01

Диэлектрический барьерный разряд в смеси He–Ne низкого давления. Спектроскопия послесвечения на переходах $2p^55s \rightarrow 2p^53p$

© С.В. Гордеев, В.А. Иванов ¶, Ю.Э. Скобло

Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Россия

[¶] e-mail: v.a.ivanov@spbu.ru

Поступила в редакцию 27.01.2022 г. В окончательной редакции 27.01.2022 г. Принята к публикации 24.02.2022 г.

Спектроскопически исследованы и промоделированы процессы заселения и разрушения населенностей уровней конфигурации $2p^55s$ атома неона в распадающейся плазме низкочастотного барьерного разряда в смеси He–Ne. Условия эксперимента: давление гелия 0.08-22 Torr, неона ≤ 3 mTorr, плотность электронов менее 10^{11} cm⁻³. На основе данных об эволюции населенностей уровней $3s_i$ (в обозначениях Пашена) с изменением давления гелия получены уточненные данные о константах скоростей столкновительных процессов, определяющих кинетику этих уровней в плазме He–Ne.

Ключевые слова: гелий-неоновая плазма, передача возбуждения, послесвечение, неупругие столкновения.

DOI: 10.21883/OS.2022.05.52433.3208-21

Введение

Диэлектрический барьерный разряд (DBD) находит все более широкое применение в прикладной оптике для оптимизации источников ВУФ излучения [1] и газоразрядных лазеров [2]. Такие свойства этого разряда как возможность работы в области давлений от сотых долей Torr до атмосферы при минимальном разогреве газа стимулируют его применение и в практике эксперимента по исследованию элементарных процессов в слабоионизованной плазме [3]. В данной работе DBD использован как источник плазмы He-Ne с целью анализа кинетики населенностей возбужденных уровней атома неона конфигурации $2p^55s$, включающей верхние лазерные уровни, для получения данных о константах скоростей неупругих столкновений, ответственных за формирование свойств активной среды Не-Ne-лазера. Несмотря на то, что изучению этих процессов посвящены сотни работ [4], сведения о некоторых процессах имеют либо оценочный характер, либо данные различных работ отличаются в несколько раз. Например, сечение передачи возбуждения при столкновениях

$$\text{He}(2^{1}S_{0}) + \text{Ne} \rightarrow \text{He}(1^{1}S_{0}) + \text{Ne}(3s_{3,4,5})$$
 (1)

 $(3s_{2,3,4,5}$ — уровни конфигурации $2p^{5}5s$ в обозначениях Пашена) по данным эксперимента [5] мене 10^{-18} cm², что не согласуется с выводами [6]; в отношении скорости одного из основных процессов в активной среде столкновительной деактивации верхнего лазерного уровня линии 632.8 nm — расхождения в данных достигают трех раз [4]. Одна из основных причин этих расхождений кроется в неудачном, на наш взгляд, выборе условий эксперимента. В большинстве работ в качестве объекта исследования используется плазма газового разряда с параметрами, близкими к имеющим место в активной среде, т.е. при высоких температуре и плотности электронов, достаточных для их участия наряду с атомами в формировании населенностей возбужденных уровней. Интерпретация результатов измерений констант скоростей атомных процессов в таких условиях требует специального анализа роли электронов [7]. Аналогичные сомнения возникают и в отношении тех результатов, которые были получены при высоких плотностях атомов: как отмечено в [6], надежные данные о распределении потоков заселения при передаче возбуждения могут быть получены только при давлении смеси менее 1 Torr. В этой связи низкочастотный DBD представляется оптимальным способом создания слабоионизованной плазмы, в стадии распада которой при близкой к комнатной температуре электронов и атомов в широком диапазоне давлений, начиная с сотых долей Torr, в рамках спектроскопических методов удобно наблюдать эволюцию плотностей возбужденных атомов при изменении условий эксперимента.

