. 
For nanoparticles, such neglect is incorrect. Taking into 
account that, according to Eq. (57), the partition function 
of the translational motion does not depend on the shape 
of the crystal, the generalized Gibbs–Curie principle can 
be written as [80]

(58)

(59)

or

Among the numerical estimates, there is an example 
when the nano-correction to the Gibbs–Curie principle 
reaches 8% [80].

In [80], a more general formulation of the generalized 
Gibbs–Curie principle was also proposed for nanoparticles 
that do not have a polyhedral shape

(60),

where the integration is performed over the entire surface. 
In particular, this formulation was used in studying the 
shape of micelles [60–62].

4.2. Condition of Phase Equilibrium  
of a Soluble Nanoparticle

So far, we have used Gibbs’ results, which are too 
well-known to refer to. But now the situation is changing. 
We turn to less known, but fundamentally important 
results of the classic of science, and it is necessary to 
decide what to refer to. In the United States, Gibbs’ works 
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were reprinted twice, in 1906 and 1928, both editions 
being identical. They included two volumes, the first 
of which (Thermodynamics) will be the subject of our 
citation [83]. In the USSR, Gibbs was also published 
twice: the first time (the first volume) in 1950, edited by  
V.K. Semenchenko, and the second (both volumes) in 
1982, edited by D.N. Zubarev [84]. The first translation 
was not entirely successful, besides spoiled by a number 
of erroneous editorial comments. The second one satisfies 
all the requirements, but, unfortunately, is not identical 
to the English edition (page numbers do not match), so 
when citing the text, we must separately indicate the pages 
in [83] and [84]. But it is most reliable to use the Gibbs 
numbers of the formulas that we will insert into our text 
(naturally, in our notation).

As is known, the equilibrium condition for fluid 
phases in chemical thermodynamics is the equality of 
chemical potentials of substances in both phases. In this 
case, each phase is considered homogeneous in terms of 
the chemical potentials of its components. But for solids, 
even this condition is not satisfied. Any solid body has a 
lattice (regular for crystals and disordered for amorphous 
bodies), the components of which (they are called 
immobile) are not able to move in space (we idealize a 
solid body, considering it defect-free). But the mechanism 
of equalizing the chemical potential just consists in the 
movement (diffusion) of the substance, and, thus, in a 
solid body, the implementation of such a mechanism is 
impossible. Gibbs noted that in the true equilibrium of 
a solid particle with its solution, the chemical potential 
of the substance of the particle cannot be the same in 
both phases [83, pp. 317–321; 84, pp. 313–317]. For an 
isotropic amorphous particle (phase α), he wrote down 
the condition of material equilibrium with his solution 
(phase β) in the following form [83, 84, Eq. (661)]:

where σ and A are the thermodynamic surface tension and 
the area of the face in contact with the solution (for which 
the equilibrium condition is written), σk is the value of σ 
for the kth adjacent face that has the angle φk and length 
lk of a common edge with the selected face.

Subsequently, both the equations (we wrote them 
down with Gibbs’ numbers) were improved and extended 
to multicomponent systems and solid media [85, 86]. But 
the main limitation of Eqs. (661) and (665) (specially 
stated by Gibbs), that the state of the particle does 
not change during dissolution (this means that Gibbs 
considered a macroscopic particle), remained unshakable 
until the works of the author [87, 88]. They introduced 
a correction for a change in state. In essence, this is a 
nano-correction, which appears during the transition from 
macroscopic bodies to nanoparticles. After introducing 
the correction, Eq. (661) takes the form [87, 88]

(661)

(665)

where μj
β is the chemical potential of the solute, fα and cj

α 

is the density of free energy and matter in the solid, pβ is 
the pressure in the solution, c is the average curvature of 
the surface, and σ is the thermodynamic surface tension. 
A similar formula was also derived by Gibbs for a single 
crystal [83, 84, Eq. (665)]:

(61)

(62)

(63)

,

where N is the normal to the particle surface. For a 
spherical particle of radius R, Eq. (61) takes the form

Equation (665) is generalized similarly:

where Eβ
nn is the normal component of the stress tensor. 

It is replaced by hydrostatic pressure (Eβ
nn = –pβ) if the 

nanocrystal is in a liquid saturated solution (the case 
considered by Gibbs). Then we arrive at the relation

(64),
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which differs from the Gibbs Eq. (665) only by the 
correction terms related to the dependence of the surface 
tension on the nanocrystal size during its dissolution.

The introduction of nano-corrections makes the Gibbs 
formulas more universal, but all this left an alarming 
impression associated with Gibbs’s statement about the 
inequality of the chemical potential of the substance of 
the particle in it and the surrounding solution at true 
equilibrium between the particle and the solution. How 
so? After all, the homogeneity of the chemical potential 
at equilibrium is the alpha and omega of chemical 
thermodynamics! In this regard, an additional study 
was undertaken [89], which turned out to be especially 
important for the interpretation of Gibbs’ results. We 
have shown that if we compare the chemical potentials 
of the substance of a particle in bulk phases, i.e. inside 
the particle and the surrounding solution, then they are 
indeed different. It was already established in [73] that 
when moving along the normal from the surface into the 
depth of a solid, there is a chemical potential gradient 
(it is this gradient that is responsible for the dualism of 
surface tension). This means that the chemical potential 
on the surface of a solid is always different from its value 
inside the solid. At the same time, it was shown that the 
surface monolayer of a particle (only it is in contact and 
in true equilibrium with the solution) has a chemical 
potential value coinciding with the chemical potential of 
the substance j in solution [89]:

with different gases (He, H2, N2, etc.) was studied with 
increasing pressure. Helium has been succinctly said 
to have “no effect.” The rest of the gases unanimously 
lowered the surface tension. Immediately, such a character 
of the dependence of surface tension on pressure was 
confirmed by a theory (alas, not flawless). However, 
the thermodynamic analysis carried out in monographs 
[31, 32, 68] showed that the drop in surface tension 
is associated with the solubility of gases. If the gas is 
insoluble in the liquid, then with increasing pressure the 
surface tension of the liquid should increase, although 
this may be weakly expressed. If we take a closer look 
at the plots of [90], then this is exactly what happens: 
for the least soluble helium, there is an effect, but it is 
opposite in sign.

Thermodynamic analysis also showed that this rare 
case opens up new possibilities for surface studies. If 
the gas only presses, but does not dissolve itself (the 
criterion for this is an increase in surface tension), then by 
measuring the dependence of surface tension on pressure, 
one can calculate the self-adsorption of a pure liquid, i.e. 
determine its surface density. To carry out similar studies 
of a number of liquids at the boundary with helium, a 
high-pressure unit was assembled at the Laboratory of 
Surface Phenomena of the Leningrad State University. In 
the experiments, the temperature was also varied, which 
made it possible to determine the change not only in the 
density, but also in the entropy in the surface layer. The 
results obtained [91–93] demonstrate the special behavior 
of water. Based on the surface monolayer, the decrease 
in density in non-polar liquids (СCl4, C6H6) was about 
3%, for polar liquids (С6H5Cl, С6H5Br, С6H5NO2) it 
was slightly more (up to 6%), and for water it was as 
much as 15%. But even more attention is drawn to the 
temperature dependence of the surface density. If for 
other liquids the density of the surface layer typically 
decreases with increasing temperature, then for water it 
passes through a maximum, but not at 4°C, as for bulk 
water, but somewhere around 50°C when calculating 
both mono- and bimolecular surface layer. Water has 
repeatedly surprised researchers with its properties. Now 
we see: also with surface properties.

5.2. Wetting Anisotropy

This interesting phenomenon was first reported in 
[94]. If we take a rectangular rubber plate with polished 
surfaces (to avoid the effect of roughness), stretch it in 
one direction along the surfaces and place a liquid drop 

(65)

Thus, everything falls into place, and the material 
equilibrium is characterized by the equality of chemical 
potentials. In conclusion, we note an amazing thing: the 
process of comprehending Gibbs continues into the 21st 
century!

5. DISCOVERY OF NEW PHENOMENA

As you know, the discovery of new phenomena occurs 
in practice and requires experimentation. But, passing to 
this section, we do not say goodbye to thermodynamics. 
The latter either predicts a new phenomenon and “gives a 
tip” to the experimenter, or explains it after the discovery. 
A good illustration of this is the study of the dependence 
of surface tension on pressure.

5.1. Surface Tension Versus Pressure  
and Surface Properties of Water

This story begins with work [90], where the decrease 
in the surface tension of water and hexane at the interface 
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with a finite contact angle on it, then the drop will take an 
oval shape in plan, and the contact angle in the direction 
of stretching will be smaller, than across the direction. 
This is the wetting anisotropy. The authors’ explanation 
was very simple: by stretching the plate, we increase 
the surface tension in the direction of stretching. Then, 
according to the Young equation (26), the contact angle 
must be smaller in the direction of tension. Everything 
would be fine, but, unlike the mechanical surface tension 
γ (in the general case, the tensor γ̂ ), which is included in 
the Laplace equation, the thermodynamic surface tension 
σ in the Young equation is work, i.e. a typical scalar that 
cannot be related to any directions. For someone familiar 
with surface tension dualism, one look at Eq. (26) is 
enough to understand that it forbids any anisotropy.

Shortly after this publication, one of the authors, L.A. 
Akopyan spoke at the permanent All-Union Seminar on 
the theory of surface phenomena in Leningrad, which I 
then led. He himself worked in the Leningrad branch of 
the Research Institute of the Rubber Industry (once his 
boss, the venerable Moscow scientist G.M. Bartenev, a 
specialist in physics and mechanics of polymers, also 
worked in the same research institute), so it is clear why 
the experiments were carried out on rubber. The report 
aroused great interest, and, most importantly, charged the 
audience (and not least myself) with a puzzle that took 
years to solve. The classical theory of wetting, including 
the Young equation, assumed that the solid body was 
indeformable, and rubber and elastomers generally belong 
to a different category. Obviously, this was the whole 
point! But the theory of wetting of deformable bodies did 
not exist then, and, in fact, it was necessary to create it.

