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Abstract. We state several results on bounded elementary generation and
bounded commutator width for Chevalley groups over Dedekind rings of arith-
metic type in positive characteristic. In particular, Chevalley groups of rank
> 2 over polynomial rings Fq[t] and Chevalley groups of rank > 1 over Lau-
rent polynomial rings F,[t,t™'], where F, is a finite field of ¢ elements, are
boundedly elementarily generated. In both cases we establish explicit bounds,
and in the latter case they are quite sharp. Using these bounds we can also
produce explicit bounds of the commutator width of these groups. We also
mention some applications, possible generalisations and several related open
problems, whose solution would require explicit computations. The complete
text of the present talk is available in [14].

Introduction

In the present talk, we consider Chevalley groups G = G(®, R) and their elemen-
tary subgroups F(®, R) over various classes of rings, mostly over Dedekind rings
of arithmetic type (we refer to [34] for notation and further references pertaining
to Chevalley groups, and to [2] for the number theory background).

Primarily, we are interested in the classical problems of estimating the width
of E(®, R) with respect to the two following generating sets.

e The elementary generators z,(§), o € ®, £ € R. We say that a group G is
boundedly elementarily generated if F(®, R) has finite width wg(G) with respect
to elementary generators.

e Commutators [r,y] = zyzr~'y~!, where z,y € G. We say that G has
finite commutator width if every element of E(®, R) is a product of < we(G)
commutators [z,y], z € G(®,R), y € E(P, R).
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For the case of Chevalley groups of rank > 2, in which we are mostly inter-
ested, bounded generation in terms of elementary generators, and bounded gener-
ation in terms of commutators are essentially equivalent. Indeed, in this case the
Chevalley commutator formula readily implies that every elementary generator
can be presented as a product of a bounded number of commutators.

Conversely, a very deep result by Alexei Stepanov and others, see, in par-
ticular, [30], and in final form [28], implies that every commutator in E(®, R) is
a product of not more than L elementary generators, with the bound L = L(®)
depending on ® alone. But of course the actual estimates of wg(G) and we(G)
can be very different.

Both problems have attracted considerable attention over the last 40 years
or so. Very roughly, the situation is as follows.

e Bounded elementary generation always holds with obvious small bounds for
0-dimensional rings. This follows from the existence of such short factorisations as
Bruhat decomposition, Gaufs decomposition, unitriangular factorisation of length
4, and the like. On the other hand, bounded generation usually fails for rings of
dimension > 2. But for 1-dimensional rings it is problematic.

e Existence of arbitrary long division chains in Euclidean algorithm implies
that SL(2,Z) and SL(2,F,[t]) are not boundedly elementary generated [6]. But
this could be attributed to the exceptional behaviours of rank 1 groups.

e What came as a shock, was when Wilberd van der Kallen [I3] established
that bounded elementary generation — and thus also finite commutator width —
fail even for SL(3, C[x]), a group of Lie rank 2 over a Euclidean ring! Compare also
[8], for a slightly simplified proof.

An emblematic example of 1-dimensional rings are Dedekind rings of arith-
metic type R = Og, for which bounded elementary generation of G(®, R) is in-
trinsically related to the positive solution of the congruence subgroup problem
in that group. This connection was first noted by Vladimir Platonov and Andrei
Rapinchuk, see [20].

For the number case the situation is well understood, even for rank 1 groups.
Without attempting to give a detailed survey, let us mention some high points of
this development. Apart from the rings R = Og, |S| = 1, with finite multiplicative
group, such finiteness results are even available for SL(2, R).

e For all Chevalley groups of rank > 2, after the initial breakthrough by
Douglas Carter and Gordon Keller, [3| 4], later explained and expanded by Oleg
Tavgen [31], and many others, we now know bounded elementary generation with
excellent bounds depending on the type of ® and the class number of R alone.