Экспериментальная часть

Мы использовали простую схему реализации импульсного барьерного разряда (рис. 1) цилиндрической конфигурации с электродами на боковых сторонах разрядной трубки. Подробности, касающиеся характеристик разряда, изложены в работах [3,8]. В данной работе частота разряда составляла 80–320 Hz, давление гелия варьировалось от 0.08 до 22 Torr при давлении неона менее 3 mTorr. Ток такого разряда представляет собой две полуволны противоположной полярности длительностью несколько микросекунд при равенстве нулю среднего значения. Последнее важно, посколь-

Рис. 1. (*a*) Разрядная трубка — внутренний диаметр 3.9 сm, L = 22 cm; D — диафрагма диаметром 5 mm; W — кварцевые окна. (*b*) Расположение электродов на боковой поверхности трубки.

ку в отличие от постоянного тока в таком разряде отсутствует разделение смеси вследствие катафореза. Световые потоки регистрировались с помощью метода многоканального счета фотонов с разрешением от 40 ns. Длительность послесвечения при всех условиях была достаточной для наблюдения смены механизма заселения уровней 2p⁵5s атома неона — от передачи возбуждения в ранней стадии распада плазмы к рекомбинации атомарных Ne⁺ или молекулярных HeNe⁺ и Ne²⁺ ионов с электронами [9,10]. Анализ населенностей проводился в раннем послесвечении, в котором интенсивности J(t) спектральных линий переходов $5s \rightarrow 3p$ спадали тождественно плотности атомов $[He(2^{1}S_{0})](t)$. Для регистрации $[\text{He}(2^{1}S_{0})]$ использовался метод поглощения излучения дополнительного источника на линии 501.6 nm. В дополнение к интенсивностям спектральных линий *J*(*t*) регистрировались спектры послесвечения. В данном случае измерения велись с использованием стробирования сигнала фотоэлектронного умножителя в пределах раннего послесвечения.

Плотность электронов в ранней стадии послесвечения оценивалась по скорости спада плотности атомов гелия $[\text{He}(2^1S_0)](t)$, основным каналом разрушения которых в условиях малой плотности [Ne] является процесс

$$\operatorname{He}(2^{1}S_{0}) + e \xrightarrow{\kappa_{e}} \operatorname{He}(2^{3}S_{1}) + e.$$

$$\tag{2}$$

Константа скорости (2) $k_e \sim 4 \cdot 10^{-7} \text{ cm}^3/\text{s}$, впервые измеренная в [11], слабо зависит от температуры электронов [12], меняющейся в раннем послесвечении. При всех условиях эксперимента на этой стадии временной ход $[\text{He}(2^1S_0)](t)$ совпадал со спадом интенсивностей линий переходов $5s \rightarrow 3p$.

Обсуждение результатов

Населенности уровней 3s₂ и 3s₃

Фрагмент спектра послесвечения показан на рис. 2. Сравнительно низкое разрешение по длинам волн свя-

Рис. 2. Фрагмент спектра послесвечения на ранней стадии распада плазмы. Давление гелия 0.66 Torr. В скобках указаны вероятности переходов в 10^6 s-1.

Рис. 3. Экспериментальные и модельные зависимости относительной населенности уровней 3*s*_i от давления гелия.

зано с малостью световых потоков и необходимостью устанавливать широкие входную и выходную щели монохроматора. Спектры в области 570—670 nm зарегистрированы при давлениях гелия 0.08, 0.16, 0.66, 1.85, 6.8, 15 и 22 Тогг, из которых первое оказалось слишком малым для уверенной регистрации линий, излучаемых наименее населенным [13] уровнем $3s_3$. В отношении кинетики этого уровня литературные данные [4] имеют лишь оценочный характер, и по этой причине основное внимание в работе было уделено именно ему.

Результаты эксперимента по определению относительной населенности уровней $[3s_3]/[3s_2]$ представлены на рис. 3. Они получены усреднением по наиболее ярким линиям J_{3sik} с каждого уровня 3s_i:

$$[3s_i] = (1/N_k) \sum_k J_{ik}/S_{ik}A_{ik}.$$

Здесь $S_{ik}(\lambda)$ — чувствительность оптической системы регистрации излучения, A_{ik} — вероятности переходов, значения которых взяты из NIST Database [14], N_k — число линий. В качестве величин J_{3sik} использовались максимумы функций Гаусса, которыми мы аппроксимировали зависимости $J(\lambda)$ в зарегистрированных спектрах.