In the Young equation, only one quantity σLV = γLV 
refers to the fluid phases and, therefore, has the properties 
of mechanical surface tension. In particular, this is the 
force acting per unit length of the three-phase contact 
line of a drop on the surface of a solid body. Since this 
force is tension (opposite to pressure in sign), it will lift 
the surface, forming a bead along the three-phase contact 
line. Another force from the side of the drop is the Laplace 
capillary pressure, which is distributed uniformly over the 
entire surface SL and forms a deepening under the drop 
(Fig. 6). Obviously, the creation of a theory of wetting of 
deformable bodies (of course, elastic, since we are talking 
about an equilibrium theory), it was necessary to begin 
with the calculation of deformation within the framework 
of continuum mechanics and elasticity theory. The pioneer 
in the formulation of such a problem was Lester [95]. He 

proposed to set the surface tension in the form of a certain 
stress uniformly spread over the thickness of the surface 
layer. Such reasonable modeling was also adopted in our 
calculations [53–56]. The entire profile of the deformed 
plane was found, and the height of the bead was estimated 
at about 7γLV/E. Having barely published this material, 
I was confronted by Ya.O. Bikerman [96]: say, such 
estimates have already been made a long time ago. I had 
to fight back and prove that all other formulas, including 
the Lester formula, are not suitable for estimating the 
height of the roller [57].

The performed calculations also included an estimate 
of the work of deformation, but how can it be used in the 
theory of wetting? Finally, a saving idea came up [48]: 
since this work is connected with the formation of a bead 
along the three-phase contact line, include it entirely in the 
linear tension. This makes it orders of magnitude larger 
than usual and makes it possible to noticeably influence 
the contact angle, if we keep in mind the generalized 
Young equation (27). But what does anisotropy have 
to do with it, because work remains work (i.e., a scalar 
quantity), no matter where you insert it? The moment of 
truth is coming, and I ask you, the reader, to be especially 
attentive. Uniaxial stretching of the elastomer leads to the 
orientation of polymer chains in the direction of stretching. 
If we now place a drop on the elastomer surface, then 
different sections of the three-phase contact line (along 
which the surface tension of the drop causes additional 
deformation of the substrate) will be differently oriented 
with respect to the elongated polymer chains. In the area 
where the three-phase contact line is perpendicular to 
them, the deformation (and, consequently, the work of 
deformation) will be minimal, since it is associated with 

Fig. 6. Deformation of a solid water substrate by the influence 
of a drop. Dotted line showing surface before deformation.
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the bending of polymer chains (Young’s modulus is 
maximum in this place). In the area where the line of the 
three-phase contact is parallel to the polymer chains, the 
deformation of the substrate is reduced to the movement 
of the chains as a whole (without bending them) and is 
much easier, and therefore the deformation itself and its 
work will be maximum (Young’s modulus in this area 
is minimal). Now, regarding the effective linear tension 
of the three-phase contact line, we can say that it will 
be minimum across and maximum along the direction 
of sample stretching. Then the generalized Young equa- 
tion (27) immediately leads to the conclusion that the 
contact angle of the drop should be minimal in the 
direction of tension and maximal in the transverse 
direction. This is exactly what is observed in the 
experiment and is called wetting anisotropy.

It turns out that the solution to the puzzle that  
L.A. Akopyan at the seminar, it took 6 years. But for a 
full-fledged discovery, this is not enough. We still need 
to prove that this solution is unique. Here is an example: 
when a rubber plate is stretched, microscopic wrinkles 
can form in the same direction, which, when wetted, 
play the role of grooves. But it is known that wetting is 
always better along than across the grooves. Here is an 
explanation of wetting anisotropy. Additional studies 
were needed, which were successfully carried out on the 
basis of the Leningrad Branch of the Research Institute of 
the Rubber Industry [97, 98]. The last point in this story 
can be considered [50] devoted to the influence of the 
roughness of the three-phase contact line on the contact 
angle under deformation. Unlike surface roughness, 
line roughness can be caused by surface tiling even 
if the surface is polished like a rubber sheet. Surface 
deformation changes the mosaic pattern and creates its 
own anisotropy. Accounting for this factor improves the 
agreement between theory and experiment in [97–99]. 
Thus, all questions were removed, and it was confirmed 
that the above explanation of wetting anisotropy is the 
only correct one.

6. MECHANOCHEMISTRY: NEW LAWS  
AND PHENOMENA

It is known that the mechanical state affects the rate 
of chemical reactions, and the latter, in turn, can lead to 
a change in the mechanical state. This is especially true 
for solid-state chemical reactions. Similar phenomena are 
studied by mechanochemistry, the very name of which 
suggests that we are talking about the combination of 

mechanics and chemistry. But what connects them and 
how? There is a third force, which is not talked about, but 
which, like the “grey eminence,” plays a major role here, 
chemical thermodynamics. It is this theory that has made 
it possible to connect the chemical potential tensor and the 
stress tensor and create modern tensor mechanochemistry 
[75, 100–102], which we will rely on in this section.

6.1. Chemical Potential Tensor

It may be surprising that Gibbs, being not only 
the creator of chemical thermodynamics, but also an 
innovator in vector and tensor calculus, did not introduce 
the concept of the chemical potential tensor. However, 
there are objective reasons for this: the chemical 
potentials of immobile components in solid phases no 
longer play the role that the chemical potentials of mobile 
components play in fluid media. Be that as it may, Gibbs, 
in fact, substantiated the tensor nature of the chemical 
potential when he derived the equilibrium condition for a 
soluble crystal simultaneously with three liquid solutions 
at three different pressures in the main directions [83, 84, 
Eqs. (393)–(395)]:

(393)

(394)

(395),

where F, V and Nj are the free energy, the volume and 
number of crystal molecules, p is the pressure, μj is the 
chemical potential of the immobile (lattice forming) 
component of the crystal, the strokes mark three solutions 
that are in contact with the crystal in three main directions.

Let us now use the conditions of mechanical 
equilibrium

(67)

( ).k
kE p= − (66),

where k is the number of the main direction of the stress 
tensor Ê (or the number of strokes). Recall that the stress 
tensor is symmetrical and can always be reduced to a 
diagonal form
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where Ek (k = 1, 2, 3) are the principal values of the 
tensor (all normal, shear stresses are absent in Eq. (67)). 
It is this situation that is currently being considered. We 
substitute Eq. (66) into Eqs. (393)–(395) and write these 
three equalities compactly as

(68),

where f ≡ F/V is the free energy density and cj ≡ Nj/V 
is the concentration of component j. Here we also 
introduced phase designations: α is the solid phase, β is 
the liquid solution. Now on the left side of Eq. (68) there 
are only quantities related to the crystal, and on the right 
to its solutions. Since there are three different chemical 
potentials on the right side if we introduce the chemical 
potential of a solid, then this can only be a tensor chemical 
potential. And it must be introduced in an independent 
way, and not from the equilibrium condition, because the 
chemical potential must exist under any conditions. Let 
us explain how this is done [75, 100].

Take the standard definition of chemical potential in 
thermodynamics

(69)

(70)

If the chemical potential is a tensor, then its 
thermodynamic conjugate quantity, the mass or the 
number of moles, must also be a tensor, which seems 
impossible in this case (mass is a typical scalar). However, 
in Eq. (69) the chemical potential is combined not with 
Nj but with dNj and this changes the matter. A crystal can 
grow differently in different directions, and to characterize 
the entire process as a whole, we can introduce the mass 
displacement tensor

Then the analog of Eq. (69) for the chemical potential 
tensor can be written in the form

(71),

where  is the volume displacement tensor, which is 
introduced in the same way as the mass displacement 
tensor, but refers to the change in volume. The constancy 
of this value in Eq. (71) means that after adding a 
substance to a crystal at one of its boundaries, it must be 
returned to its previous position, i.e. perform a certain 
work of deformation, which is the measure of the 
component of the chemical potential tensor. The work 
will be different for different directions, and if the crystal 
grows not along the normal to the surface, but at a certain 
angle to it, then the shear deformation will also increase. 
The contribution of the immobile component j to the free 
energy is given by

(72),

where the colon means the biscalar product of tensors.
From many provisions related to the introduction 

of the chemical potential tensor (see, for example,  
Eq. (68)), a fundamental regularity follows: the anisotropy 
of the stress tensor in a solid entails the anisotropy of the 
chemical potential, giving the latter a tensor character.

6.2. Chemical Affinity Tensor

In Gibbs’ thermodynamics, not only phase, but also 
chemical equilibria are considered. The equilibrium 
condition for a chemical reaction is formulated as follows. 
Let there be a chemical reaction

(73),

where Bi and νi are the symbol of the i-th chemical 
substance and its stoichiometric coefficient; a stroke 
marks the substances that enter into a reaction, and two 
strokes mark the products of the reaction (they may also 
differ from the starting substances by their numbers). 
According to Gibbs, the equilibrium condition for 
reaction represented by Eq. (73) is written as

(74)

i.e. it is just that, in the same equation, the symbols of 
substances are replaced by their chemical potentials.

De Donder moved all the terms of Eq. (74) to the left 
side and called the resulting combination of chemical 
potentials the affinity of the chemical reaction A [78, 103]:
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The sign of affinity determines the direction of a 
chemical reaction. For A > 0, there is a direct reaction 
(from left to right), and for A < 0, the reverse reaction 
(73). The absolute value of the affinity determines the 
rate of the process. At A = 0, there is an equilibrium of 
the chemical reaction in accordance with Eq. (74). Thus, 
the greater the absolute value of A, the higher the rate of 
the process.

