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Abstract. The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic
system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region.
Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as
one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian
Arctic-boreal region and China, especially the megacities in China, were identified as a “PEEX region”. It is also
important to recognize that the PEEX geographical region is an area where science-based policy actions would
have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years
in the northern Eurasian region, together with recent observations of the air quality in the urban environments
in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, north-
ern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against
research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an en-
hanced holistic understanding of the land–atmosphere–ocean systems feedbacks. We conclude that although the
scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there
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are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises
from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive
in situ observations of the study region as well as integrative data analyses, hindering a comprehensive sys-
tem analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic
activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such
analyses. We recognize new topics with an increasing importance in the near future, especially “the enhancing
biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change” and the
“socio-economic development to tackle air quality issues”.

1 Introduction

The Earth system is facing major challenges, including
climate change, biodiversity loss, ocean acidification, epi-
demics and energy demand on a global scale (Ripple et
al., 2017). These “Grand Challenges” are highly connected
and interlinked. This creates a need for an approach of a
multi-disciplinary scientific programme, which could deliver
science-based messages to fast-tracked policy making (Kul-
mala et al., 2015). The recent estimates based on observed
atmospheric concentrations of CO2 (https://gml.noaa.gov/
ccgg/trends/trends_log.html, last access: 17 January 2022)
and business-as-usual scenarios show that humankind should
find solutions to answer the Grand Challenges (IPCC, 2021).
Deep understanding of the feedbacks and interactions be-
tween the land, atmosphere and ocean domains and account-
ing for social aspects in the regions of substantial changes
are needed for effective technical solutions, mitigation and
adaption policy actions. The northern regions (> 45◦ N), to-
gether with the Arctic coastal zone and Siberian region in
Russia, are among the most critical areas for the global cli-
mate (Smith, 2011; Kulmala et al., 2015).

The idea of the Pan-Eurasian Experiment (PEEX) (https:
//www.atm.helsinki.fi/peex/, last access: 17 January 2022),
originating from a group of Finnish and Russian scientists
and research organizations in 2012, is a bottom-up research
and capacity building programme concentrating on the sus-
tainable development of the Arctic-boreal regions of northern
Eurasia under changing climate and socio-economic mega-
trends (Kulmala et al., 2015; Lappalainen et al., 2016). The
programme was based on four interconnected parts, namely
research agenda, research infrastructures, capacity building,
and societal impacts (Lappalainen et al., 2014; Kulmala et
al., 2016a; Lappalainen et al., 2018a, b; Kulmala, 2018). In
addition to a strong involvement of the Russian partners, the
PEEX China collaboration was established in 2013. China
has a strong economic interest in Arctic regions (Tillman et
al., 2018). Furthermore, China is already facing extensive en-
vironmental and air pollution challenges and has major inter-
ests in finding technical solutions for environmental moni-
toring of the Silk Road Economic Belt (SREB) programme
initiated by President Xi Jinping in 2013 (Kulmala, 2018;
Lappalainen et al., 2018a; Dave and Kobayashi, 2018). The

PEEX programme is an umbrella for several bilateral scien-
tific projects and activities in Russia (e.g. Chalov et al., 2015,
2018; Esau et al., 2016; Alekseychik et al., 2017; Bobylev et
al., 2018; Malkhazova et al., 2018; Kukkonen et al., 2020;
Ezhova et al., 2018b; Zilitinkevich et al., 2019; Petäjä et al.,
2020a, 2021; Bondur et al., 2019a, b, c, d, e, f; He et al.,
2020), whereas in China the primary focus is on the develop-
ment of atmospheric in situ stations and advanced air qual-
ity monitoring in megacity environments (e.g. Ding et al.,
2016b; Yao et al., 2018; Wang et al., 2020). Furthermore,
PEEX is closely collaborating with the Digital Belt and Road
(DBAR) programme coordinated by the Institute for Digi-
tal Earth and Remote Sensing (RADI). The PEEX collab-
oration with DBAR is driven by a need for a novel in situ
station network and ground-based data as complementary in-
formation for the remote sensing in the Silk Road economic
region. Long-term development of a Station Measuring the
Earth Surface and Atmosphere Relations (SMEAR) concept
could provide baselines for this (Hari et al., 2016; Kulmala,
2015, 2018; Lappalainen et al., 2018a).

The PEEX programme is motivated by the need to obtain
scientific information that combines research in the Arctic
and boreal environments and to understand large-scale feed-
backs and interactions operating in land–atmosphere–ocean
systems (Kulmala et al., 2004, 2016a; Vihma et al., 2019)
and large-scale weather impacts related to the Arctic ampli-
fication (e.g. Coumou et al., 2014; Vihma et al., 2020). Some
of the scientific backbones of PEEX are the previously coor-
dinated research frameworks and their synthesis. For exam-
ple, the latest comprehensive overview of the interactions be-
tween the atmosphere, cryosphere and ecosystems at north-
ern high latitudes was performed by the Nordic Center of
Excellence in the Cryosphere-Atmosphere Interactions in a
Changing Arctic Climate (CRAICC) community (Boy et al.,
2019). The PEEX programme can upscale the CRAICC re-
sults into a wider geographical context.

Climate change, as a main driver of environmental changes
in the northern Eurasian Arctic-boreal region and China, sets
environmental boundaries for the future socio-economic ac-
tivities of these regions in general. The harsh climate of this
region puts pressure on the ecosystems and living condi-
tions of the local people (e.g. IPCC, 2019). PEEX intro-
duced 15 large-scale research questions, which would help
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us to fill the key gaps in our holistic understanding of land–
atmosphere interactions and their connections to societies
living in the northern Eurasian region (Kulmala et al., 2015;
Lappalainen et al., 2018a). This approach also sets the frame-
work of the current paper. Here we introduce the recent re-
search progress in the large-scale scientific themes relevant
to the PEEX region. The PEEX study region consists of the
northern Eurasian Arctic and boreal (taiga) environments,
and thus the major geographical part of the environments is
located in the Russian territory. China was added to the study
area in 2013 as it was seen as a locally and globally conse-
quential region for climate change, air quality and long-term
transport of atmospheric pollutants (Kulmala et al., 2015a,
2016a; Lappalainen et al., 2016, 2018a).

Here we introduce the scientific results from PEEX sci-
entific output, review the main results from PEEX scien-
tific papers and present an analysis of the key gaps in the
current scientific understanding. We use the PEEX research
agenda structure (Kulmala et al., 2015a; Lappalainen et al.,
2018a) as a reference and mirror new rising themes and re-
sults against this plan. For the literature material, we used the
following sources to demonstrate the results: (i) individual
inputs sent by the PEEX research community, (ii) contents of
the scientific papers published in the Atmospheric Chemistry
and Physics (ACP) PEEX special issue in 2016–2019 (https:
//acp.copernicus.org/articles/special_issue395.html, last ac-
cess: 17 January 2022) and (iii) scientific outputs from
PEEX-labelled projects (https://www.atm.helsinki.fi/peex/
index.php/portfolio-items/projects-subprograms/, last ac-
cess: 17 January 2022) and other relevant results reported
by the PEEX partners. For the individual input, we asked the
PEEX research community to identify the main published pa-
pers in peer-reviewed journals for each question out of their
own work and to connect the work with 1 of the 15 science
questions introduced in the PEEX Science Plan. Based on
the abstracts, we listed “addressed research themes” over the
last 5 years per PEEX key topical area (Table 1), which we
review in more detail in Sect. 2. The results are first discussed
with a holistic approach, and then we categorize the advances
through a set of identified feedbacks and interactions within
the Arctic-boreal environment. We follow up with a discus-
sion on the need for a future research infrastructure to be
able to provide relevant data and underline the future socio-
economic development of the region by setting the bound-
aries for proposed new science-based concepts and technical
solutions.