На рис. 3 экспериментальные данные представлены вместе с результатами моделирования отношения населенностей $[3s_3]/[3s_2]$. Вертикальные отрезки характеризуют неопределенность экспериментальных значений интенсивностей линий, возрастающую с уменьшением давления гелия вследствие уменьшения как относительной, так и абсолютной величин населенности уровня $3s_3$.

Модель построена следующим образом.

1. Принимая во внимание структуру уровней 3_{si} — две пары ($3s_2$, $3s_3$ и $3s_4$, $3s_5$) близко расположенных уровней с зазором между парами (в шкале энергии $\sim 0.086 \text{ eV}$), заметно превышающим тепловую энергию, в балансе населенностей $3s_2$ и $3s_3$, кроме передачи возбуждения, учитывались только столкновительные переходы между ними:

$$Ne(3s_2) + He \leftrightarrow Ne(3s_3) + He.$$
 (3)

Основанием для пренебрежения переходами с уровней 4d служит их малая населенность по сравнению с уровнем $3s_2$. Это ясно из сравнения интенсивностей линий (рис. 2) переходов $4d \rightarrow 3p$ и $5s \rightarrow 3p$ с учетом того факта, что в указанной области спектра спектральная чувствительность $S(\lambda)$ меняется незначительно. Так, населенность уровня 4d, излучающего наиболее яркую в послесвечении линию 576.4 nm (расположен на 0.04 eV выше $3s_2$) в 13 раз ниже населенности $3s_2$, определяемой по линии 593.9 nm.

Отношение констант скоростей прямых и обратных переходов (3) k_{23} и k_{32} связаны принципом детального равновесия, в соответствии с которым

$$k_{32}/k_{23} = (g_2/g_3) \exp\{-0.006/kT_a\} \sim 2.4,$$
 (4)

 g_2/g_3 — отношение статистических весов уровней, $kT_a \sim 0.026 \text{ eV}$ при комнатной температуре частиц. Значение константы k_{23} находилась из условия наилучшего согласия модельных расчетов с экспериментальными данными.

2. Константы скоростей процессов (1) заселения уровней $3s_3$ и $3s_2$ в модели связаны коэффициентом m_3 : $k_3^m = m_3 k_2^m$, в качестве константы k_2^m в системе уравнений мы использовали значение, найденное по общепринятому [4] сечению процесса $\langle \sigma_2 \rangle = 3.6 \cdot 10^{-16} \, {\rm cm}^2$: $k_2^m = \langle \sigma_2 \rangle \langle v \rangle$, где $\langle v \rangle$ — средняя скорость сталкивающихся частиц $\langle v \rangle \sim 1.4 \cdot 10^5 \, {\rm cm/s}$ при температуре атомов $T_a = 300 \, {\rm K}$.

3. В разрушении населенностей учтены переходы (3) и процессы, обратные передаче возбуждения (1), константы скоростей которых находились подобно (4) из принципа детального равновесия. Таким образом, модель содержит два варьируемых параметра: k_{23} и m_3 .

4. Результаты моделирования зависят от степени пленения резонансного излучения на переходе с уровня $3s_2$ в основное состояние атома неона. Оценки [15] на основе анализа поглощения при малых давлениях (давление неона не более 3 mTorr) для допплеровского характера контуров линий (что оправдано в наших условиях при P_{He} не более 22 Torr) показывают, что изменение вероятности перехода, вносимое пленением, не превышает 30%. Тем не менее, вычисления мы провели для обоих случаев — $k_0 R \ll 1$ и $k_0 R \gg 1$ (k_0 коэффициент поглощения в центре линии, R — радиус разрядной трубки).