As applied to solid-state reactions (they are important 
for mechanochemistry), chemical potentials should be 
written in a tensorial form, but then the affinity becomes 
a tensor quantity. This is how the concept of the chemical 
affinity tensor arises [43, 75, 100]:

6.3. Mechanochemical Effect of Dissolution

My friend Academician M.M. Schultz was an excellent 
physical chemist. Once I asked him: “If you bend a KCl 
crystal plate and lower it into water, which side will 
dissolve faster: convex or concave?” He immediately 
perked up: “Just don’t tell me the answer. I’ll figure it out 
myself.” Such a reaction usually indicates the simplicity 
of the question, but here it consists only in understanding 
it. The chain of possible response reasoning is easy to 
reconstruct. When the plate is bent, its convex part is 
stretched, and the concave part is compressed. These 
types of deformation differ in sign. Obviously, the side 
where the chemical potential is higher will dissolve faster. 
The work of deformation contributes to the chemical 
potential, but according to Hooke’s law (not everyone 
knows mechanics, but everyone knows Hooke’s law), the 
work is quadratic in deformation and, therefore, cannot 
depend on its sign. In turn, this means that both sides of 
the plate will dissolve at the same rate.

The answer is logical but wrong. Experiment shows 
that the concave side dissolves faster, and this already 
smells like a discovery, because you have to change your 
ideas. The first observations of this kind were made in 
the early 1980s at Odessa University by A.M. Dyachenko 
and his graduate student G.V. Berenstein, but paradoxical 
results hung in the air. At one of the conferences A.M. 
Dyachenko invited me to come to Odessa to sort things 
out on the spot. Upon closer acquaintance, it turned out 
that we have other points of contact. Surprisingly, our 
collaboration began with work on wetting on deformable 
surfaces [104, 105] (these references complement the 
literature on the discovery of wetting anisotropy). But 
work on the dissolution of the curved KCl plate continued. 
In particular, it was found that not only the dissolution 
rate, but also the equilibrium solubility for the two sides of 
the plate has different values. Obviously, there was some 
unaccounted factor in this case, and it soon became clear 
that it was nothing more than surface tension.

Clarifications are needed here. First, bearing in mind 
the dualism of the surface tension of a solid body, it should 
be noted that we are talking about mechanical (force) 
surface tension. Secondly, since not the entire surface 
layer, but only its monolayer, is in equilibrium with the 
solution, strictly speaking, we mean not the entire surface 
tension (which is an excess value), but only the stress 
related to the surface monolayer of the solid. In fact, 
here we abandon the Gibbs excess method and proceed 
to consider the real values of the monolayer (although the 

(75)

(76)

(77)

If mobile components (with a spherical chemical 
potential tensor) also participate in the reaction, then 
the notation for the latter is simplified. Separating the 
immobile (symbol j) and mobile (symbol i) components, 
we can write Eq. (76) as

where  is the unit tensor, or, in terms of the components 
of the chemical affinity tensor,

(78),

where δst is Kroneker’s symbol.
The main task of mechanochemistry is to establish a 
connection between the chemical affinity tensor and 
the stress tensor, which is solved by the methods of 
thermodynamics. In essence, this problem is a derivative 
with respect to establishing a connection between the 
chemical potential tensor and the stress tensor, because 
chemical affinity is always just some combination 
of chemical potentials. In many cases, a solid body 
participates in chemical reactions with its surface, 
and therefore the thermodynamics of surfaces is also 
important here. There is no doubt that the new quantity 
“chemical affinity tensor” will occupy an important 
position in the kinetics of solid-state reactions.



RUSSIAN  JOURNAL  OF GENERAL  CHEMISTRY  Vol.  92  No.  4  2022

563MY DISCOVERIES

difference here is small: it is known that the contribution 
of the monolayer to the surface tension can reach 90%). 
And you also need to take into account that for a solid 
body, the mechanical surface tension γ can have any sign. 
Thermodynamic surface tension σ is always positive in 
terms of stability (proved by Gibbs). Since for a liquid  
γ = σ, then for a liquid also γ is always positive.

Accounting for surface tension changes the whole 
picture of the prevailing ideas. First of all, it concerns 
mechanics, more precisely the classical theory of 
elasticity. Its Achilles’ heel is the postulate of the absence 
of stresses in a body that is not subject to any external 
influences. In reality, a body of limited dimensions can, 
by its own molecular forces, create internal stresses at 
the surface. This is how surface stress ϛ occurs. If we 
turn now to a curved plate, then on one side the surface 
stress will add up with the resulting bending stress, and 
on the other, where the stress is opposite in sign, it will 
be subtracted from the surface stress. This breaks the 
symmetry (dictated by Hooke’s law) and reveals the 
mechanochemical effect of the deformation sign. The total 
stresses, strains and changes in chemical potentials will 
be different on different sides of the plate, and therefore 
the rate of their dissolution will be different. Specifically, 
it will be possible to say which side will dissolve faster 
after the sign of the mechanical surface tension of the plate 
material is established (usually this sign is unknown).

Let us briefly formulate the theory of the 
phenomenon. Once the thermodynamic foundations of 
mechanochemistry have been built [75, 100, 101], it is 
much easier to do so than in our original publication [106]. 
We will proceed from the general relation connecting the 
chemical potential tensor of an ideally elastic solid body 
(component j, for simplicity, we assume that the body 
does not contain mobile components) with the stress and 
strain tensors at a given temperature

the state of the surface monolayer of the solid, there is 
no point in going over to surface excesses (this operation 
levels out the monolayer and is therefore undesirable). 
You just need to apply Eq. (79) to the monolayer, and 
as the direction r choose the normal to the surface  
(r = 3, 1 and 2 are directions along the surface). Then 
E33 is the normal stress in the environment (for example, 
atmospheric pressure with a minus sign), and is the 
only practically important component of the chemical 
potential, which we are the only ones dealing with (we 
can forget about the tensorial nature of the chemical 
potential and perceive it as a scalar). As for the surface 
tension, instead of it, in the surface monolayer there is 
a real tangential stress ϛ that is excessive with respect 
to the external medium (for simplicity, we consider the 
two-dimensionally isotropic case). If external stresses are 
applied to the surface of the body, they add up to and affect 
the dissolution, which is the mechanochemical effect.

Consider the dissolution of a bent (in direction 1) 
elastic isotropic plate. Integration Eq. (79) at a constant 
external pressure gives the following expression for the 
chemical potential of a convex surface [100]

(79),

where the diagonal component of the chemical potential 
tensor of the immobile component in the direction r μj(rr) 
is given as a function of the components of the stress Elm 
and strain elm tensors (vj is the molecular volume). Eq. (79) 
refers to the bulk phase and indicates that the chemical 
potential in the chosen direction depends on stresses not 
only in this direction, but in all other directions. Since 
dissolution occurs from the surface and is determined by 

(80)

(81)

where κ and λ are elastic constants, and subscript 0 
refers to the undeformed state. In the same notation for 
a concave surface

Comparison of Eqs. (80) and (81) shows that the 
chemical potential of the plate substance, and, hence, 
the dissolution rate and solubility, will be different for 
the convex and concave sides, and this difference is due 
solely to the presence of surface stress ϛ.

Subtracting Eq. (81) from Eq. (80), we find

(82),

where Δ means the difference for the convex and concave 
sides. It can be seen from Eq. (82) that the predominance 
of one of the sides depends on the sign of the surface 
stress: the dissolution rate and solubility will be higher 
on the convex side if ϛ > 0, and on the concave side, if  
ϛ < 0. In cases where double electric layer (for example, 
when an ionic crystal contacts water), one can expect a 
negative surface charge since the surface monolayer of 
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a solid will play the role of one of the plates in which 
like-charged particles mutually repel each other. Such a 
result was obtained for single-crystal KCl plates [106]. 
A similar study was carried out on the dissolution of 
glass and silicon in HF and KOH solutions, respectively 
[107]. Note that Eq. (82) not only predicts the sign, 
but also allows one to directly estimate the value of ϛ 
since the left side of Eq. (82) is easily determined from 
solubility experiments. Calculation schemes have also 
been developed using kinetic experiments (then ϛ is found 
from the difference in the dissolution rates of opposite 
sides of a curved plate) [108]. This method, for example, 
was used to find the value of ϛ = 4.7×108 Pa in the study 
of the dissolution of a curved glass plate in an 18% HF 
solution [109].

6.4. Effect of Strain Sign  
in Stress Corrosion Phenomena

This discovery [110, 111] is related to the one described 
above and was undertaken under its influence. As an 
example, one could study any solid-state surface chemical 
reaction, but we chose the corrosion of metals for two 
reasons. First, this is a huge applied value of corrosion 
and, in particular, corrosion under stress, associated with 
direct financial costs in various areas of human activity. 
Second, considerable scientific material has already been 
collected on stress corrosion (see, for example, [112]) and 
certain regularities have been established. In particular, it 
is determined that any deformation of the metal increases 
the corrosion rate. From a thermodynamic point of view, 
this is obvious. Gibbs also showed that under conditions 
of constant pressure, the chemical potential of a solid is 
given by the density of free energy, and any deformation 
increases it.