2 Results

In the PEEX Science Plan, we indicated four main the-
matic research domains: the land system, the atmospheric
system, the water system and the society with 15 thematic
research areas and related large-scale research questions (Q)
presented in Table 1 (Lappalainen et al., 2015). This is the

framework we re-visited and utilized in the synthesis of new
results of the PEEX community brought together in this pa-
per. Furthermore, we synthesized the results and discuss their
contribution to the large-scale feedbacks and interactions in
the Arctic context in the sections below.

2.1 Land ecosystems

2.1.1 Changing land ecosystem processes (Q1)

High-latitude photosynthetic productivity

High-latitude terrestrial ecosystems are crucial to the global
climate system and its regulation by vegetation. These
ecosystems are typically temperature limited and thus also
considered especially sensitive to climate warming. Better
understanding of inter-annual and seasonal dynamics and re-
silience of the photosynthetic activity of forest vegetation as
a whole is needed for the quantification of photosynthesis, or
gross primary production (GPP), and for analysing the car-
bon balance of the boreal forests. The carbon sink and source
dynamics of the boreal forests have been intensively studied
during the last 5 years at the SMEAR II station in Finland
(Hari and Kulmala, 2005; Hari et al., 2009). Recent results
show that the Norway spruce and Scots pine ecosystems are
rather resilient to a short-term weather variability (Matkala et
al., 2020). Overall, the analyses by Kulmala et al. (2019) and
Matkala et al. (2020) on subarctic Scots pine and Norway
spruce stands at the northern timberline in Finland serve as
examples of the canopy-scale dynamics, showing that these
ecosystems are generally weak carbon sinks but have a clear
annual variation. Kulmala et al. (2019) observed that there is
a difference between tree canopy photosynthesis compared to
forest floor photosynthesis, which starts to increase after the
snowmelt. Thus, the models for photosynthesis should also
address the snow cover period in order to better capture the
seasonal dynamics of photosynthesis of the northern forests
(Kulmala et al., 2019).

The abundance of tree species, stand biomass, increasing
tree growth and coverage of broadleaf species may also af-
fect biogenic volatile organic compound (BVOC) emissions
from the forest floor and impact the total BVOC emissions
from northern soils. At least the stand type has been shown
to affect BVOC fluxes from the forest floor in a hemiboreal–
boreal region (Mäki et al., 2019). As a whole, BVOCs emit-
ted by boreal evergreen trees are connected to the photosyn-
thetic activity with a strong seasonality and have a crucial
role in atmospheric aerosol formation processes over the bo-
real forest zone. BVOC emissions have low rates during pho-
tosynthetically inactive winter and increasing rates towards
summer (Aalto et al., 2015). High emission peaks caused by
enhanced monoterpene synthesis were found in spring peri-
ods simultaneously with the photosynthetic spring recovery
(Aalto et al., 2015). This suggests that monoterpene emis-
sions may have a protective functional role for the foliage
during the spring recovery state and that these emission peaks
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Table 1. Systems, key topical areas, and research question introduced in the PEEX Science Plan (SP) (Kulmala et al., 2015, 2016a; Lap-
palainen et al., 2018a) connected to the addressed research themes over the last 5 years by the PEEX questionnaire. The addressed research
themes and the results are summarized in Sect. 3.

PEEX –
SP
system

PEEX – SP
key topical area

PEEX – SP
research question (Q-No)

Addressed research themes during the last
5 years

Land Changing land ecosystem
processes

How could the land regions and processes that
are especially sensitive to climate change be
identified, and what are the best methods to
analyse their responses? (Q-1)

High-latitude photosynthetic productivity
and vegetation changes (greening, brown-
ing)
New methodologies determining Earth sur-
face characteristics

Land Risk areas of permafrost
thawing

How fast will permafrost thaw proceed, and
how will it affect ecosystem processes and
ecosystem–atmosphere feedbacks, including
hydrology and greenhouse gas fluxes? (Q-2)

Soil temperature evolution
Changing GHG fluxes, carbon sink–source
dynamics due to permafrost thawning

Land Ecosystem structural
changes

What are the structural ecosystem changes and
tipping points in the future evolution of the
Pan-Eurasian ecosystem? (Q-3)

Changes in soil microbial activity, e.g. ef-
fect of forest fires
Changes in the northern soils and function-
ing of the Arctic tundra in a global carbon
cycling context

Atmosphere Atmospheric composi-
tion and chemistry

What are the critical atmospheric physical and
chemical processes with large-scale climate
implications in a northern context? (Q4)

Carbon (C) balance in the boreal forests;
methane (CH4) balance at the Arctic; car-
bon monoxide (CO), ozone (O3) in the
northern Eurasian region
Sources and properties of atmospheric
aerosols in boreal and Arctic environments
Black carbon and dust in the atmosphere
and on snow at the northern high latitudes
Methodological and model developments
related to atmospheric chemistry and
physics

Atmosphere Urban air quality and
megacities, atmospheric
boundary layer (ABL)

What are the key feedbacks between air quality
and climate at northern high latitudes and in
China? (Q5)

Recent observations of air quality in China
Anthropogenic emissions and environmen-
tal pollution in Russia

Atmosphere Weather and atmospheric
circulation

How will atmospheric dynamics (synoptic-
scale weather, boundary layer) change in the
Arctic-boreal regions? (Q6)

Cold and warm episodes
Cyclone density dynamics
Circulation effect on temperature and mois-
ture
Cloudiness in Arctic
ABL dynamics

Water The Arctic Ocean in the
climate system

How will the extent and thickness of the Arctic
sea ice and terrestrial snow cover change? (Q-
7)

Sea ice dynamics and thermodynamics with
atmospheric and ocean dynamics
Snow depth/mass and sea ice thickness
Sea ice research supporting navigation
Ocean floor, sediments: composition and
fluxes
River runoff affecting the hydrological pro-
cesses in coastal marine environments in
Russia

Water Arctic marine ecosystem What is the joint effect of Arctic warming,
ocean freshening, pollution load and acidifica-
tion on the Arctic marine ecosystem, primary
production and carbon cycle? (Q-8)

Living marine organisms weaken or even
subdue CO2 accumulation.
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Table 1. Continued.

PEEX –
SP
system

PEEX – SP
key topical area

PEEX – SP
research question (Q-No)

Addressed research themes during the last
5 years

Water Lakes and large-scale
river systems

What is the future role of Arctic-boreal lakes,
wetlands and large river systems, including
thermokarst lakes and running waters of all
size, in biogeochemical cycles, and how will
these changes affect societies) ? (Q-9)

Organic carbon, carbon balance, ice cover
at lakes at the northern high latitudes
Specific characteristics of Lake Baikal and
the Selenga River Delta in Russia
Specific characteristics of Asian water lakes

Society Anthropogenic impact How will human actions such as land use
changes, energy production, the use of natural
resources, changes in energy efficiency and the
use of renewable energy sources influence fur-
ther environmental changes in the region?
(Q-10)

Mitigation, e.g. method for the natural risk
assessment in Russia and new clean energy
technologies

Society Environmental impact How do the changes in the physical, chemi-
cal and biological state of the different ecosys-
tems, and the inland, water and coastal areas
affect the economies and societies in the re-
gion, and vice versa? (Q-11)

Reindeer grazing effects on the ground veg-
etation structure and biomass

Society Natural hazards In which ways are populated areas vulnerable
to climate change? How can their vulnerabil-
ity be reduced and their adaptive capacities im-
proved? What responses can be identified to
mitigate and adapt to climate change? (Q-12)

Emerging zoonotic diseases
UV variation effects on health
Air pollution in different scales and envi-
ronments (street level urban air pollution,
transported air pollution in urban environ-
ments, air pollution at the Arctic) and re-
lated health effects