Поскольку в эксперименте (при всех условиях) характерные времена изменения населенностей на порядки величины превышали радиационные времена жизни возбужденных состояний, система дифференциальных уравнений

$$\frac{d[3s_2]}{dt} = -[3s_2]\{A_2 + (k_{23} + k_{21})[\text{He}]\} + k_{32}[3s_3][\text{He}] + k_2^m[\text{He}(2^1S_0)][\text{Ne}], \quad (5)$$

$$\frac{d[3s_3]}{dt} = -[3s_3]\{A_3 + (k_{32} + k_{31})[\text{He}]\} + k_{23}[3s_2][\text{He}] + m_3 k_2^m[\text{He}(2^1S_0)][\text{Ne}]$$
(6)

 $(A_2 \ u \ A_3 \ - \ суммы вероятностей переходов с уровней <math>3s_2 \ u \ 3s_3, k_{21} \ u \ k_{31} \ - \ константы скоростей процессов, обратных передаче возбуждения на уровни <math>3s_2 \ u \ 3s_3$) могла быть заменена системой алгебраических уравнений (квазистационарное приближение), из которой следуют очевидное решение при $P_{\text{He}} \rightarrow 0$:

$$\frac{[3s_3]}{[3s_2]}(0) = m_3 \frac{A_2}{A_3},$$

(7) т.е. отношение констант скоростей передачи возбуждения определяется отношением населенностей при малом давлении.

Модельные кривые $M_1 - M_4$ на рис. 3 отвечают следующим параметрам.

М₁: $k_0 R \ll 1$; $m_3 = 0.00037$, т.е. сечение передачи возбуждения на уровень $3s_3 \langle \sigma_3 \rangle =$ $= 0.00037 \langle \sigma_2 \rangle \sim 1.3 \cdot 10^{-19} \text{ cm}^2$; второй параметр модели $k_{23} = 10^{-12} \text{ cm}^3$ /s, что соответствует сечению $\langle \sigma_{23} \rangle \sim 0.7 \cdot 10^{-17} \text{ cm}^2$.

 M_2 : $k_0 R \ll 1$. Для теста чувствительности модели к изменению параметра m_3 мы увеличили его вдвое: $m_3 = 0.00074$. Видно, во-первых, что эта замена практически не повлияла на результаты расчета при больших давлениях гелия, и, во-вторых, учитывая неопределенность экспериментальных данных, можно полагать, что

сечение $\langle \sigma_2 \rangle$ определено с погрешностью около полутора раз.

 M_3 : $k_0 R \ll 1$. Проверка чувствительности модели к изменению параметра k_{23} . $m_3 = 0.00037$ — как в M_1 . Сравнение кривых M_1 , M_2 и M_3 показывает, во-первых, что определяемая величина одного из параметров модели не зависит от вариаций другой, и, во-вторых, что неопределенность параметра k_{23} существенно ниже, чем неопределенность m_3 .

 M_4 : Единственное изменение по сравнению с $M_1 - k_0 R \gg 1$, т.е. излучение на переходе в основное состояние полностью пленено, что втрое уменьшает вероятность A_2 в первом уравнении модели. Как и следовало ожидать, эффект пленения в значительно большей степени влияет на результат при малых давлениях, когда роль столкновительных переходов невелика.

Суммируя возможные источники погрешностей, включая пленение излучения, представим окончательные результаты в следующем виде: сечение передачи возбуждения на уровень $3s_3 \langle \sigma_3 \rangle = (1.3 \pm {}^{0.8}_{0.5}) \cdot 10^{-19} \text{ cm}^2$, сечение столкновительного переноса возбуждения с уровня $3s_2$ на уровень $3s_3 \langle \sigma_{23} \rangle = (0.7 \pm 0.15) \cdot 10^{-17} \text{ cm}^2$. Отметим, что при таком соотношении указанных констант скоростей основным источником заселения уровня $3s_3$ в плазме He–Ne при давлении гелия более 1 Тогт является столкновительный переход $3s_2 \rightarrow 3s_3$, а не передача возбуждения (1).