In general, corrosion can be understood as the gradual 
destruction of a material during chemical reactions that 
occur when the material comes into contact with the 
environment. A typical example is the anodic dissolution 
of iron (Fe = Fe2+ + 2e) accompanied by the reduction 
of hydrogen (2H+ + 2e = H2). For such a process, the 
chemical affinity (more precisely, its normal component 
with subscript 33) has the form

the iron ion in solution, and μe is the chemical potential 
of the electron. The value μFe2+ is determined by the 
composition of the solution and does not depend on 
the mechanical state of the solid sample. The chemical 
potential of an electron μe, although it refers to a solid 
body, can be controlled regardless of the state of the lattice 
(for example, by setting the electric potential), since metal 
electrons are a mobile component of a solid body. Thus, 
only the chemical potential μFe(33) on the right-hand side 
of Eq. (83) is directly affected by the deformation of the 
sample. The higher the chemical potential of iron in the 
solid state, the greater the chemical affinity, and, hence, 
the rate of transition of iron into solution. But the chemical 
potential, as already mentioned, at a constant external 
pressure is determined by the free energy density. Hence it 
follows that the deformation of the material always leads 
to the acceleration of its corrosion.

For a curved elastic plate in a corrosive medium, 
similarly to Eqs. (80) and (81), we obtain

(83)

where μFe(33) is the chemical potential (more precisely, 
its normal component) of iron in the solid state on the 
surface of the sample, μFe2+ is the chemical potential of 

(84),

where in the double sign, plus corresponds to a convex, 
and minus to a concave surface; all other designations are 
the same as in Eq. (80). Eq. (84) leads to the conclusion 
that, due to the existence of surface stress ϛ, the corrosion 
rate is different on the convex and concave sides of the 
plate. At ϛ > 0, the convex side of the plate should corrode 
faster, and at ϛ < 0, the concave side of the plate. Thus, 
Eq. (84) predicts the effect of the sign of deformation on 
the corrosion rate of the material. Experimentally, this 
discovery was made [110, 111] within the walls of the 
Institute of Physical Chemistry and Electrochemistry of 
the Russian Academy of Sciences. Let us briefly explain 
the essence of the experiment.

For experiments, plates of unalloyed steel 0.1–1 mm 
thick were taken and, after a fixed bend, were placed in a 
35% HCl aqueous solution. The sample was periodically 
weighed to control its weight. One of the sides of the 
plate was covered with a protective varnish, so that the 
experiments with the concave and convex sides were 
carried out separately. The result of observations at short 
times is shown in Fig. 7, which shows that corrosion 
occurs faster on the concave side. However, the situation 
changes with time: the effect of the deformation sign 
is reversed, and the convex side becomes more active  
(Fig. 8). The explanation here is trivial: the destruction 
of the material in the process of corrosion begins with 
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corrosion cracking. It begins, naturally, on the convex side 
and leads to an increase in the real surface and the flow 
coming from it. The only conclusion that can be drawn 
from this is that the study of the mechanochemical effect 
should be carried out at short times, when the destruction 
of the material has not yet begun.

After the first publications [110, 111], detailed 
studies of the mechanochemical effect of the sign of 
deformation in stress corrosion phenomena were carried 
out [113–115]. Experimental work was carried out both 
by the above-described gravimetric method and by the 
hydrogen method, in which the decrease in the mass of 
the metal during corrosion was determined by the volume 
of released hydrogen. In [115], this method was used 
not only to establish the mechanochemical effect itself, 
but also to estimate the surface stress ϛ = 5×104 MPa for 
complexly alloyed austenitic steel based on the results 
of experiments with a bent plate in a 3 M HCl solution.

After the first publications [110, 111], detailed 
studies of the mechanochemical effect of the sign of 
deformation in stress corrosion phenomena were carried 
out [113–115]. Experimental work was carried out both 
by the above-described gravimetric method and by the 

hydrogen method, in which the decrease in the mass of 
the metal during corrosion was determined by the volume 
of released hydrogen. In [115], this method was used not 
only to establish the mechanochemical effect itself, but 
also to estimate the surface stress MPa for complexly 
alloyed austenitic steel based on the results of experiments 
with a bent plate in a 3 M HCl solution.

6.5. Mechanochemical Effects  
in Redox Reactions with Iron

The presence of the mechanochemical effect of the 
sign of deformation was also verified in a number of redox 
reactions involving iron [116]. The peculiarity of this 
study was that the mass of the plate did not decrease, but, 
on the contrary, increased due to the deposition of heavier 
metals (copper, silver, lead), and the experiments were 
carried out on a modernized setup that made it possible 
to carry out three measurements of the mass of the plate 
or solution per second with automatic registration on a 
computer [113, 117]. It should also be noted that different 
grades of steel were used, including steel with a reduced 
carbon content. The latter is of particular interest for two 
reasons. First, by using steel instead of iron to meet the 

Fig. 8. Reversal of the warp sign effect. Curves of the decrease 
in the mass of the sample per unit area versus time for the 
concave (1) and convex (2) sides of a curved steel plate in a 
35% HCl solution [110].

Fig. 7. Time dependence of the decrease in sample mass per 
unit area for the concave (1) and convex (2) sides of a curved 
steel plate in a 35% HCl solution. The slope of the lines gives 
the corrosion rate [110].
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requirements of mechanics in terms of elasticity, we act to 
the detriment of the chemical requirements for the purity 
of the reagent. For chemistry, the less impurities in iron, 
the better. Second, steel with a minimum carbon content 
already shows signs of plasticity, and this reduces the 
cracking of the plate on the convex side, which interferes 
with the detection of the mechanochemical effect.

The purpose of the work was to study the effect of 
the sign of deformation in redox reactions occurring on 
the surface of steel plates in their contact with aqueous 
solutions of salts of other metals. Consider, as an example 
of a redox reaction, the interaction of iron and silver 
nitrate. When iron comes into contact with a solution of 
AgNO3, a reaction occurs

Fe + 2Ag+ = Fe2+ + 2Ag.                     (85)

Here, the reducing agent, iron, donates electrons, and 
Fe2+ ions, being hydrated, go into solution. The oxidizing 
agent, a silver ion, accepts an electron, recovering to zero 
valence:

Ag+ + е → Ag (precipitate).                    (86)

Both elementary reactions take place at the point of 
contact of the iron with the solution, so that the electrons 
directly pass from the iron to the silver ions.

As for any other chemical reaction, the rate of a redox 
process is determined by its chemical affinity, which is 
a combination of chemical (electrochemical) potentials 
corresponding to the reaction stoichiometry. For the redox 
reaction in Eq. (85), the chemical affinity is given by

Let us see how the stress in steel plates affects the 
chemical affinity in Eq. (87). Obviously, an artificially 
created voltage can affect only the solid part of the system 
and does not affect the ions in solution. There are two 
such terms on the right-hand side of Eq. (87): μFe and 
–2μAg, but at the initial stage of the process, the influence 
of the second is negligible. When a metal contacts water, 
a double electric layer is formed: iron ions partially go 
into solution, and the excess electrons remaining near 
the surface from the side of the solid phase create (due 
to their mutual repulsion) a negative voltage (positive 
two-dimensional pressure) in the surface monolayer and 
a negative contribution to the surface tension solid body. 
This leads to an increase in the chemical potential and 
chemical affinity in Eq. (87). When the plate is bent on 
the compressed (concave) side, the negative surface stress 
increases, and the chemical affinity in Eq. (87) increases 
even more. For the stretched (convex) side, the situation 
is reversed, which means that the rate of transition of iron 
into solution should be higher on the concave side of the 
plate than on the convex one.

The result of the experiment with silver, shown in 
Fig. 9 fully confirms this prediction. In the experiment, 
the change in the relative mass of the solution M/M0 (M0 
is the initial value of the mass of the solution M), which 
decreases during the experiment, was determined. The 
study was carried out with steel plates with a reduced 
carbon content, which helped to avoid cracking of 
the convex side of the plate and to reveal the pure 
mechanochemical effect.

6.6. Mechanochemical Effect of the Sign  
of Strain in Wetting Phenomena

All the discoveries described above related to the 
effect of the sign of deformation were explained due to 
the existence of mechanical surface tension γ. If we now 
turn to the wetting phenomenon and Eqs. (26) and (27) 
where γ is not in sight, then the question arises: is there 
a mechanochemical effect of the sign of deformation 
in wetting phenomena? Research in this direction was 
started in [105] with the wetting of single-crystal silicon 
plates with water drops. Statistical analysis revealed 
an increase in the contact angle by 1° on the convex 
side of the curved plate, but the effect of the sign of the 
deformation was not studied. In this case, rather large 
drops (1–2 mm in size) were used, which were already 
distorted to some extent by the gravitational field. A 
complete study of the mechanochemical effect of the 

Time, s

Fig. 9. Dependence of the relative mass M/M0 of a 10% 
AgNO3 solution on time during silver deposition on (1) 
concave and (2) convex sides of bent mild steel plates [116].

(87)
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sign of deformation in wetting phenomena was carried 
out in [118], which should be considered the publication 
of the discovery. Wetting was observed when small (less 
than 0.7 mm) bubbles were deposited on the surface of 
curved glass plates placed in an aqueous solution of KCl. 
Glass samples of two types were used: K-8 optical glass 
and a cover glass for microscopy. The replacement of 
pure water with an electrolyte solution was carried out to 
improve the accuracy of measurements. The fact is that a 
film is formed between the bubble and the solid surface, 
the width of which for pure water is maximum, and 
for the electrolyte solution it decreases with increasing 
ionic strength of the solution. The obtained values of the 
contact angles are presented in Table 1. They clearly fix 
the presence of the mechanochemical effect of the sign 
of deformation in the phenomena of wetting: on a convex 
surface, the contact angle is always greater, and on a 
concave one, it is less than on an undeformed surface.