Feedbacks Key topics: atmospheric
composition, biogeo-
chemical cycles: water,
C, N, P, S

How will the changing cryospheric conditions
and the consequent changes in ecosystems feed
back to the Arctic climate system and weather,
including the risk of natural hazards? (Q-13)

Research needs: quantification of the COn-
tinental Biosphere-Aerosol-Cloud-Climate
(COBACC) feedback loop at different
northern boreal environments
Gold and high region quantification of
maBVOC–aerosol feedback loop at the Ti-
betan/Himalayan Plateau: HimHi

Feedbacks Key topics: atmospheric
composition, biogeo-
chemical cycles: water,
C, N, P, S

What are the net effects of various feedback
mechanisms on (i) land cover changes, (ii) pho-
tosynthetic activity, (iii) GHG exchange and
BVOC emissions, and (iv) aerosol and cloud
formation and radiative forcing? How do these
vary with climate change on regional and
global scales? (Q-14)

Research needs: the Arctic greening and
browning calls for a multi-discipilinary sci-
entific approach together, improved mod-
elling tools and new data in order to solve
scientific questions related to the net effects
of various feedback mechanisms connect-
ing the biosphere–atmosphere–human ac-
tivities

Feedbacks Key topics: atmospheric
composition, biogeo-
chemical cycles: water,
C, N, P, S

How are intensive urbanization processes
changing the local and regional climate and en-
vironment? (Q-15)

Research needs: accelerating urbanization
calls for studies on the effects of on air pol-
lution, local climate and the effects these
changes have on global climate. Integrated
studies should lead to services for society,
cities helping to mitigate hazards storms,
flooding, heat waves, and air pollution
episodes (see also Sect. 3.2).
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may contribute to atmospheric chemistry in the boreal for-
est in springtime. Vanhatalo et al. (2018) studied the inter-
play between needle monoterpene synthase activities, their
endogenous storage pools and needle emissions in 2 consec-
utive years at a boreal forest in Finland. They found no direct
correlation between monoterpene emissions and enzyme ac-
tivity or the storage pool size. Monoterpene synthase activity
of needles was different depending on seasonality and needle
ontogenesis. However, the pool of stored monoterpenes did
not change with the needle age (Vanhatalo et al., 2018). Also,
clear annual patterns of primary biological aerosol particles
have been measured from a boreal forest, with late spring
and autumn being the seasons of a dominant occurrence. In-
creased levels of free amino acids and bacteria were observed
during the pollen season in the SMEAR II station in Finland,
whereas the highest levels for fungi were observed in autumn
(Helin et al., 2017).

Extensive measurements of Scots pine photosynthesis and
modelling resulted in optimized predictions of the daily be-
haviour and annual patterns of photosynthesis in a subarctic
forest (Hari et al., 2017). The study connected theoretically
the fundamental concepts affecting photosynthesis with the
main environmental drivers (air temperature and light), and
the theory gained strong support through empirical testing.
Understanding stomatal regulation is fundamental in predict-
ing the impact of changing environmental conditions on pho-
tosynthetic productivity. Lintunen et al. (2020) showed that
the canopy conductance and soil-to-leaf hydraulic conduc-
tance are strongly coupled and that both soil temperature and
soil water content influence the canopy conductance through
changes in the below-ground hydraulic conductance. In par-
ticular, the finding that the soil temperature strongly influ-
ences the below-ground hydraulic conductance in mature,
boreal trees may help to better understand tree behaviour and
photosynthetic productivity in cold environments. The plant
photosynthetic rate is concurrently limited by stomatal and
non-stomatal limitations, and recent modelling (Hölttä et al.,
2017) and empirical (Salmon et al., 2020) studies suggest
that stomatal and non-stomatal controls are coordinated to
maximize leaf photosynthesis; i.e. non-stomatal limitations
to photosynthesis increase with a decreasing leaf water po-
tential and/or increasing leaf sugar concentration. This new
approach allows inclusion of the effects of non-stomatal lim-
itations in models of tree–gas exchange (Fig. 1).

Due to climate warming, it seems that trees at high lat-
itudes have been progressively decreasing their regional
growth coherence in the last decades (Shestakova et al.,
2019). Shestakova et al. (2019) showed results that unequiv-
ocally linked a substantial decrease in the temporal coher-
ence of forest productivity in boreal ecosystems to a less
temperature-limited growth that is concurrent with regional
warming trends. This emerging pattern points, for example,
to an increasing dependence of the carbon balance on local
drivers and the role of forests as carbon sinks in the northern
Ural region.

Vegetation GPP is the largest CO2 flux of the carbon cycle
in terrestrial ecosystems and impacts all of the carbon cycle
variables (Beer et al., 2010). Ecosystem models usually over-
estimate GPP under drought and during spring, late autumn
and winter (Ma et al., 2015). Several new methodological
improvements for a better quantification and scaling of GPP
have been reported (S. Zhang et al., 2018; Pulliainen et al.,
2017; Kooijmans et al., 2019). The GPP, measuring photo-
synthesis, is crucially important for the global carbon cycle,
and its accurate estimation is essential for ecosystem mon-
itoring and simulation. Pulliainen et al. (2017) introduced a
new proxy indicator for spring recovery from in situ flux data
on CO2 exchange. This made it possible to quantify the rela-
tion between spring recovery and carbon uptake and to assess
changes in the springtime carbon exchange, demonstrating a
major increase in the CO2 sink. S. Zhang et al. (2018) in-
troduced a new water-stress factor that effectively mitigates
the overestimation of GPP under drought conditions, while
J. H. Bai et al. (2018) and Y. Bai et al. (2018) developed
a method for quantifying the evapotranspiration of crops by
using a remote-sensing-based two-leaf canopy conductance
model. These methods can provide novel insights into the
quantification of GPP under different conditions and, in gen-
eral, into the impacts of biosphere–atmosphere relations on a
larger scale.

Methods for satellite-based remote sensing of photosyn-
thesis have been developed recently based on a solar-induced
chlorophyll fluorescence signal, such as the OCO-2 product
that has an improved spatial resolution, data acquisition and
retrieval precision as compared with earlier satellite missions
with solar-induced chlorophyll fluorescence (SIF) capabil-
ity, which allows for validation of the data directly against
ground and airborne measurements (Sun et al., 2017). Inter-
pretation of the solar-induced chlorophyll fluorescence signal
has also been improved by many in situ studies. For example,
J. Liu et al. (2019) and W. Liu et al. (2019) simulated SIF in
a realistic three-dimensional birch stand reconstructed from
terrestrial laser scanning data and found a large contribution
of the understory layer to the remote-sensing signal.

Vegetation changes

The normalized difference vegetation index (NDVI) is used
for detecting large-scale changes in vegetation productiv-
ity. In the past decades, these changes include an increasing
NDVI, called “greening”, taking place in the tundra regions,
and a decreasing NDVI, called “browning”, in the northern
forest regions (Miles and Esau, 2016). A deeper analysis be-
hind these changes is needed. For example, in northern West
Siberia only 18 % of the total area had statistically significant
changes in productivity either towards greening or browning
and having these opposite trends for different species within
the same bioclimatic zone. The observed complexity of the
patterns and trends in the vegetation productivity underlines
the need for new studies on how forest types and different
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Figure 1. A recent field and modelling study shows that cold soil decreases below-ground hydraulic conductance (i.e. less root water uptake)
and further canopy conductance in mature, boreal trees in spring (Lintunen et al., 2020). Cold temperature also decreases sink strength
(i.e. fewer sugars are needed for metabolism and growth). Low sink strength increases sugar concentration in leaves, which decreases
photosynthesis due to increased stomatal and non-stomatal limitations for photosynthesis (Hölttä et al., 2017; Salmon et al., 2020).

species are responding to climate and environmental changes
in the northern environments (Miles and Esau, 2016). Also,
understanding the variations in small-scale plant communi-
ties, seasonality and biogeochemical properties is needed for
modelling the functioning of the Arctic tundra in global car-
bon cycling. Also, the rapid development of the leaf area
index (LAI, leaf area per ground area, m2 m2) during the
short growing season and the yearly climatic variation ad-
dress the importance of optimal timing of the satellite data
images when they are compared with the field verification
data in the Arctic region (Juutinen et al., 2017).