Сравним эти данные с немногочисленными литературными данными. В [6] указан нижний предел сечения $\langle \sigma_3 \rangle = 9 \cdot 10^{-19} \text{ cm}^2$, в [5], как упоминалось выше, авторами дана лишь оценка сечения передачи возбуждения на все три нижних уровня конфигурации $2p^55s$: $\langle \sigma_{3,4,5} \rangle$ менее 10^{-18} cm^2 . Что касается $\langle \sigma_{23} \rangle$, то нам не удалось найти обоснованных экспериментом оценок скорости процесса — вероятно, такая оценка получена впервые.

Населенности уровней 3s4 и 3s5

Эти уровни значительно более населены по сравнению с $3s_3$, что позволило уверенно регистрировать излучаемые линии при минимальном в эксперименте давлении гелия 0.08 Тогг. Размеры символов на рис. 3 при $P_{\rm He} = 0.08$ Тогг приблизительно отражают неопределенность отношений $[3s_4]/[3s_2]$ и $[3s_5]/[3s_2]$. Видно, что они слабо подвержены влиянию столкновительных процессов. Для них также справедлива формула (7) (с соответствующими индексами), с помощью которой и данными [14] о вероятностях переходов, пренебрегая пленением резонансного излучения с уровня $3s_4$, получаем следующее:

$$\frac{[3s_4]}{[3s_2]}(0) = m_4 \frac{A_2}{A_4} \sim \frac{[3s_5]}{[3s_2]}(0) = m_5 \frac{A_2}{A_5} \sim 0.09.$$

Для сечений передачи возбуждения соответственно получаем $\langle \sigma_4 \rangle \sim 0.11 \langle \sigma_2 \rangle = 4 \cdot 10^{-17} \text{ cm}^2$, $\langle \sigma_5 \rangle \sim 0.028 \langle \sigma_2 \rangle = 10^{-17} \text{ cm}^2$ с погрешностью, связанной со статистикой

измерений интенсивностей спектральных линий, около 20%. С ростом давления, как видно из данных рис. 3, происходит как увеличение относительных населенностей обоих уровней, так и уменьшение $[3s_4]/[3s_5]$. Первое, как и при анализе $[3s_3]/[3s_2]$, мы связываем с включением столкновительных переходов $3s_2 \rightarrow 3s_{4,5}$. Изменение отношения $[3s_4]/[3s_5](P_{\text{He}})$ может иметь две причины: различие сечений $\langle \sigma_{24} \rangle$ и $\langle \sigma_{25}$ и релаксация населенностей за счет столкновительных переходов $3s_4 \leftrightarrow 3s_5$ с приближением к равновесному значению $(g_4/g_5) \exp\{-0.011/kT_a\} \sim 0.4$ независимо от соотношения сечений $\langle \sigma_{24} \rangle$ и $\langle \sigma_{25} \rangle$. Ясно поэтому, что находимые в рамках рассматриваемой простой модели (уравнения (5), (6) дополнены аналогичными для $3s_4$ и $3s_5$) отношение $\langle \sigma_{24} \rangle / \langle \sigma_{25} \rangle$ и $\langle \sigma_{45} \rangle$ оказываются зависимыми и не могут быть однозначно определены на основании используемого в работе ограниченного набора экспериментальных данных. Грубую оценку сечений $\langle \sigma_{24} \rangle$ и $\langle \sigma_{25} \rangle$ можно получить, полагая, что эффективность столкновительного "перемешивания" уровней 3s4 и 3s5 такая же, что для $3s_2$ и $3s_3$: $\langle \sigma_{45} \rangle = \langle \sigma_{23} \rangle \sim 0.7 \cdot 10^{-17} \,\mathrm{cm}^2$. Модельные кривые на рис. З отвечают сечениям $\langle \sigma_{24} \rangle = 1.4 \cdot 10^{-17} \,\mathrm{cm}^2$ и $\langle \sigma_{25} \rangle = 2.3 \cdot 10^{-17} \,\mathrm{cm}^2$.