To explain the described phenomenon, the following 
theory was formulated [118]. The classical Dupre 
equation is known, which defines the work of adhesion 
(more precisely, the work of separation) of contiguous 
phases as

Now let us talk about the work of adhesion. Obviously, 
it is the higher, the greater the two-dimensional density 
of the number of molecules in a solid monolayer. When 
the surface monolayer is stretched, the two-dimensional 
density of molecules decreases in the stretching direction, 
but increases in the mutually perpendicular direction. 
However, according to Poisson’s ratio, this increase only 
partially compensates for the decrease in density in the 
direction of stretching. As a result, the two-dimensional 
density of the number of molecules in the surface 
monolayer decreases with tension, and, consequently, the 
work of adhesion W also decreases. Similar arguments 
for two-dimensional compression of the monolayer lead 
to the opposite result: when the surface monolayer is 
compressed, the work of adhesion increases. Turning now 
to Eq. (89), we can conclude that under uniaxial stretching 
of the surface of a solid body, cos θ decreases, while the 
contact angle θ increases. Accordingly, under uniaxial 
compression, cos θ increases, and the contact angle θ 
decreases. When a rigid plate is bent, its convex side is 
in stretching, and the concave side is in compression. 
Then we can say that the contact angle on the convex side 
of the plate should be greater, and on the concave side, 
less than on the undeformed surface. In other words, the 
wettability of a solid on the concave side of the plate is 
better than on the convex one. The data of Table 1 are 
fully consistent with this conclusion.

7. OTHER NEW PHENOMENA

7.1. Strong Dependence of the Contact Angle  
on the Pressure in the Liquid

Along with temperature, pressure is one of the main 
parameters of the state of liquids, but the interest in the 
temperature dependence is immeasurably greater than in 
the dependence on pressure. This is due to the fact that 

Table 1. Values of contact angles

Plate material Molarity of 
KCl solution

Observed contact angle θ, deg

on the convex side on the concave side no deformation
Optical glass K-8 10–4 18±0.60 13±0.53 15±0.32

10–3 22±1.10 15±0.92 16±0.61
10–2 33±1.70 30±0.82 31±1.12

Cover glass for microscopy 10–4 15±1.36 11±0.66 13±1.05
10–3 16±1.12 12±1.08 15±0.64
10–2 20±1.09 16±1.39 18±0.71

(88)

where, as in the Young equation (26), σ is the 
thermodynamic surface tension, double superscripts 
symbolize the types of surfaces. In combination with  
Eq. (26), Eq. (88) gives

(89),

where σ ≡ σLV is the usual surface tension of the liquid. 
The latter is always known, and therefore Eq. (89) 
uniquely relates the work of adhesion to the contact angle.
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liquids already have a rather high (about 104 atm) internal 
pressure, and therefore the use of ordinary pressures (of 
the order of several atmospheres) in them (including 
surface layers) does not change anything. In other words, 
the pressure dependence of some property of a liquid is 
uninteresting, because it is negligible. And now let me 
quote [119]: “The discovery of large effects here would 
be a sensation, but this is precisely what is reported in this 
paper devoted to the study of the contact angle of a bubble 
in a liquid when it sticks to the vessel wall. It was found 
that a change in the pressure of the liquid in the range 
from one to two atmospheres shifts the contact angle by 
values that go far beyond the limits of errors. To illustrate, 
we present Fig. 10 from a subsequent publication [120], 
where a 15°–20° change in the contact angle of water 
on silicon surfaces is recorded with an increase in water 
pressure by 1 atm.

To explain this effect, two thermodynamic relations 
are needed: the Young and the Gibbs adsorption equations. 
Under experimental conditions, all quantities in Eq. (27) 
except for σSV and cos θ are almost constant, so that the 
change of cos θ can be determined from the change in σSV. 
As already noted, when a bubble lands on a solid surface 
inside a liquid, a thin film of liquid (in our case, water) 
remains at the boundary SV. No one forbade considering 
it as an adsorption film of water on the surface SV, to 
which the Gibbs adsorption equations can be applied. 
Referring to Eq. (47) and assuming a rigid body to be 
non-deformable, we arrive at the relation

where Γ and μ are adsorption and chemical potential 
of water. At a constant temperature, the Gibbs–Duhem 
equation for a one-component liquid gives

Fig. 10. Dependence of contact angle θ on water pressure p 
for a bubble on a polished surface of pure silicon (curve 1) and 
on it after slight hydrophobization (curve 2) [120].

(90),

(91)

(92)

,

,

where ρ is the density of the liquid. Due to the low 
compressibility of the liquid far from the critical point, 
the value of ρ can be considered almost constant, and 
the values of dp and dμ are proportional to each other 
according to Eq. (91). After substituting Eq. (91) into 
Eq. (90), we obtain

where τ is the thickness of the wetting film due to the 
relation τ ≈ Г/ρ. From Eq. (92) it can be seen that with 
increasing pressure in the liquid, the thermodynamic 
surface tension of the solid decreases. According to the 
Young equation, the cosine of the contact angle decreases, 
and the angle itself increases, which is observed in the 
experiment. Thus, Eq. (92) already gives a qualitative 
explanation of the data obtained.

7.2. Temperature Pinning of a Sessile Bubble

“Pinning” is a relatively new term in colloidal science, 
referring to the sudden stop of a three-phase contact line 
when a droplet spreads or a bubble propagates along the 
surface of the solid on which they are located. The nature 
of pinning is not completely clear yet. Perhaps it is related 
to the substrate relief (surface roughness or mosaic), but 
this requires a special study. For a macroscopic, but small 
(less than 1 mm in size if we are talking about a bubble 
in water) sessile bubble, the influence of the gravitational 
field on its shape can be neglected and considered as a 
spherical segment. Then the geometry defines the contact 
angle θ as

(93)

where r is the radius of the three-phase contact line of 
the bubble and h is its height (Fig. 11). In the process 
of bubble growth, all quantities in Eq. (93) change 
smoothly. If r becomes constant (which is a manifestation 
of pinning), then the apparent radius of the three-phase 
contact line gas-liquid-solid ceases to be a state parameter 
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for some time. The line freezes in place, while the other 
parameters of the bubble continue to change along with 
its volume. In this case, the contact angle decreases with 
increasing bubble size (Fig. 11).

To study pinning in bubbles, the size of a bubble is 
artificially increased by pumping gas into it through a 
microsyringe [121]. We used a non-contact technique 
associated with an increase in temperature, when the 
bubble inflates by itself. The phenomenon that was 
observed here we called temperature pinning [122]. We 
also encountered temperature pinning in [123], although it 
was carried out with a slightly different goal: experimental 
verification of the temperature dependence of the contact 
angle predicted in [124]. In particular, it was shown 
there that, on a hydrophilic surface, the contact angle 
should increase with increasing temperature, while on a 
hydrophobic surface, on the contrary, it should decrease. 
As an example, Fig. 12 shows the temperature dependence 
of the bubble contact angle θ at the quartz–water 
interface. The range of the contact angle is such that the 
hydrophilicity of the surface is immediately visible, and 
for this type of surfaces, work [124] predicts an increase 
in the contact angle with temperature. Indeed, most of 
the points on the graph meet this criterion. However, the 
first three points demonstrate the opposite dependence, 
which raises questions. They are removed when we look 
at Fig. 13 is the result of a parallel measurement of the 
line radius of a three-phase contact in the same system. 

It can be seen that just the first three points correspond to 
temperature pinning, which was not envisaged in theory 
(the surface was assumed to be ideally smooth).

In conclusion, we give an example with a hydrophobic 
surface, on which the initial contact angle of water was 
95° (Fig. 14). By connecting the experimental points 
with a line in order to better see the horizontal sections, 
we find them in a triple number. Thus, summing up our 
data, we can conclude that temperature pinning occurs 
very often and finds various manifestations.

8. J-POTENTIAL IS THE THERMODYNAMIC  
POTENTIAL OF MINE

As is known, in thermodynamics, characteristic 
functions and thermodynamic potentials are distinguished 
among the most important quantities. For the former, 
fundamental equations are written, with the help of which 
one can construct the entire equilibrium thermodynamics 
and find all thermodynamic quantities by differentiating 
the characteristic functions. As for the thermodynamic 
potentials, under certain conditions (with the constancy 
of their characteristic variables), their change gives the 
work of the process. Thermodynamics existed as a science 
even before Gibbs, but was the thermodynamics of cycles, 
while Gibbsian thermodynamics is the thermodynamics 
of potentials. You need to work with it in the following 
way: look at the conditions under which the process takes 
place, select the appropriate characteristic variables and 

Fig. 11. Pinning of a sessile bubble: h and r are the height of 
the bubble and the radius of its base, θ is the contact angle. 
Phase designation: α—gas, β—liquid, γ—solid.

Fig. 12. Temperature dependence of the bubble contact angle 
θ at the quartz–water interface [123].
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make calculations using their thermodynamic potential. 
It already follows from this that there should be several 
thermodynamic potentials. The more of them, the better 
thermodynamics is developed.

8.1. Thermodynamic Potentials for Closed Systems

 Each thermodynamic potential is a characteristic 
function, but not vice versa. For example, entropy is a 
characteristic function, but by no means a thermodynamic 
potential (it does not even have the dimension of energy). 
All thermodynamic potentials are derivatives of internal 
energy. It is the main thermodynamic potential U, for 
which the equilibrium fundamental equation is written 
as a joint formulation of the first and second principles 
of thermodynamics [125]

surface, and (A) is the symbol of the most closed surface 
of the system over which the integration is performed. 
The second term on the right side of Eq. (94) reflects the 
mechanical work of external contact forces. If the system 
is surrounded by a homogeneous external environment 
(for example, the atmosphere) with pressure p (pressure 
and stress are always opposite in sign), then it reduces to 
the well-known expression –pdV, where V is the volume 
of the system. The third term reflects any other work. 
Thus, the entire Eq. (94) conveys the meaning of the 
first law of thermodynamics, which consists in the fact 
that an increase in the energy of the system is achieved 
by the supply of heat and the performance of work on 
the system by external bodies. From Eq. (94) follows the 
condition (Ni is the number of molecules of component 
i in the system) [125]

Fig. 13. Temperature dependence of the radius r of the base 
of a sessile bubble on a hydrophilic quartz surface. The first 
points of the curve demonstrate temperature pinning [123].