Bondur and Vorobyev (2015) analysed the vegetation in-
dices and complex spectral transformations derived from
processed long-term satellite data (1973–2013) for areas
around the cities of Arkhangelsk and Zapolyarny (Murmansk
oblast). They demonstrated that these areas are subject to a
peak anthropogenic impact associated with specific indus-
trial facilities, leading to changes in landscapes and deple-
tion of natural ecosystems, consequently leading to the de-
cline in the quality of life and health conditions (Bondur
and Vorobyev, 2015). Region-wide changes in the vegeta-
tion cover and changes in and around several urbanized areas
in Siberia reveal robust indications of an accelerated green-
ing near the older urban areas. Many Siberian cities have
turned greener, while their surroundings have been domi-
nated by wider browning. The observed urban greening could
be associated not only with a special tending of within-city
green areas, but also with urban heat islands and succes-

sion of more productive shrub and tree species growing on
warmer sandy soils (Koronatova and Milyaeva, 2011; Sizov
and Lobotrosova, 2016). Tundra and forest–tundra biomes
are sensitive to mean summer temperatures, which increases
production and greening. Taiga biomes are sensitive to pre-
cipitation and soil moisture, with increased production in wet
summers (Miles et al., 2019).

New methodologies determining Earth surface
characteristics

Earth surface characteristics are fundamental knowledge for
the understanding and quantification of land–atmosphere
processes. The methods for determining Earth surface char-
acteristics from satellites are improving. As an example, a
method for recognition of the Earth surface types accord-
ing to space images using an object-oriented classification
was developed. The classification relies on Markov stochas-
tic segmentation for object extraction and supervised clas-
sification of the objects (Gurchenkov et al., 2017). Further-
more, a prototype algorithm for hemispheric-scale detec-
tion of autumn soil freezing using spaceborne L-band pas-
sive microwave observations was developed (Rautiainen et
al., 2016) and is currently an operative soil freeze and thaw
product that delivers freely available data (ftp://litdb.fmi.fi/
outgoing/SMOS-FTService/, last access: 17 January 2022).
The CryoGrid 3 land surface model provides improved de-
scriptions of possible pathways of ice-wedge polygon evo-
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lution and describes better the complex processes affecting
ice-rich permafrost landscapes (Nitzbon et al., 2019). In ad-
dition, there are new observations for validating satellite ob-
servations and permafrost models. Boike et al. (2019) intro-
duced a new, 16-year permafrost and meteorology data set
from the Samoylov Island Arctic research site, north-eastern
Siberia. Terentieva et al. (2016) introduced maps used as a
baseline for validation of coarse-resolution land cover prod-
ucts and wetland data sets at high latitudes. Other examples
of available data for the model validation are “BC emissions
from agricultural burns and grass fires in Siberia” by Kono-
valov et al. (2018) and “permafrost records at the Lena River
delta” by Boike et al. (2019).

Tundra ecosystems are under pressure and intensifying
permafrost thawing, plant growth and ecosystem carbon ex-
change under the changing climate. The heterogeneity of
Arctic landscapes is an extra challenge for environmental
monitoring. For example, remote-sensing methods are not
able to capture variations in moss biomass, which dominates
the plant biomass and controls soil properties in the Arctic.
The general accuracy of landscape level predictions in the
land cover type (LCT) is good, but the spatial extrapolation
of the vegetation and soil properties relevant for the regional
ecosystem and global climate models still needs to be im-
proved (Mikola et al., 2018). Furthermore, for the future, we
need to have a land characterization in order to perform quan-
tification and assessment of the ecosystem services at differ-
ent scales using integrative techniques and integrated field
observations together with remote sensing and modelling at
the landscape scale (Burkhard et al., 2009; Fu and Forsius,
2015). At smaller scales, the isotopic composition of carbon
and oxygen in peat can be used for the climate reconstruction
(Granath et al., 2018).

2.1.2 Thawing permafrost (Q2)

Observations of ground temperature evolution

Permafrost regions of northern Eurasia are warming along
with the climate (IPCC, 2019). During the Global Terres-
trial Network for Permafrost reference decade, 2007–2016,
the temperature at the depth of zero annual amplitude in-
creased by 0.39± 0.15 ◦C in the continuous permafrost zone
and by 0.20± 0.10 ◦C in the discontinuous permafrost zone.
At the same time, the mountain permafrost warmed by
0.19± 0.05 ◦C. The global average of the permafrost temper-
ature increased by 0.29± 0.12 ◦C (Biskaborn et al., 2019).
The observed trend in the continuous permafrost zone fol-
lows the air temperature trend in the Northern Hemisphere.

The changes in the permafrost region affect climate, hy-
drology and ecology from local to global scales (Arneth et
al., 2010; Hinzman et al., 2005). Several local studies fo-
cused on differences introduced by vegetation, soil and hy-
drological characteristics at the same site (Göckede et al.,
2017, 2019). Göckede et al. (2017, 2019) presented findings

on shifts in energy fluxes from paired ecosystem observa-
tions in north-eastern Siberia comprising a drained and corre-
sponding control site. Drainage disturbance triggered a suite
of secondary shifts in ecosystem properties, including alter-
ations in vegetation community structure, which in turn in-
fluenced changes in snow cover dynamics and surface energy
budget. First, the drainage reduced heat transfer into deeper
soil layers, which may have led to shallower thaw depths.
Second, the vegetation change due to the drainage led to an
albedo increase, which decreased the total energy income,
or net radiation, into the system. Third, the drainage re-
duced water content available for evapotranspiration, which
resulted in a reduced latent heat flux and increased sensible
heat flux, transferring more energy back into the atmosphere.
The reported effects led to surface and permafrost cooling
(Göckede et al., 2019).

Kukkonen et al. (2020) compared temperature data from
several shallow boreholes in the Nadym region, Siberia, and
predicted permafrost evolution for different climate scenar-
ios. The Nadym area represents a typical site located in
the discontinuous permafrost zone. Kukkonen et al. (2020)
found that the permafrost thawed most rapidly in low-
porosity soils, whereas high-porosity soils in the top layer
(e.g. peatland) retarded thawing considerably. Similarly, the
depth of a seasonally frozen layer and the temperature regime
of peat soils in the oligotrophic bog in the southern taiga
zone of West Siberia showed significant differences between
the sites with high and low levels of bog waters (Kiselev
et al., 2019). Both Kukkonen et al. (2020) and Kiselev et
al. (2019) results are in line with previous conclusions on
the importance of volumetric water content and unfrozen wa-
ter content for soil thermal properties governing heat transfer
and phase change processes (Romanovsky and Osterkamp,
2000). Locally, the sites with a thin snow cover (e.g. hilltops)
demonstrated a higher resistance to the thawing (Williams
and Smith, 1989; Kukkonen et al., 2020). To follow up on
the development of permafrost thaw in different soil types
requires continuous and comprehensive observations during
the coming decades.

Changing greenhouse gas (GHG) fluxes and VOCs due
to permafrost thaw

Biogenic GHG emissions are strongly connected to per-
mafrost conditions and changes in other related environ-
mental conditions, such as soil temperature and moisture
conditions. Here we discuss recent results on the observed
emissions from these permafrost perspectives and, later, in
Sect. 2.2.1, address the connections between GHG fluxes and
the other environmental factors, like deforestation and forest
fires.