This leaves us with the analysis of the group SL(2, R), for a Dedekind ring
R = Og, with infinite multiplicative group.

e At about the same time, jointly with Paige, Carter and Keller gave a model
theoretic proof [unpublished], [5], somewhat refashioned by Dave Morris [I8]. But
as all model theoretic proofs, this proof gives no bounds whatsoever.
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e On the other hand, another important advance was made by Cooke and
Weinberger [7], who got excellent bounds, modulo the Generalised Riemann Hy-
pothesis. The explicit unconditional bounds obtained thereafter seemed to be
grossly exaggerated [16].

e Some 10 years ago Maxim Vsemirnov and Sury [36] considered the key
example of SL (27 Z [%] ), obtaining the bound wg(SL(2, R)) = 5 unconditionally.

e This was a key inroad to the first complete unconditional solution of the
general case with a good bound, in the work of Alexander Morgan, Andrei Rap-
inchuk and Sury [I7]. The bound they gave is < 9, but for the case when S contains
at least one real or non-Archimedean valuation was almost immediately improved
[with the same ideas] to < 8 by Jordan and Zaytman [12].

However, the function case turned out to be much more recalcitrant, and is
up to now not fully solved, apart from some important but isolated results. On the
one hand, an analogue of Riemann’s Hypothesis was known in this case for quite
some time. Also, the function case analogue of Dirichlet’s theorem on primes in
arithmetic progressions, the Kornblum—Artin theorem for F,[¢], is much precise
than the Dirichlet theorem itself.

On the other hand, in the positive characteristic additional arithmetic diffi-
culties occur, that have no obvious counterparts in characteristic 0. They reflect
in particular in the structure of arithmetic subgroups in the function case. For
instance, it is well known that the group SL(2,F,[t]) is not even finitely generated,
whereas the groups SL(2,F,[t,¢t~!]) and SL(3,F,[t]) are finitely generated but not
finitely presented.

e Until very recently the only published result was that by Clifford Queen
[23]. Queen’s main result implies that under some additional assumptions on R —
which hold, for instance, for Laurent polynomial rings F,[t,¢~!] with coefficients
in a finite field — the elementary width of the group SL(2, R) is 5. As we shall see
this implies, in particular, bounded elementary generation of all Chevalley groups
G(®, R) with plausible bounds.

Queen’s proof is mainly based on the same principles proposed by Cooke and
Weinberger [7] in the number field case. Namely, it uses subtle analytic ingredients,
such as a function field analogue of Artin’s primitive root conjecture, in order to
obtain short division chains. In contrast to the number field case where the validity
of Artin’s conjecture is only known conditionally on the Generalized Riemann
Hypothesis (GRH), its function field analogue, developed by Bilharz in the 1930’s,
became an unconditional theorem after Weil’s work. See the paper of Lenstra [15]
for more details, and for a strengthening of Queen’s theorem.

e The case of the groups over the usual polynomial ring F,[¢] long remained
open. Only in 2018 has Bogdan Nica established the bounded elementary gener-
ation of SL(n,F[t]), n > 3. Part of the problem is that in characteristic p > 0
bounded elementary generation is not the same as bounded generation in terms
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of cyclic subgroups. For instance, the groups SL(n,F,[t]) do not have bounded
generation in this abstract sense, see [].

e After the preliminary version of the present work has been finished, there
appeared a preprint of Alexander Trost [32] where the statement of our Theorem
A was established for the ring of integers R of an arbitrary global function field
K, with a bound of the form L(d, q) - |®|, where the factor L depends on ¢ and of
the degree d of K. His method is similar to Morris’ approach in [18].

Here we merely state our main results. There are many interesting aspects
of the proof, especially in the case of the group Sp(4,F,[t]) that requires tons
of explicit calculations, related to stability theorems, reciprocity laws, Mennicke
symbols, Chebyshev polynomials, etc. Obviously, in the talk we can only present
an outline, all details can be found in our paper [14].

1. Bounded generation of G(®,F,[t])

Here we establish similar results for all Chevalley groups over Fy[t], with explicit
uniform bounds that only depend on type ®. The first major new result of the
present work treats the most difficult example, polynomial rings F,[t] with coeffi-
cients in finite fields.

Theorem A. Let G(®, R) be a simply connected Chevalley group of type @, rk(P) >
2 over R =TF,[t]. Then the width of G(®, R) with respect to elementary generators
is bounded.

One of the main points of the present work is that, unlike the proofs based on
model theory, here we get efficient realistic estimates for the number of factors. In
some cases, like for reduction to smaller rank, our bounds are the best possible ones.
For small ranks, there might be still some gap between the counter-examples and
the estimates we obtain, but our upper bounds are fairly close to the theoretically
best possible ones. And the lower bounds in such similar problems are usually
quite difficult to obtain, anyway.