Fig. 14. Temperature dependence of the radius of the base of 
a sessile bubble on a hydrophobic surface with an initial angle 
of 95°. Three horizontal sections—temperature pinning [122].

(94)

where S is the entropy of the system, T is the absolute 
temperature, P is the local vector of the external force 
applied to the unit of the external surface of the system 
(such a force is called stress), u is the local displacement 
vector of the surface (the dot means the scalar product 
of these two vectors, which gives the elementary work 
of displacement of a unit surface), A is the area of the 

(95)

which indicates that the internal energy is a thermodynamic 
potential, provided that the entropy, the boundaries of the 
system and the quantities of all components are fixed. 
What happens if these conditions are not met? Will 
there be a change in energy? Of course, it will and will 
remain an important characteristic of a substance, but 
at the same time it will no longer reflect the operation 
of the process and in this respect will lose its defining 

,
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significance. Energy is not always important, but work 
is always important.

Let us briefly recall other thermodynamic potentials 
for closed systems. The free energy F (once the Helmholtz 
free energy, but the name has long since fallen out of the 
name) is defined as

and a given temperature, the Gibbs energy in the form of  
Eq. (99) is the only one suitable for calculating work. This 
is the most popular thermodynamic potential.

What remains is the enthalpy H, commonly known as 
the heat function. However, as was shown [125], it can 
also play the role of a thermodynamic potential. For fluid 
systems, enthalpy is defined as

(96)

(the TS term qualifies as bound energy). From Eqs. (94) 
and (96), we arrive at the expression

(97)

and the condition

(98)

whence it follows that free energy is a thermodynamic 
potential at constant temperature, system boundaries, 
and amounts of all components. As a thermodynamic 
potential, free energy is more practical than energy, since 
isothermal processes are easier and more often to deal 
with than adiabatic ones.

Let us move on to the Gibbs energy. At the dawn of 
my studies in thermodynamics, it was called the “Gibbs 
thermodynamic potential” [69] or “Gibbs free energy” 
and was defined for homogeneous fluid systems as

(99)

(100)

(101)

(102)

Now, turning to the case of an arbitrary system, we 
can define the Gibbs energy as [125]

From Eqs. (97) and (100), we find

From here, the condition follows

.

characterizing the Gibbs energy as a thermodynamic 
potential at constant temperature, all external forces 
applied to the system, and the amounts of all components. 
If the only external force is atmospheric pressure, then 
with its constancy (within the laboratory experiment) 

(103)

(104)

(105)

(106)

By analogy with Eq. (100), one can determine the 
enthalpy for a body of any nature and with an arbitrary 
distribution of external forces on it as

Varying Eq. (104) and substituting Eq. (94) there, we 
find the relation

from which the condition follows (recall that we are 
talking about a closed system)

Condition expressed in Eq. (106) indicates that 
enthalpy can indeed be a thermodynamic potential when 
entropy, all external forces and amounts of all components 
are fixed.

8.2. Open Systems. Large Thermodynamic Potential

In open systems, another type of work appears, the 
transfer of matter from the environment to the system 
under consideration and vice versa, which obviously 
affects the internal energy of the system. In addition, 
thanks to the exchange of matter, a mechanism appears 
for influencing chemical potentials and creating states 
with fixed chemical potentials. However, only fluid 
systems are accessible to such influence, in which the 
free migration of molecules ensures the equalization of 
chemical potentials. For an open fluid system, Eq. (94) 
takes the form

(107)

where μi is the chemical potential of component i. We still 
see that condition expressed in Eq. (95) (with softening of 
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the constancy of u by the constancy of the volume V) is 
satisfied, and the internal energy can be a thermodynamic 
potential only for a closed system.

All four described thermodynamic potentials are 
available in Gibbs’ work “On the Equilibrium of 
Heterogeneous Substances” (1876) [83, 84]. To move 
on to the fifth, we need to remember that after this 
work, Gibbs took up statistical mechanics, where closed 
and open systems were also considered. The latter 
corresponds to the thermodynamic potential

and in the absence of other external forces, except for 
pressure) form a system of fundamental equations:

(109)

(110)

(108)

Since this function is directly related to the Gibbs 
grand canonical distribution, I once began to call it 
the “grand” thermodynamic potential, although I had 
never seen such a name before. Perhaps someone did 
it before, but what does it matter? After all, coming up 
with a new name (I am afraid that “Gibbs energy” is 
also my invention) does not mean making a discovery. 
It is important that the term has taken root (at least in the  
St. Petersburg thermodynamic school).

Varying Eq. (108) and substituting Eq. (107) there, 
we arrive at the expression

Equation (109) implies the condition

showing that the grand thermodynamic potential is suitable 
for calculating work at constant temperature, volume, and 
chemical potentials of the system components. When 
introducing the grand thermodynamic potential, it was 
assumed that all chemical potentials would be fixed, but 
a more subtle approach is also possible. Thus, it may turn 
out that some of the components of the system are in a 
solid state, and for them the fixing of chemical potentials 
is impossible, while the other part of the components 
freely migrates in the system, and their chemical 
potentials can be controlled. For such cases, the so-called 
“hybrid” thermodynamic potentials are introduced, which 
do not have special names, but work properly (see below).

All five of these thermodynamic potentials are at the 
same time characteristic functions of the same variables, 
when fixing which they give the work of the process. 
Their total differentials (we write them for fluid systems 

(111)

(112)

(113)

(114)

(115)

Integration of fundamental equations (111)–(115) 
for a given physical state of the system gives explicit 
expressions for the thermodynamic potentials themselves 
(integral fundamental equations):

(116)

(117)

(118)

(119)

(120)

The above fundamental equations correspond to the 
Gibbs equilibrium principle, formulated as the principle 
of maximum entropy or minimum of thermodynamic 
potentials. For fluid systems, this is expressed by a set 
of equivalent conditions [125]:

(121)
(122)
(123)
(124)
(125)

In terms of energy and free energy, the principle of 
equilibrium is also applicable to solids, provided that the 
constancy of volume is replaced by the invariance of the 
boundaries of the system in all directions.

8.3. Modified (Hybrid) Thermodynamic Potentials

Now let us look at the simplest expressions for the 
five known thermodynamic potentials (116)–(120) 

.
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and note that the introduction of each thermodynamic 
potential is associated with the removal of one or more 
terms in Eq. (116) for energy. If the terms are of the same 
type (for example, terms with chemical potentials), and 
only some of them are removed, then modified (hybrid) 
thermodynamic potentials are formed. They are especially 
characteristic of a solid body [73], where there are 
always immobile components (forming a lattice), but 
mobile components can also be present (subscripts j and 
i, respectively). For example, the expression for the free 
energy of an isotropic (not to deal with tensor expressions) 
amorphous (with a disordered lattice) solid has the form

thermodynamics of surfaces, there are no homogeneous 
systems at all, because where there are surfaces, there 
must be at least two phases. Therefore, one can say that 
the J-potential is, as it were, specially created for colloid 
science.

Definition expressed by Eq. (128) is applicable to fluid 
capillary systems whose fundamental equation for grand 
thermodynamic potential has the form

(126)

We introduce a new thermodynamic potential 
according to the scheme

(127)

Modified free energy  is a hybrid thermodynamic 
potential that has the properties of free energy with 
respect to immobile components of a solid body and the 
properties of grand thermodynamic potential with respect 
to mobile components. This function can also be called 
the modified grand thermodynamic potential and denoted 

, as shown in Eq. (127).

8.4. Definition of J-Potential

Having talked about the existing five thermodynamic 
potentials and their modifications, we thereby determined 
the background against which the discovery of the sixth 
took place [126, 127]. All the above relationships refer 
to a homogeneous (single-phase) fluid system. Going 
down in the series of Eqs. (116)–(120), we arrive at  
Eq. (120) for grand thermodynamic potential with only 
one term –pV. It seems to be a limit. After all, if we define 
a certain thermodynamic J-potential as

(128),

then we get zero. But this is only for homogeneous 
systems! This is where the time has come to change the 
prevailing views. It was not stipulated anywhere, but it 
was always implied that any thermodynamic potential 
should be applicable to homogeneous systems. The 
J-potential does not satisfy this condition, but if it is good 
for heterogeneous systems, then why not use it? In the 

(129)

(130),

where γs = σs is the surface tension for a surface with an 
area As and τt = κt is the linear tension for a line of length 
Lt (s and t are serial numbers). Differentiating Eq. (128) 
with substituting Eq. (129), we obtain a fundamental 
equation for J-potential

where, we recall, p is the external pressure for the system 
under consideration. Thermodynamic experts will say that 
the first three terms on the right-hand side of Eq. (130) 
should cancel each other out according to the Gibbs-
Duhem equation, but this is true only when all surfaces 
are flat and the pressure is the same everywhere. In this 
case, or at constant temperature, external pressure, and 
chemical potentials, Eq. (130) simplifies to the form

(131)

(132)

,

,

which is very convenient for the thermodynamics of 
surfaces. Integrating Eq. (131) with constant intensive 
parameters gives the integral fundamental equation for 
J-potential

the very appearance of which confirms the importance of 
J-potential for colloidal science.