During the permafrost thaw, even small changes in the soil
carbon cycle can turn a terrestrial ecosystem from a sink
into a source (Schuur et al., 2008). Based on regional in situ
observations of CO2 fluxes, Natali et al. (2019) estimated
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a wintertime carbon loss of 1662 Tg C yr−1, which is more
than predicted by the process model estimates. Furthermore,
Natalie et al. (2019) found that even if the soil CO2 loss
were enhanced due to winter warming, the growing season
might start earlier and onset the carbon uptake under warm-
ing climate conditions. For a better understanding of these
connections and both spatial and temporal dynamics of the
Arctic carbon cycle, we need more observations from per-
mafrost ecosystems. Additional flux measurements are ur-
gently needed to understand the variation between the cur-
rent measurements and, especially, extended measurements
on the CH4 emissions to better quantify their role in the
carbon balance. For example, a new data assimilation sys-
tem estimates an Arctic carbon sink of −67 g C m−2 yr−1,
but this value is associated with very high uncertainties. Fur-
thermore, these estimates do not include methane, which is
even more difficult to evaluate (López-Blanco et al., 2019).
Based on the field flux measurements, the Carbon Cycle Re-
port 2018 (Schuur et al., 2018) estimated that the Eurasian
boreal wetland is a source of 14 Tg CH4 yr−1. On the other
hand, Kirschke et al. (2013) estimations, based on atmo-
spheric measurements, end up at a value of 9 Tg CH4 yr−1.
Locally, methane fluxes measured in 2005–2013 showed sig-
nificant year-to-year variations. Interestingly, the observed
variability in North America, specifically in the Hudson Bay
lowlands, appears to have been driven partly by the soil tem-
perature, while in the West Siberian lowlands the variabil-
ity was dependent on the soil moisture (Thompson et al.,
2017). The comparison of high-resolution modelling of at-
mospheric CH4 to CH4 observations already in 2012 from
the East Siberian Arctic Shelf (ESAS), a potentially large
CH4 source, confirms that methane releases are highly vari-
able and inhomogeneous (Berchet et al., 2016).

Long-term flux measurements provide insight into the car-
bon sink–source dynamics. The flux measurements from the
moist tussock tundra in north-eastern Siberia indicated that
drainage influences the carbon cycle and that the tundra is
changing to a weaker CO2 sink and CH4 source. Another
relevant observation was that the time outside the grow-
ing season influences the carbon balance of ecosystem pro-
cesses, especially during the zero-curtain period (Kittler et
al., 2017). This is in line with similar studies in Alaska (Com-
mane et al., 2017; Euskirchen et al., 2017). Therefore, the
autumn temperature was identified as a major driving factor
describing the differences between the annual GHG fluxes.
Notably, however, the seasonal amplitudes of CO2 concen-
trations in Siberia were found to be significantly higher than
those in the North American continent, likely due to the more
intense biological activity here (Timokhina et al., 2015a). A
recent study showed that the Siberian carbon cycle is a major
contributor to the Northern Hemisphere amplitude of CO2
variation (Lin et al., 2020).

Observations from non-permafrost sites may give us a clue
to the future dynamics of fluxes, as the permafrost is thawing.
The chamber measurements of CH4 and CO2 fluxes from a

non-permafrost site in the Siberian peatland in August 2015
showed that the highest values of methane fluxes were ob-
tained in burned wet birch forest and the lowest ones in
seasonally waterlogged forests (Glagolev et al., 2018). The
fluxes can vary even between different sites of a bog, as mea-
sured by Dyukarev et al. (2019). The net ecosystem exchange
(NEE), ecosystem respiration (ER) and GPP, based on the
measured CO2 fluxes at a ridge–hollow complex bog and
a model for ridge and hollow sites at oligotrophic bogs in
the middle taiga zone of West Siberia, showed that a 2-year-
average NEE at the hollow site was 1.7 times higher than at
the ridge site (Dyukarev et al., 2019). The ecosystem pro-
cesses are influenced by drying in tundra ecosystems. Kwon
et al. (2019) reported from Alaska that drying in the tun-
dra ecosystems increased contributions of modern soil car-
bon to the ecosystem respiration but, at the same time, de-
creased contributions of old soil carbon. These changes were
attributed mainly to modified soil temperatures at different
soil layers due to the altered thermal properties of organic
soils following drainage. Furthermore, the drainage lowered
CH4 fluxes by a factor of 20 during the growing season, with
post-drainage changes in microbial communities, soil tem-
peratures, and plant communities also affecting the flux re-
duction in an Arctic wetland ecosystem (Kwon et al., 2017).

Voigt et al. (2016) reported that, under warming condi-
tions, the vegetated tundra in north-eastern European Russia
shifted from a GHG sink to a source. The positive warm-
ing response was dominated by CO2; however, N2O emis-
sions were also significant. N2O was emitted not only from
bare peat, already identified as a strong source, but also from
vast vegetated peat areas not emitting N2O under current cli-
mate conditions. These results can be explained by the dy-
namics between the temperature, nitrogen assimilation by
plants and soil microbial activity, with a strong impact on
the future GHG balance in the Arctic (Voigt et al., 2016; Gil
et al., 2017). Studying N2O emissions from a typical per-
mafrost peatland in Finnish Lapland, it was concluded that
about 25 % of the Arctic territories are areas that potentially
emit nitrous oxide (Voigt et al., 2017). It seems that there is a
positive feedback mechanism between the permafrost thaw-
ing and moisture regime. Predicting the response of soils to
climate change or land use is central to understanding and
managing N2O emissions. According to recent results, the
N2O flux can be predicted by models that incorporate soil
nitrate concentration (NO−3 ), water content and temperature
(Pärn et al., 2018).

In addition to CO2 and CH4, thawing or collapsing of
Arctic permafrost can release volatile organic compounds
(VOCs). H. Li et al. (2020) examined the release of
VOCs from thawing permafrost peatland soils sampled from
Finnish Lapland in the laboratory. The average VOC fluxes
were 4 times as high as those from the active layer and mainly
attributed to direct release of old, trapped gases from the per-
mafrost. These results demonstrate a potential for substantive
VOC releases from thawing permafrost and suggest that fu-

Atmos. Chem. Phys., 22, 4413–4469, 2022 https://doi.org/10.5194/acp-22-4413-2022



H. K. Lappalainen et al.: Recent advances in the understanding of the northern Eurasian environments 4423

ture global warming could stimulate VOC emissions from
the Arctic permafrost.

2.1.3 Ecosystem structural change (Q3)

Changes in microbial activity

Climate change is likely to cause an increased appearance of
trees on open peatlands, but we do not know how this veg-
etation change will influence the below-ground microbiol-
ogy and composition. Changes along bog ecotones at three
Russian peatland complexes suggest that tree encroachment
may reduce the trophic level of testate amoeba communi-
ties and reduce the contribution of mixotrophic testate amoe-
bae to primary production. Thus, it seems that increased tree
recruitment on open peatlands will have important conse-
quences for both microbial biodiversity and microbially me-
diated ecosystem processes (Payne et al., 2016). We also
need to understand better the dynamics affecting the bacte-
ria, fungi and other related species in the ground air layer.
Recent studies by Korneykova and Evdokimova (2018) and
Korneikova et al. (2018) showed the influences of anthro-
pogenic sources (copper–nickel plant) and acidic soils in
Russian northern taiga and tundra on the portion of the air-
borne fungi and on the structure of algological and mycolog-
ical complexes (Korneikova et al., 2018). New methods were
reported on how to improve soil conditions, developed on all
kinds of materials made or exposed by human activity that
otherwise would not occur at the Earth’s surface, referred
to as “Techno sol engineering” (Slukovskaya et al., 2019),
and how to monitor climate change impacts on the functional
state of bogs by using Sphagnum mosses (Preis et al., 2018).