Roughly, the leading idea of our proof still follows Tavgen’s general scheme,
and is based on his rank reduction trick. It is very general and beautiful, and works
in many other related situations. Tavgen himself used the fact that for systems of
rank > 2 every fundamental root falls into the subsystem of smaller rank obtained
by dropping either the first or the last fundamental root. However, as was pointed
out by the referee of [26], the argument applies without any modification in a much
more general setting. Namely, it suffices to assume that the required decomposition
holds for some subsystems A = Aq,...,A;, whose union contains all fundamental
roots of ®. These subsystems do not have to be terminal.

Some bound in the bounded generation for all Chevalley groups can be easily
derived from the case of rank two systems by a version of the usual Tavgen’s trick
[31], Theorem 1, described in [35] and [26]. Let us state it in a slightly more general
form.
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Theorem B. Let ® be a reduced irreducible root system of rank [ > 2, and R be a
commutative ring. Further, let Ay, ..., s be some subsystems of ®, whose union
contains all fundamental roots of ®. Suppose that for all A = Aq,...; A, the
elementary Chevalley group E(A, R) admits a unitriangular factorisation

E(A,R)=U(A,R)U(A,R)...U(A,R)

of length L. Then the elementary Chevalley group E(®, R) itself admits unitrian-
gular factorisation

E(®,R) =U(®,R)U(®,R)...UX(d,R)
of the same length L.

Thus, we are left with the analysis of rank 2 cases.

e For Ay bounded generation of SL(3,IF,[t]) is precisely the main result of
Nica [Ni|. In fact, Nica establishes that

wp(SL(3, F,[t])) < 41.

This bound 41 is obtained as follows. Over a Dedekind ring one needs 7 elementary
operations to reduce a 3 x 3 matrix to a 2 x 2 matrix (one would need 8 for a general
ring subject to sr(R) < 2). The elementary length of any matrix g € SL(2, R)
inside SL(3, R) is at most 34. Interestingly, the main arithmetic ingredient of his
proof is the Kornblum—Artin functional version of Dirichlet’s theorem on primes
in arithmetic progressions.

An interesting aspect of Nica’s work [19] is that he avoids the usual Mennicke
type calculations [2], and carries the proof using the so-called "swindling lemma"
instead. This allows him to obtain somewhat better bounds for the number of
elementary generators.

e Luckily, we do not have to imitate Tavgen’s proof [3I], section 5, for the
case of the Chevalley group of type Gs. Instead of a difficult direct calculation,
we show that this case can be derived from the case of As by the usual stability
arguments. Stability of the embeddings A; C Ay C Gy under asr(R) < 2 was
established by Michael Stein, see [27]. We had just to go over the proof to trace
all elementary operations.

Over a Dedekind ring one needs 20 elementary operations to reduce any
element of F(Ga, R) to an element of SL(2, R) in a long root embedding — one
would need 24 for a general ring subject to asr(R) < 2, which gives us

wr(G(Ga,Fylt])) < 54.

e A large part of the actual proof of theorem A is the analysis of the most
difficult case of Sp(4, F,[t]), which is the Chevalley group of type Ca. The difficulty
is that now we have to take two types of embeddings of A; < Cs,, the long root
embedding and the short root embedding.

Here, we again take the proof in Tavgen’s paper [31], section 4, as a prototype.
But there is a substantial difference, since now we have to verify many arithmetic
lemmas that are well known in the number case, but for which we could not find any
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obvious reference in the function case. Apart from a strong version of Kornblum—
Artin theorem, we had to carry through rather meticulous calculations depending
on the explicit formula of the reciprocity law for power-residue symbols.

Now, we have to first reduce the long root embedding to such an embedding
whose entry is a square, then (following Bass—Milnor—Serre and Tavgen) reduce
it to a short root embedding, and, finally, perform (more difficult!) calculations
to express a matrix from SL(2, R) in the short root embedding as a product of
elementary unipotents in Sp(4, R). As a result, the bound we get is worse than for
other rank 2 cases.

This eventually leaves us with the [exaggerated] bound
wr(G(Cq, Fylt])) < 79.
and we challenge the reader to improve it, along the lines of [19].