Заключение

Выполнено спектроскопическое исследование спектра излучения распадающейся плазмы He–Ne в диапазоне изменения плотности атомов гелия [He] более чем на два порядка величины и при условии [Ne] \ll [He]. На основе сравнения данных об относительных населенностях уровней $3s_i$ (обозначения по Пашену, i = 2-5) конфигурации $2p^55s$ атома неона с модельными расчетами найдены константы скоростей передачи возбуждения на уровни $3s_3$, $3s_4$ и $3s_5$ при столкновениях атомов гелия в метастабильном состоянии 2^1S_0 с атомами неона и столкновительных переходов между уровнями $3s_2$ и $3s_3$. Эти данные могут быть использованы для уточнения теоретических моделей процессов в плазме He–Ne.

Конфликт интересов

Конфликт интересов отсутствует.

Список литературы

- M.I. Lomaev, E.A. Sosnin, V.F. Tarasenko, D.V. Shits, V.S. Skakun, M.V. Erofeev, A.A. Lisenko. Instrum. Exp. Tech., 49 (5), 595–616 (2006). DOI: 10.1134/S0020441206050010
- [2] U. Kogelschatz. Plasma Chem. Plasma Proc., 23 (1), 1–46 (2003). DOI: 10.1023/A:1022470901385
- [3] V.A. Ivanov. Plasma Sources Sci. Technol., 29 (4), 045022 (2020). DOI: 10.1088/1361-6595/ab7f4c
- [4] A.Z. Devdariani, A.L. Zagrebin, K. Blagoev. Annales de Physique, 17(5), 365-470 (1992).
 DOI: 10.1051/anphys:01992001705036500

- J.T. Massey, A.G. Schulz, B.F. Hochheimer, S.M. Cannon. J. Appl. Phys., 36 (6), 658–659 (1965).
 DOI: 10.1063/1.1714054
- [6] Ю.З. Ионих, Н.П. Пенкин. Опт. и спектр., 31 (5), 837–840 (1971).
- [7] C.S. Willett, R.T. Young. J. Appl. Phys., 43 (2), 725–727 (1972). DOI: 10.1063/1.1661185
- [8] В.А. Иванов. Опт. и спектр., **126** (3), 247-252 (2019).
 DOI: 10.21883/OS.2019.03.47361.185-18 [V.A. Ivanov. Opt. Spectr., **126** (3), 167-172 (2019).
 DOI: 10.1134/S0030400X1903007X].
- [9] В.А. Иванов, А.С. Петровская, Ю.Э. Скобло. Опт. и спектр., 114 (5), 750-758 (2013).
 DOI: 10.7868/S0030403413040090 [V.A. Ivanov, A.S. Petrovskaya, Y.E. Skoblo. Opt. Spectr., 114 (5), 688-695 (2013).
 DOI: 10.1134/S0030400X13040097].
- [10] В.А. Иванов, А.С. Петровская, Ю.Э. Скобло. Химическая физика, 34 (8), 63–69 (2015).
 DOI: 10.7868/S0207401X15080117 [V.A. Ivanov, A.S. Petrovskaya, Y.E. Skoblo. Russ. J. Phys. Chem. B, 9 (4), 565–570 (2015). DOI: 10.1134/S1990793115040235].
- [11] A.V. Phelps. Phys. Rev.,99 (4), 1307–1313 (1955).
 DOI: 10.1103/PhysRev.99.1307
- [12] В.А. Иванов, А.С. Приходько, Ю.Э. Скобло. Опт. и спектр., 70 (3), 507-510 (1991). [V.A. Ivanov, A.S Prikhod'ko, Yu.E. Skoblo. Opt. Spectrosc., 70 (3), 297-299 (1991)].
- [13] H.K. Haak, B. Wittig, F. Stuhl. Z. für Naturforsch. A, 35a (12), 1342–1349 (1980). DOI: 10.1515/zna-1980-1214
- [14] NIST Atomic Spectra Database Lines Form [Электронный pecypc]. URL:
- https://physics.nist.gov/PhysRefData/ASD/lines_form.html
- [15] H.K. Holt. Phys. Rev. A, 13 (4), 1442–1447 (1976).
 DOI: 10.1103/PhysRevA.13.1442