Effects of forest fires on soils

Forest fires, a significant environmental factor in the northern
Eurasian region, change soil chemical and physical proper-
ties and may influence greenhouse gas fluxes and emissions
of BVOCs. Recent results indicate that a slower post-fire lit-
ter decomposition has a clear impact on the recovery of soil
organic matter following forest fires in northern boreal conif-
erous forests due to accumulated soil organic matter. The soil
recovery is related to slow litter composition and reduced en-
zymatic and microbial activity (E. Köster et al., 2016).

Post-fire studies on the long-term evolution of the structure
and functioning of bacterial communities are sparse. Sun et
al. (2016) showed that the major drivers influencing bacte-
rial communities are the soil temperature, pH and moisture.
Furthermore, E. Köster et al. (2015) analysed long-term ef-
fects of fire on soil CO2, CH4 and N2O fluxes in pine forest
stands in Finnish Lapland and discussed the role of micro-
bial biomass in this context. They did not detect significant
effects of fires on CO2 emissions or N2O fluxes, but there
was long-lasting strengthening of the CH4 sink by the soil.
Interestingly, E. Köster et al. (2018) did not find a similar

kind of long-term effect on the CH4 sink dynamics in studies
carried out in Siberia.

Forest wildfires also regulate the BVOC emissions from
boreal forest floors by changing the ground vegetation. Total
BVOC emissions from a forest floor were found to decrease
after a forest fire and then to increase again along with the
succession of forests (Zhang-Turpeinen et al., 2020). For a
comparison, Bai et al. (2017) showed that biomass burning
resulted in increased BVOC emission fluxes and ozone con-
centration above canopy in a subtropical forest in China.

2.2 Atmospheric system

Concerning critical atmospheric processes and large-scale
climate implications, we concentrate here on greenhouse
gases and aerosol particles over northern Eurasia and the
Arctic, urban air quality, and issues related to the weather
and atmospheric circulation. We summarize the recent mea-
surements on the atmospheric composition relevant to sink
and source dynamics in Siberia, on the sources and proper-
ties of atmospheric aerosols in Arctic-boreal environments,
including black carbon and dust in the atmosphere and snow,
and on the methodological and model developments related
to atmospheric chemistry and physics (Q4, Sect. 2.2.1). Fur-
thermore, we introduce new results and observations of at-
mospheric pollution in rural, suburban and megacity envi-
ronments in China and Russia (Q5, Sect. 2.2.2). We briefly
show some recent results related to synoptic-scale weather in
Arctic-boreal regions, focusing on cold and warm episodes,
cyclone density and atmosphere–ocean interaction, effects of
circulation on temperature and moisture, cloudiness in the
Arctic, and boundary-layer dynamics (Q6, Sect. 2.2.3).

2.2.1 Atmospheric composition and chemistry (Q4)

Boreal forest carbon balance

As already discussed in Sect. 2.1.1, boreal forests as a car-
bon sink and the related role of forestation have been un-
der international debate. It seems that early snowmelt in-
creases springtime carbon uptake of the boreal forests of
Eurasia and North America and shows a major advance in
the CO2 sink (Pulliainen et al., 2017). A scenario of a com-
plete global deforestation by Scott et al. (2018), combining
radiative forcing with CO2, surface albedo and short-lived
climate forcers (SLCFs), suggests that global deforestation
could cause a 0.8 K warming after 100 years, with SLCFs
contributing 8 % of the effect. However, deforestation as pro-
jected by the RCP8.5 scenario leads to zero net radiative
forcing from SLCFs, primarily due to non-linearities in the
aerosol indirect effect. Tuovinen et al. (2019) showed that
methane fluxes vary strongly with a wind direction in a tun-
dra ecosystem with heterogeneous vegetation. By combin-
ing very high-spatial-resolution satellite imagery and foot-
print modelling, they were able to estimate the relation be-
tween the main land cover types and ecosystem level mea-
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surements. CH4 emissions originated mainly from wet fen
and graminoid tundra patches, whereas the areas of bare soil
and lichen acted as strong CH4 sinks (Tuovinen et al., 2019;
Tsuruta et al., 2017). Tsuruta et al. (2017) reported poste-
rior mean global total emissions of 516± 51 Tg CH4 yr−1

during 2000–2012, which indicates that these emissions had
increased by 18 Tg CH4 yr−1 from the period 2001–2006 to
40 Tg CH4 yr−1 from the period 2007–2012. This increase
can be explained by increased emissions from the temperate
region in South America and from the temperate region and
tropics in Asia.

Analysis of the trends and the diurnal, weekly and seasonal
cycles of CO2 and CH4 mixing ratios derived from the long-
term data of the Japan–Russia Siberian Tall Tower Inland
Observation Network showed that the frequency of identified
events of elevated concentration differs for CO2 and CH4 and
may reach up to 20 % of days in some months (Belikov et
al., 2019). These observations made it possible to reduce un-
certainties in the biosphere surface CO2 uptake (Kim et al.,
2017). Although the CO2 uptake in boreal Eurasia estimated
by Kim et al. (2017) was about 30 % lower than that obtained
without the assimilation of Siberian observation data, Siberia
still remains a key contributor to the terrestrial CO2 sink in
the Northern Hemisphere.

There are tendencies of a significant growth or suppression
of soil CO2 fluxes across different types of human impacts,
such as forest fires, trampling, settlements, reindeer grazing
and clear cuts on cryogenic ecosystems in Russia (Karelin et
al., 2017). For example, Ivakhov et al. (2019) analysed CO2
measurements during 2010–2017 and reported CO2 concen-
tration increases of 20 ppm in Tiksi at a coast of the Laptev
Sea and of 15 ppm at the Cape Baranov station. They also de-
tected that wildfires in Siberia can lead to a parallel increase
in the CO2 concentration in the Russian Arctic. Further-
more, the measurements showed that the atmospheric CO2
concentration increased on average by 2.0 ppm yr−1 during
2006–2013 in central Siberia, with a large inter-annual vari-
ation. The highest increases were found in 2010 and 2012
(3.6 and 4.3 ppm yr−1, respectively), when large wildfires re-
leased huge amounts of CO2 in Siberia (Timokhina et al.,
2015b). Repeated wildfires in boreal forests can combust a
portion of the thick organic soil layer characteristic of this
ecosystem and change the forests from a carbon sink to a car-
bon source (Walker et al., 2019). A study on a fire chronose-
quence of the central Siberian permafrost soil showed that
soils affected by fires over decades act as CO2 sources and
that the CO2 emissions from these soils increased with an in-
creasing time since the last fire (E. Köster et al., 2018). How-
ever, there were no similar effects on CH4 emissions, with
soils acting as a CH4 sink without any connection to forest
fires. In addition to CO2, wildfires also release large amounts
of other trace gases and aerosols. Emission factors of sev-
eral trace gases and aerosols from Siberian fires measured
from the Trans-Siberian Railway were reported by Vasileva
et al. (2017). The impact of Siberian fires as elevated aerosol

concentrations was at times observed to extend up to the Arc-
tic coast (Asmi et al., 2016).

Arctic methane (CH4) balance

Deep understanding of the dynamics of methane emissions
in the Arctic is needed for identifying and quantifying GHG-
related feedbacks and the global methane cycle (Dean et al.,
2018). During the winter, methane originates mostly from
anthropogenic sources, while on smaller scales emissions
from the oceans, including the ESAS, can also play an impor-
tant role. During the warm season, the balance is dominated
by emissions from wetlands and freshwater bodies. Thonat
et al. (2017) employed the CHIMERE model for an assess-
ment of the methane cycle in the Arctic. They reported that
all methane sources, except biomass burning, contributed to
measurements at six study sites. That study emphasizes the
importance of a joint model–measurement approach for stud-
ies of complex phenomena at large spatial scales. Account-
ing for OH oxidation and soil uptake, two important sinks
of methane, improved the agreement between observed and
modelled methane concentrations (Thonat et al., 2017). Pel-
tola et al. (2019) upscaled CH4 fluxes measured at 25 north-
ern wetland sites and showed three different maps of wetland
distribution, with the annual methane emissions varying from
31 to 38 Tg CH4 yr−1. (For the monthly upscaled CH4 flux
data products, see https://doi.org/10.5281/zenodo.2560163.)
Multiple sources, together with different spatiotemporal dy-
namics and magnitudes, are influencing the total Arctic CH4
budget and address the need for further improved assess-
ments (Peltola et al., 2019; Thonat et al., 2017).