Quite amazingly, C, is the only difficult case! For groups of types B; and
Cy, I > 3, we have found much easier proofs, based on the fact that either a long
root, or a short one can be embedded in a root system of type As, so that we can
proceed directly from [I9].

In particular, for groups of rank 3 one gets better bounds than for Cs, viz.
wp(G(Cs,Folt])) <72,  wp(G(Bs,Fyft]) < 65.

Some bounds for the elementary bounded generation for all Chevalley groups
can be easily derived from the above form of Tavgen rank reduction theorem.
For instance, it can be derived from the existence of two types of embeddings of
A, < Fy, the long root embedding and the short root embedding, that

we(G(F4,F,[t])) < 216,

but this bound seems not to be the best possible.

For SL(n, R) there is a realistic bound of the width in elementary generators,
in terms of stability conditions, taking into account the elementary fact that for
Dedekind rings sr(R) = 1.5. The above proof of Theorem A gives us occasion
to return to the stability arguments for all Chevalley groups, and obtain bounds
which are substantially better than the ones that could be obtained via Tavgen’s
trick.

Alternatively, Theorem A can be restated in the following equivalent form.
The difference is that in this case the computations of many authors, subsumed
and expanded by Andrei Smolensky [25], allow to produce short explicit bounds.

Theorem C. Let G(®, R) be a simply connected Chevalley group of type @, rk(®) >
2 over R =F[t]. Then G(®, R) is of finite commutator width L, where

o .5 for ®= Ay, forl>2, or®=F,;

e [ <6 for ® = B;,Cy,D;, forl >3 or ® = E;, Eg, or, finally, ® = Cs, Gs
under the additional assumption that 1 is the sum of two units in R (which is
automatically the case, provided q # 2);

o .7 for ® = Eg.
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We believe that the bound for Eg could be also improved to L < 6, but we
were strongly discouraged by the extent of explicit calculations needed to do that.

2. Bounded generation of G(®,F,[t,t7])

In fact, ulterior applications to Kac—Moody groups that we have in mind do not
need the full power of Theorems A and C. We only need a similar result for the
equally classical but much easier example of Laurent polynomial rings Fy[t,¢™!]
with coefficients in finite fields.

For Chevalley groups over such rings bounded generation can be derived
from Theorem A. Yet, the bounds thus obtained will not be the best possible
ones. However, the multiplicative group of the ring R = F[t,t~!] is infinite. This
means that bounded generation — with much better bounds! — follows already
from the result by Clifford Queen [23]. Let us state the most surpising finiteness
result in terms of unitriangular factors obtained along this route.

Theorem D. Let R = Og be the ring of S-integers of K, a function field of one
variable over Fy with S containing at least two places. Assume that at least one of
the following holds:

e cither at least one of these places has degree one,
e or the class number of R, as a Dedekind domain, is prime to g — 1.

Then any simply connected Chevalley group G = G(®,R) admits the following
decompositions
G=UU"UUU  =U0"U0UUU".

The key case here are the groups SL(2, R), for which the result follows from
Theorem 2 of [23]. It is stated there correctly, but the proof at the very last
page contains a minor inaccuracy and would imply that G admits a unitriangular
decomposition of length 4, which contradicts the main result of [35]. The reason is
that at a certain stage of the calculation one obtains an invertible element € € R*,
whereas [23] takes this element to be 1. Slightly rearranging the proof, one gets the
correct (and best possible!) bound, that any element of SL(2, R) is a product of
< 5 elementary transvections. Theorem C now follows by Tavgen’s rank reduction
trick.

In particular, this theorem allows to dramatically reduce bounds for groups
over Fy[t,t71], to

wr(G(Ag, Fyft,t71])) < 15, wg(G(Ca, Fylt, t 1)) < 20,
IUE(G(GQ,Fq[t,t_l})) S 307

via unitriangular factorisations. Stability results that we mentioned before afford
even better bounds, such as, for instance,

wr(G(Ag, Fy[t,t71])) < 12, wg(G(Ca, Fylt, t71)) < 15,
wE(G(GQ,Fq[t,tfl])) < 25.
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As above, using the technology of [25], we can derive from Theorem D esti-
mates for the commutator width.