To formulate the principle of equilibrium in terms of 
J-potential, imagine that the entire heterogeneous system 
as a whole is surrounded by a homogeneous medium 
with pressure p, which is thus the external pressure for 
our system. Then, for grand thermodynamic potential, 
the principle of equilibrium is formulated in the form of 
Eq. (125), whence, taking into account Eq. (128), we find
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This is the equilibrium principle for J-potential in a 
fluid system. In particular, in the presence of flat surfaces, 
the substitution of Eq. (131) into Eq. (133) gives

the chemical potential tensor of component j in the solid 
phase that is normal to the surface. These two chemical 
potentials are related by the Gibbs equilibrium condition 
for the flat boundary of a macroscopic solid with a liquid

(133)

(134)

(135)

for all surfaces and lines that do not cross the boundary 
of the system.

 The above equations were related to fluid systems. In 
the most general case, including solids, J-potential can 
be defined as follows:

where P is the external force per unit area A of the surface 
of the system (A) as a function of the position on the 
surface, u is the local displacement vector of the surface; 
integration is performed over the entire closed surface of 
the system. Note that the tensions of surfaces and lines 
crossing the boundary of the system themselves become 
external forces, but in order to avoid misunderstandings 
(up to J-potential turning to zero even for heterogeneous 
systems), it is better to agree from the very beginning that 
such forces are not included in the value of P, although 
a different approach is possible in a number of special 
problems. The presence of external forces leads to the 
formation of a stress tensor field inside the system. 
Mathematically, both formalisms are related as

(136)

(137)

,

where ê is the strain tensor, and the colon means the 
biscalar product of tensors.

In the case of a solid body with one immobile 
(subscript j) and mobile (subscript i) components, the 
expression for grand thermodynamic potential Ω in  
Eq. (135) can be written as [128]

where superscript α refers to the solid phase, and β refers 
to the real or imaginary fluid phase in equilibrium with 
the α phase. The value μj

β is the chemical potential of 
component j in solution, while μj

α
(nn) is the component of 

(138)

(139)

Recall that, as was shown in [89], in accordance with 
Eq. (65), equality Eq. (138) is also valid for nanoparticles 
if its left-hand side refers to the surface monolayer of 
the particle. The equilibrium principle for J-potential  
(Eq. (135)) is written as

An essential feature of the definition expressed in  
Eq. (137), and hence the definition of J-potential as 
Eq. (135), is the binding to a certain surface through 
which a solid can dissolve or evaporate. If a body is in 
an anisotropic state and has several surfaces of different 
orientations (and, possibly, of different nature), then 
there will be several definitions of Ω, and, consequently, 
J-potential (Eq. (135)) will be defined ambiguously. This 
inconvenience can be circumvented by introducing a 
hybrid J-potential.

8.5 Hybrid J-Potential

Hybrid J-potential (denoted as  
~
J ) can be defined as

(140)

where  
~
Ω is the hybrid function shown in Eq. (127), 

which plays the role of grand thermodynamic potential 
only in relation to mobile components, and in relation to 
immobile components of a solid, it acts as free energy. 
Accordingly, the components of the mass displacement 
tensor of the immobile component  ^Nj [43], rather than the 
chemical potential tensor, act as variables. In comparison 
with Eq. (139), the equilibrium principle is formulated 
for the hybrid J-potential as

(141)

The fundamental equations for 
~
J  are easily deduced 

from the equations for free energy. In the case of a 
homogeneous phase α in an anisotropic state, we have 
[42]
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Integration of Eq. (142) along any of the principal 
directions k gives

Passing from surfaces to lines and taking the second 
excess along the surface (the second line from the top), 
for the linear hybrid J-potential, we find the fundamental 
equation

(142)

(144)

(143).

If we now simplify the definition given by Eq. (140) 
to the form (taking into account the equilibrium condition 
P = Ek)

then, from Eqs. (140), (143), and (144), we obtain

(145)

(146)

This shows that hybrid J-potential of the bulk phase 
is nonzero. Using now Eqs. (142) and (144), we write 
the fundamental equation of the bulk phase in terms of 
hybrid J-potential:

Now let us see how the Gibbs surface excess of hybrid 
J-potential looks like (we will add an overline to denote 
excess surface quantities). Turning to the interfacial 
surface, first of all, we note that, in view of the zero 
excess of the last term in Eq. (144), the excesses of the 
functions 

~
J  and 

~
Ω coincide:  ~J  = ~Ω. The relations for 

~
Ω 

are well studied [42] and lead to the equation

– –

(147),

which, however, is satisfied only if the equimolecular 
surface with respect to the immobile component is taken 
as a dividing surface Differentiating Eq. (147) and using 
the generalized Gibbs adsorption equation for σ (47), we 
obtain the fundamental equation for the surface hybrid 
J-potential

–

(148)

(149),

where, we remind, γ is mechanical, and σ is thermodynamic 
linear tension. This completes the presentation of the new 
thermodynamic potential J. We now give examples of 
the practical use of J-potential, illustrating its usefulness.

8.6. Neumann and Gibbs Equations

As the simplest example of the application of 
J-potential, consider the known equilibrium conditions 
for surfaces that meet on the same interface line. In terms 
of mechanical surface tension γk (k is the surface number), 
one of them is expressed by the vector Neumann equation

(150),

which is trivially treated as the equilibrium of the 
force vectors applied to the line. But here the question 
immediately arises: how can one write a vector equation 
when surface tension is not a vector, but a tensor? This 
contradiction is easily removed. The point is that each 
surface has a direction specified (along the normal to 
the line) by a unit vector νk, and the scalar product [42]

(151)

gives the real force acting on the line from the k-th surface, 
and this force is a vector. The condition expressed in 
Eq. (150) is always true for fluid systems (if the surface 
tensions of the surfaces are the same, then the number 
of the latters on one line cannot be more than three, as it 
turns out in foams), but if there are solid surfaces on the 
left side of Eq. (150), internal stresses arise in solids [42].

In terms of thermodynamic surface tension σ, the 
equilibrium condition is given by the Gibbs equation, 
but since we are talking about different physical 
quantities, the Neumann and Gibbs equations are different 
relationships. But surprisingly, the Gibbs equation is also 
a vector, although σ is a purely scalar quantity. True, 
Gibbs indicated this in verbal form and did not write a 
single vector. That was the second case in the author’s 

.
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life when he had to dress Gibbs’ verbal statements in 
mathematical clothes (the first case was associated with 
the reduced Le Chatelier–Brown principle, as described 
above). Let us see what happens when using the hybrid 
J-potential.

If the surfaces are flat and the only external force is 
atmospheric pressure, then from Eqs. (141), (146), and 
(148), we obtain

This is the vector Gibbs equation (formulated by 
him only verbally). In particular, it also holds for fluid 
systems, when passing, thus, to the Neumann equation. 
We emphasize, however, that Eq. (155) is a more general 
and more important relation than the vector equation 
(156). For example, a particular case of Eq. (155) is the 
classical Young equation [127].

8.7. J-POTENTIAL IN THE THERMODYNAMICS  
OF THIN FILMS [129]

We have already dealt with thin films and their 
disjoining pressure (Eq. (11)) in Chap. 2. The state of 
modern thermodynamics of thin films (it goes beyond 
the limits of Gibbs thermodynamics) was presented in  
[3, 130, 131]. But now we are interested in another 
question: what phases are typical for a system with a thin 
film? Figure 16 depicting a flat thin film between two 
bubbles (or drops of other liquids) in a liquid indicates 
two phases: the phase α external to the film and the mother 
phase of the film β. Note that with a certain choice of 
system boundaries, the phase β can also be interpreted 
as external, so that both pressures pα = pγ and pβ (the 
difference between them is precisely the disjoining 
pressure of the film Π) can be considered as external 
pressures when defining J-potential. In this regard, we 
can introduce a more general definition

Fig. 16. Flat thin film between two bubbles in a liquid: α—
external phase (air), β—mother phase.

νk

dN

(152)

for virtual changes that do not deform surfaces, but only 
change their position at a fixed line length. It is curious 
that Gibbs proceeded from the same expression, but he 
extracted it from more complex expressions (the operation 
is not always unambiguous). There is no need for this in 
the presence of J-potential. The virtual change we are 
considering is the displacement of the interface parallel to 
itself (Fig. 15). If dN = ndN is the line displacement vector 
along the normal (n is the unit displacement vector), then 
the change in the area of the kth surface with direction νk is

(153)

Substituting Eq. (42) in Eq. (41) yields

(154)

Since the displacement dN is arbitrary, the condition 
expressed ib Eq. (43) can only be satisfied for

(155)

If the direction of displacement n can be arbitrary, 
then, from Eq. (155), it follows

(156)

(157)

(158),

or, for hybrid potential,

Fig. 15. Cross section of interfaces (looking like lines) 
intersecting on the same interface (shown by a large dot): νk 
is unit vector indicating the direction of the surface k, dN is 
displacement vector of the interface (the new position of the 
surface k is shown by a dotted line).
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where р′ is some chosen pressure. This may be external 
pressure relative to the heterogeneous system as a whole, 
pressure in one of the phases of the heterogeneous system, 
or any other pressure. In the version presented by Eq. 
(157), the term J-potential already denotes a whole series 
of potentials of a certain type. In the classical approach, 
р′ is assumed to be equal to the external pressure pα (р′ =  
pα). For brevity, we will call this type of J-potential 
classical (designation Jc), and all other types derived from  
Eqs. (157) and (158) are special J-potentials (designation Js).

When formulating the J-potential in a system with a 
thin film, one must also take into account which Gibbs 
method of consideration is used. There are two such 
methods [130, 131] (let us conditionally mark them as 
A and B). In the first, only one dividing surface is used 
and the thin film is treated as an interface. Film tension 
is interpreted as surface tension σαγ. Method B uses two 
dividing surfaces αβ and γβ with tensions σαβ and σγβ. The 
distance between the dividing surfaces defines the film 
thickness H, and the relationship between these values 
is given by the known equation [31]

4. p′ = pβ, B.