Northern Eurasian carbon monoxide (CO)

Analysis of long-term trends in the atmospheric composition
in remote northern Eurasia (1998–2016) showed that the to-
tal column carbon monoxide (CO) amount has been stabi-
lized or increased in summer and autumn months (Rakitin
et al., 2018). The changes in the global photochemical sys-
tem, especially changes in the ratio between the sources and
sinks of minor atmospheric chemical species, could explain
these trends (Skorokhod et al., 2017). A comparative study
(1998–2014) on the atmospheric total column CO amount
in background and polluted regions of Eurasia indicated that
this amount has decreased remarkably in the Moscow urban
environments (3.73 % yr−1

± 0.39 % yr−1) compared to the
background regions (0.9 % yr−1–1.7 % yr−1) (P. C. Wang et
al., 2018).

Northern Eurasian ozone (O3)

Atmospheric measurements of ozone, its precursors and
other pollutants over Siberia are important for the atmo-
spheric chemistry modelling, satellite product validation and
comparisons between Siberia and other regions of the North-
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ern Hemisphere. Isoprene and monoterpenes together with
nitrogen oxides impact tropospheric O3 formation and lead
to an increase in the daytime ozone-forming potential (OFP)
in urban environments. Bai et al. (2021) showed that O3
may respond either positively or negatively to isoprene and
monoterpene emissions depending on the level of solar ra-
diation and atmospheric loadings of trace gases and aerosol
particles. It was demonstrated that monoterpenes have a ma-
jor contribution to tropospheric O3 formation, especially in
cities in Siberia with high atmospheric NOx concentrations
(10–20 ppb) and daytime temperatures (> 25 ◦C) (Berezina
et al., 2019). In contrast, isoprene is dominating the O3 for-
mation and the increasing OFP in the cities in the Far East.
The isoprene-derived OFP can originate from deciduous veg-
etation growing in city environments or nearby regions or
from an anthropogenic isoprene source. The monoterpene-
derived OFP was found to be lowest in medium-sized cities
and highest in small cities (Berezina et al., 2019). The to-
tal contribution of benzene and toluene to photochemical O3
production was found to be up to 60 %–70 % in urbanized
environments, indicating anthropogenic pollutant sources
(Skorokhod et al., 2017). In addition to atmospheric chem-
istry, the connection between stratospheric O3, UV radiation
and health effects needs to be addressed in the populated ur-
ban environments of Siberia. Chubarova et al. (2019b) esti-
mated that the wintertime O3 depletion in northern regions
of Siberia is not critical, but the much larger O3 reductions
observed in the early spring can lead to dangerous levels of
erythema UV radiation (see also Sect. 2.4.3, Natural hazards
and UV variation).

Sources and properties of atmospheric aerosols in boreal
and Arctic environments

Atmospheric new particle formation (NPF) is the largest con-
tributor to the number concentration of aerosol particles in
the global troposphere. During the past couple of decades,
NPF has been measured in more than 10 boreal forest sites
(Kerminen et al., 2018). The annual frequency of NPF event
days varies between about 10 % and 30 % in the boreal for-
est zone, being highest in the western part of this region and
lowest on the northern edge and in the Siberian part of it.
Similar high nucleation frequencies were found at two very
remote sites in boreal North America (Andreae et al., 2019).
In contrast, annual NPF event frequencies below 2 % were re-
ported from central Siberia (Wiedensohler et al., 2019). Sim-
ilarly, in northern Siberia on the Arctic coast, NPF events
were mainly connected to marine and coastal air masses and
rarely observed in continental air masses (Asmi et al., 2016).
Seasonally, NPF tends to be most frequent during spring,
even though high NPF event frequencies can also be ob-
served during summer or autumn. Wintertime NPF is rare
throughout the boreal forest region. In the Arctic, NPF ap-
pears to be a major aerosol particle source from spring to
summer, after which this source collapses during autumn

and is practically absent over the whole winter (Freud et al.,
2017). Twenty years of NPF observations in a boreal forest
at the SMEAR II station in Finland show a higher frequency
of NPF events under clear-sky conditions in comparison to
cloudy conditions (Dada et al., 2017). Also, oxidized organic
vapours showed a higher concentration during the clear-sky
NPF event days, whereas the condensation sinks and some
trace gases had higher concentrations during the non-event
days.

The overall importance of atmospheric NPF in boreal and
Arctic areas depends on the growth of freshly formed par-
ticles to cloud condensation nuclei. In the boreal forest en-
vironment, both observations and model simulations indi-
cate that the particle growth is tied strongly to the oxidation
products of biogenic volatile organic compounds originat-
ing from forest ecosystems (Paasonen et al., 2018; Östrom et
al., 2017). The important compound group in this respect is
monoterpenes, even though sesquiterpenes were also found
to have high secondary organic aerosol yields in boreal for-
est environments (Hellén et al., 2018). The observed parti-
cle growth rates were found to increase with an increasing
particle size and to be highest in summer (Paasonen et al.,
2018). The chemistry of new particle growth in the Arctic
atmosphere is not well characterized, even though available
observations suggest that this growth is associated mainly
with biogenic emissions from high-latitude marine areas (Gi-
amarelou et al., 2016; Heintzenberg et al., 2017; Kecorius et
al., 2019).

Wildfires are an important source of particulate pollutants
on a global scale and are affecting both air quality and cli-
mate (Andreae, 2019; Bondur et al., 2020). Satellite obser-
vations indicate that the annual burned area by wildfires in
Russia decreased by a factor of 2.6 during 2005–2016 owing
to early detection and suppression of fire sources, whereas
in Ukraine the relative size of burned-out areas increased
by a factor of 6–9 from 2010–2013 to 2014–2016 (Bondur
et al., 2017, 2019d). For Siberia, Ponomarev et al. (2016)
reported strong increases in both number and burned areas
based on satellite data, with burned areas doubling from
2005 to 2016. While biomass burning emissions have been
measured widely over Russia (Bondur, 2016; Bondur and
Ginzburg, 2016; Bondur et al., 2019d), there is still a need for
further information on the atmospheric composition of wild-
fire emissions and related emission ratios from the Siberian
region. Fire experiments provide important information on
the emission and aging characteristics of smoke aerosols (e.g.
Kalogridis et al., 2018).

Luoma et al. (2019) presented a detailed trend analysis for
aerosol optical properties at the SMEAR II station in Fin-
land. They found a statistically significantly decreasing trend
for the scattering coefficient and even a stronger decreasing
trend for the absorption coefficient during 2006–2017. These
trends are very likely indicative of decreasing influence of
anthropogenic emissions, with the contribution from emis-
sions containing black carbon decreasing even more quickly.
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Measurements of carbonaceous aerosols over central
Siberia during 2010–2012 showed that, in autumn and win-
ter, high concentrations of such aerosols were caused by
long-range transport from the cities located in southern and
south-western regions of Siberia (Mikhailov et al., 2015a).
In spring and summer, pollution levels were high due to re-
gional forest fires and agricultural burning in the Russian–
Kazakh region. The variability of the background concentra-
tion of organic aerosols correlated with the air temperature in
summer, implying that biogenic sources dominated the for-
mation of organic particles at that time of the year (Mikhailov
et al., 2015b). Based on a 5-year study by Mikhailov et
al. (2017), it seems that the atmospheric pollution originat-
ing from the biomass burning and anthropogenic emissions is
significantly affecting the Siberian region. However, in sum-
mer precipitation is removing the pollutants from the air and
leading to relatively clean atmospheric conditions in this re-
gion.