Theorem E. Let R be as in Theorem D. Then the commutator width of the simply
connected Chevalley group G = G(®, R) is < L, where

o L.=3 for®= Ay, forl>2, or®=F,,;

o L =4 for ® = B;,Cy, Dy, forl >3 or ® = Er, Eg, or, finally, ® = Cs, Gs
under the additional assumption that 1 is the sum of two units in R (which is
automatically the case, provided q # 2);

e =5 for ® = Eg;

This kind of sharp bounds were quite unexpected for us. In particular, Cheval-
ley groups over such arithmetic rings have the same commutator width as Cheval-
ley groups over rings of stable rank 1, see [25].

3. Applications and possible generalisations

Primarily, we have in mind the following two types of applications, that are de-
scribed in [T4].

e Estimates of the width of Kac—Moody groups defined over a finite field
with respect to commutators and other natural generating sets.

e Model-theoretic applications. Bounded generation implies a lot of important
logical properties of groups. In our case the groups G(®, F,[t]) and G(®,F,[t,t™1]),
rk(®) > 1 turn out to be first order rigid, quasi-finitely axiomatisable and logically
homogeneous.

Here are some generalisations of the above theorems A—E that we plan to
address in the next papers.

e For all ranks rk(®) > 1 remove the remaining restrictions on the ring R in
Theorems D and E.

e For ranks rk(®) > 2 prove analogues of Theorems A and C for all Dedekind
rings of arithmetic type. This should be possible, but might be difficult, since many
of the requisite arithmetic facts are not as easily available, as in the number case.

e For classical groups, reduction to smaller ranks is well-known. We are in
possession of similar reduction results, based on effectivisation of [27, 21 22| [@].
These results give pretty sharp bounds also for exceptional cases. But calculations
with columns of height 26, 27, 56 and 248 are quite a bit more involved, and spread
over several dozen pages.

In the next paper we plan to produce all details for the stability reduction for
the exceptional cases Fy4, Eg, E7, Eg in the same spirit as we have done in [I4] for
G2, B; and C;. The goal is obtain new explicit bounds for the elementary width
in these cases, which are better than the known ones even in the number case.

e Another very challenging problem would be to perform scrupulous analysis
of the proofs to reduce the number of elementary moves. We are pretty sure that
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our bounds are far from being optimal. Even without attempting to get sharp
bounds, we believe that we could improve the bounds in the present paper, and
other related results.

However, to get the best possible bounds one might need to perform exten-
sive computer search/computer calculations. However, to get such optimal bounds
would be extremely difficult, no such bounds are in sight even in the number case,
even for such groups as SL(3,Z).

e Partial positive results, such as bounded expressions of elementary con-
jugates and commutators in terms of elementary generators — decomposition of
unipotents, Stepanov’s univeral localisation, and the like, [29] [30] 28]. It seems one
should be able to obtain similar results also for other word maps.

e Let us mention yet another extremely pregnant generalisation, bounded
reduction. In fact, even below the usual stability conditions and even in the absense
of the bounded generation for G(®, R), it makes sense to speak of the number of

elementary generators necessary to reduce an element g of G(®, R) to an element
of G(A, R), for a subsystem A C ®.

One such prominent example are polynomial rings R[t1, .. ., t,,], where bounded
reduction holds starting with a rank depending on R alone, not on the number of
indeterminates. For the case of SL(n, R[t1,...,ty]) this is essentially an effectivi-
sation of Suslin’s solution of the K;-analogue of Serre’s problem, explicit bounds
were obtained in the remarkable paper by Leonid Vaserstein [33], which unfortu-
nately remained unpublished. For other split classical groups such bounds were
recently obtained by Pavel Gvozdevsky [10].

e Most of the results so far pertain to the absolute case alone. However,
it makes sense to ask similar questions for the relative case, in other words for
the congruence subgroups G(®, R,I), and the elementary subgroups E(®, R, I)
of level I < R. The expectation is to get similar uniform bounds in terms of the
elementary conjugates x_o(n)za(&)x_0(—1n), a € &, £ € I, n € R. Some results
in this direction are contained in the paper by Sinchuk and Smolensky [24]. As a
more remote goal one could think of generalisations to birelative subgroups, see
[11].

We intend to return to [some of] these subjects in the full version of the
present paper, and in its [expected] sequel.
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