(159)

We now give a summary of the results.
1. p′ = pα, A.

(160)

(161)

(162)

(163)

2. p′ = pα, B.

(164)

(165)

(166)

(167)

3. p′ = pβ, A.

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

These expressions well illustrate the variety of 
relationships given by J-potential.

8.8. J-Potential in the Theory of Strength  
of Materials

It should be noted that the field of knowledge 
related to the strength of materials, created mainly by 
mechanics, is directly related to colloidal science for 
the direct reason that the destruction of any body is the 
creation of a new surface. Therefore, it is not surprising 
that colloid scientists have long been involved in the 
study of the strength of materials. In the 20th century, 
an outstanding contribution to this field of science was 
made by the school of P.A. Rehbinder by the discovery 
of the Rehbinder effect, adsorption decrease in strength.

As regards the theory of strength, already in the 
fundamental classical work of Griffith (his energy 
approach is close to thermodynamics) [132], the concept 
of surface tension was used as he understood it. The 
ultimate solid strength found by Griffith at brittle fracture 
(we denote it as Et), is of the form

(176)

where, in the modern interpretation, σ is the thermodynamic 
surface tension of the material, c is the crack depth, Y is 
Young’s modulus and ν is Poisson’s ratio. Eq. (176) can 
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be understood in two ways: (1) if there is a crack with 
depth c in a body with thermodynamic surface tension σ, 
then external stress must be applied to destroy the body; 
(2) if the body is loaded with stress σ, then a crack in it 
can grow without destruction only up to the critical depth 
c, determined by Eq. (176). Modern thermodynamics of 
surface phenomena has introduced its own corrections 
into Griffith’s theory [133–136]. Further development 
of the theory led to the creation of a whole new field, 
the thermodynamics of cracks [137–139]. Numerous 
calculations in this area for dispersion forces were 
recently presented in review [131].

If the crack is empty, the theory is simpler and can 
be constructed using any thermodynamic potentials. But 
if the crack is even slightly filled with foreign matter 
(and this can greatly affect the material strength), then a 
J-potential is required to build a theory. Let us explain 
this in more detail [139]. Let a solid body with a crack 
be subjected to the action of two forces: external (for 
example, atmospheric) pressure рα and uniaxial loading 
(stress in the direction r) Е ≡ Еrr, perpendicular to the 
mean plane of the crack (stress E is measured from the 
external pressure). Let there also be a foreign substance 
in the crack that forms the phase β (phase α is the external 
medium) in the form of a meniscus in the crack nose 
with a contact angle θ and radius r. This whole picture 
is shown in Fig. 17.

The corresponding value of J-potential defined in  
Eq. (135) (we denote it Jr) can be written as

The system under consideration consists of three parts: 
the solid body itself (we will mark it with subscript s), 
the external phase α, partially entering the crack, and the 
phase β, located in the crack nose. Let us single out from 
the potential its part related to the bulk phase of the solid

Fig. 17. A solid with a crack under stress for the case of 
capillary condensation: E is external stress, 2ɸ is the crack 
frontal angle, θ is contact angle, α is the external phase (air), 
β is a liquid phase in the crack nose, r is the radius of the 
interfacial surface αβ, 2z0 is the width of the crack mouth.

(177)

(178)

and, accounting for the volume balance V = Vs + Vα + 
Vβ, we write

(179),

where Vα and Vβ are the volumes of phases α and β, σα 
and σβ are the macroscopic values of the thermodynamic 
surface tensions of the crack walls at the boundary with 
the α and β phases, Аα and Аβ are the total contact areas 
of the walls with α and β phases, γ (=σαβ) is the surface 
tension at the boundary of the α and β phases (surface 
meniscus tension), Аαβ is the meniscus surface area, κ and 
L are the thermodynamic linear tension and the length 
of the crack front line. Note that in Eq. (179), only the 
volume of the phase β adjacent to the crack nose remains; 
the volume of the phase α (which can go beyond the crack) 
is no longer important.

Potential Jr gives the work of the process under the 
condition of constant temperature, mass and external 
loading of the solid body, external pressure and chemical 
potentials of the moving components. In particular, this 
can be a crack growth process, which is well reflected by 
the differential fundamental equation

(180)

For thermodynamic potential Jr, the equilibrium 
principle is formulated as follows:

(181)

where Nj is the number of molecules of the immobile 
component j in the solid. The written expressions are 
sufficient to find the ultimate strength of a given body. 
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The further algorithm of actions is the following. It 

is necessary to completely define the function and 

explore it to the maximum using condition expressed in  

Eq. (181). The presence of a maximum means an unstable 

equilibrium, i.e. destruction of a solid body. This is where 
the strength limit comes from.

We present a summary of the final results [139]. For 
the case of capillary condensation (when the liquid is in 
the crack nose, as shown in Fig. 17)

(182)ɸ
ɸ

for the case of capillary evaporation (when the crack 
tip is empty and the curvature of the meniscus is of the 
opposite sign)

(183)ɸ
ɸ

and the common relation for both cases with using the 
Young equation

(184)ɸɸ

where ɸ is half of the frontal angle, and z0 is half of 
the crack mouth width (Fig. 17). Beyond the scope of 
the Young equation, Eqs. (182) and (183) can also be 
combined by the common notation

(185)ɸ ɸ

In the expressions obtained, the first term is the main 
one, and the correction terms are combined in square 
brackets (taking into account the coefficient in front of 
them).

8.9. Final Remarks

When [127] was published, the reviewers asked: why 
such a strange name, “J-potential?” Historically, the 
names of thermodynamic potentials were often associated 
with energy, the ancestor of all potentials (free energy, 
bound energy, although the latter as a potential was 
never put into practice) or with the names of the authors 
of the introduced potentials (for example, free energies 
of Helmholtz and Gibbs). However, the frequent use of 
the term requires its brevity, and now only the name of 
Gibbs in the term “Gibbs energy” has survived from the 
names [125]. Gibbs himself, although he used several 

thermodynamic potentials, did not name them in any way 
(except for energy). He denoted them in Greek letters 
and later said: “the function is such and such.” When 
switching to the Latin alphabet, it turned out that most 
of the designations of thermodynamic potentials (E, F, 
G, H) are adjacent to the letter E of the Latin alphabet, 
which is often used to denote energy. It is logical to 
supplement this sequence with the letter I, but it is actively 
used in physics for other purposes. And then comes the 
letter J, and it fits perfectly. Of course, it was tempting 
to somehow connect the desired letter with the author’s 
surname, but the letter R in thermodynamics is securely 
assigned to the gas constant. So, J-potential, and in the 
Gibbs style, the name of the thermodynamic potential 
simply coincides with its designation. By the way, there 
are already similar examples in science. For example, in 
electrokinetic phenomena, one of the electric potentials 
is simply called the ζ-potential.
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Unfortunately, J-potential did not manage to get into 
the textbook [125], and so far only one person has used 
it, the author himself. Several areas of application have 
been demonstrated by his efforts. As early as [127], it was 
shown how easy it is to derive the classical Neumann and 
Gibbs equations, including the Young equation, using 
J-potential (we did this above using the more practical 
hybrid J-potential). It should be noted that in principle all 
thermodynamic potentials are similar. The whole question 
is the convenience of their use and the conditions when 
they work. Let us hope that nanoscience "finds" its native 
thermodynamic potential and finds harmony with it. But 
this will take time.

9. CONCLUSIONS

After finishing, I hope, not a very tiring review of 
the works that we qualify as discoveries, the reader may 
have a question: how did all this affect the author and 
what was he ultimately rewarded with? One can look at 
scientific success in different ways, and, approaching the 
90-year milestone, I cannot but remember that in science 
I came from the 50s and 60s. The Iron Curtain completely 
ruled out brain drain, and when I entered the Faculty of 
Physics at Leningrad State University in 1949, I found 
myself surrounded by the most able and talented people. 
This applied to both teachers and students. Some of them 
became my lifelong friends, later turning into remarkable 
scientists (two academicians left my group). And the 
undergraduates immediately shocked me: they stayed at 
the faculty in the evening to hear again the lecture (usually 
the most difficult one) given in the afternoon from the lips 
of one of their “geniuses” with his comments. Is this not a 
genuine and deep interest in science? And its educational 
value is obvious.

I remember that already in our time we buried my 
friend Professor V.V. Krotov (once recognized as the best 
scientist of the Faculty of Chemistry of St. Petersburg 
State University), and his daughter Irina, who came 
from abroad, gave us a dressing down: “What are you 
portraying here for world sorrow? Need to rejoice. 
The man lived a wonderful life. He always did what he 
wanted!” The last phrase is key. Far from every person, 
and even a scientist, one can say so. But you can also talk 
about me. And to the mercantile question “What does it 
give?” it is necessary, first of all, to answer that scientific 
activity is not a job, but a way of life. It is a game of the 
mind and the search for a solution (sometimes even in a 
dream) of one puzzle after another. It becomes especially 

gamble when several people participate in it. And, since 
the discovery of new phenomena is always a collective 
matter, I would like to sincerely thank the co-authors 
of all the phenomena described in this review. Some of 
the co-authors passed away, leaving in my heart eternal 
sympathy and indelible memory. Others are still alive, 
and I sincerely wish them new success!

Behind shoulders, there is a long way. There were ups 
and downs, awards and gold medals, but all this does not 
change the essence of the matter. For a scientist, scientific 
achievements themselves are a reward. They bring joy, 
make the scientist happy. And if there is someone else 
that needs to be remembered and thanked, it is fate that 
assigned me such a wonderful field as science.
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