At circumpolar sites over the Arctic, aerosol optical prop-
erties were found to vary both seasonally and spatially
(Schmeisser et al., 2018). Arctic haze aerosols in late win-
ter and spring are characterized by increased concentrations
of sulfate, whereas in summer rich organic chemistry seems
to be associated with vegetation, local urban and shipping
sources as well as secondary aerosol formation influenced by
emissions from low-latitude Siberia (O. Popovicheva et al.,
2019). From a longer perspective, Arctic observations show
large decreases in both sulfate and black carbon concentra-
tions since the early 1980s (Breider et al., 2017).

Observations of the elemental composition of surface
aerosols on the coastal Kandalaksha Bay of the White Sea
were indicative of the dominance of biogenic aerosol parti-
cles during summertime, with heavy metal concentrations in
aerosols being at Arctic background levels (Starodymova et
al., 2016). Increases in Ni and Cu concentrations were ob-
served in air masses arriving from the western part of the
Kola Peninsula indicative of emissions from the smelters in
that region.

Black carbon and dust in the atmosphere and snow

Black carbon (BC) is a potentially large contributor to cli-
mate forcing in the Arctic region; however, the assess-
ment of its pollution is hampered by the lack of aerosol
studies in northern Siberia (O. Popovicheva et al., 2019;
O. B. Popovicheva et al., 2019). The spatial variability of
Arctic BC was studied using a harmonized data set from
six circumpolar Arctic observatories (Backman et al., 2017).
These data suggested a significant spatial and seasonal vari-
ability (Schmeisser et al., 2018), addressing a need for
more year-round data. BC observations (September 2014–
September 2016) at the Hydrometeorological Observatory
Tiksi at a coast of the Laptev Sea showed a seasonal varia-
tion, with the highest concentrations (up to 450 ng m−3) from
January to March and the lowest ones (about 20 ng m−3) in

June and September. During winter, stagnant weather and
stable atmospheric stratification resulted in the accumulation
of pollution, depending also on the wind direction and air
mass transport (O. Popovicheva et al., 2019).

For the Arctic, important sources of BC include indus-
trial regions of northern Europe, gas flares of the oil fields
in the North Sea and Siberia, and Siberian biomass burn-
ing (Shevchenko et al., 2015; Konovalov et al., 2018). In
2012, for example, approximately a quarter of the biogenic
BC emissions from Siberia after the fire season were trans-
ported into the Arctic (Konovalov et al., 2018). Popovicheva
et al. (2017) analysed the BC origins over the Russian Arc-
tic seas together with simulated BC concentrations. Concen-
trations were observed to be high (100–400 ng m−3) over
the Kara Strait, Kara Sea and Kola Peninsula and extremely
high (about 1000 ng m−3) over the White Sea. It seems that
the gas-flaring emissions from the Yamal–Khanty–Mansiysk
and Nenets–Komi regions affected the measurements made
over the Kara Strait (north of 70◦ N) region, while the
near-Arkhangelsk (White Sea) region was connected to the
biomass burning at mid-latitudes. Combustion in central
and eastern Europe was also identified as an important BC
source.

Atmospheric aging promotes an internal mixing of BC
with other aerosol constituents, leading to enhanced light ab-
sorption and radiative forcing. In situ observations at Arc-
tic stations demonstrated an absorption enhancement due to
the internal mixing of BC, which is a systematic effect and
should be considered for quantifying the aerosol radiative
forcing in this region (Zanatta et al., 2018).

Regional modelling of the Arctic aerosol pollution showed
that long-range transported anthropogenic emissions and
biomass burning are the main contributors to direct aerosol
radiative effects in the region (Marelle et al., 2018). How-
ever, a scenario for 2050 indicates that shipping emissions in
the Arctic Ocean could become the main source of surface
aerosol and local flaring as a major source of BC, as the flar-
ing is already a major source of BC in north-western Russia.
Kühn et al. (2020) assessed the effects of different BC miti-
gation measures on Arctic climate and showed that reducing
BC emissions by the Arctic Council member states can re-
duce BC deposition by about 30 % compared to the current
situation. A full execution of recommendations by the Arc-
tic Council member and observer countries could reduce the
annual global premature deaths due to PM (particulate mat-
ter) by ∼ 9 % by 2030 (Kühn et al., 2020). Evangeliou et
al. (2018) estimated the origin of elemental carbon (EC) in
snow and showed that, for West Siberia, where gas flaring
emissions are a major contributor, the model underestima-
tion was significant. Furthermore, the model was evaluated
by independent BC measurements in snow over the Arctic
and, again, the model underestimated BC concentrations, es-
pecially in spring.

Climatically significant cryosphere effects of light-
absorbing, high-latitude dust can be similar to the albedo
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and melt effects of BC (Peltoniemi et al., 2015; Svensson
et al., 2016, 2018; Meinander et al., 2020a, b). Iceland is the
most significant source of European Arctic dust and plays
a role in the cryosphere–atmosphere–biosphere interactions
and feedbacks (Boy et al., 2019; Dragosics et al., 2016;
Dagsson-Waldhauserova and Meinander, 2019). Dust storms
from technogenic mining industry tailing dumps on the Kola
Peninsula are also an important source of local atmospheric
pollution for neighbouring cities, e.g. Apatity and Kirovsk
(Amosov et al., 2020). Besides regional-scale dust storms
from deserts in Kazakhstan, Mongolia and China are also
significant sources of aerosol pollution for these regions and
for northern Asia.

Methodological and model developments related to
atmospheric chemistry and physics

Several methods to characterize the atmospheric chemistry
were introduced or improved. Motivated by the ability of at-
mospheric ion measurements to identify NPF events in the
atmosphere (Leino et al., 2016), a new classification method
for atmospheric NPF was developed (Dada et al., 2018).
The new method uses both ion and aerosol particle number
concentration measurements in the size ranges of 2–4 and
7–25 nm, respectively, is complementary to the traditional
event analysis, and can also be used as an automatic way
of determining NPF events from large data sets. Zaidan et
al. (2018b) used a mutual information approach for a vari-
ety of simultaneously monitored ambient variables, includ-
ing trace gas and aerosol particle concentrations and several
meteorological variables, in order to identify key factors con-
tributing to atmospheric NPF. This method can also be used
in the atmospheric studies to discover other interesting phe-
nomena and relevant variables. The NPF is directly observed
by monitoring the time evolution of ambient aerosol particle
size distributions. A new machine-learning-based approach,
a Bayesian neural network (BNN) classifier, points out the
potential of these methods and suggests further exploration
in this direction (Zaidan et al., 2018a).

The condensation sink, being proportional to the surface
area of an aerosol population, is one of the major parame-
ters controlling NPF. A simple model for the time evolution
of the condensation sink in the atmosphere for intermediate
Knudsen numbers was developed to describe the coupled dy-
namics of the condensing vapour and the condensation sink
(Ezhova et al., 2018a). The model gives reasonable predic-
tions of condensation sink dynamics during periods of parti-
cle growth by condensation in the atmosphere. A new empir-
ical relation between the atmospheric cloud condensation nu-
clei (CCN) concentration and aerosol optical properties was
derived (Shen et al., 2019), making it possible to estimate
CCN concentrations at sites with continuous observations of
aerosol optical properties.

Empirical models of solar radiation were developed and
used for calibrations of solar radiometers (Bai, 2019). This

method can be used to calibrate all kinds of solar radiome-
ters. A solar radiation model combined with ceilometer and
pyranometer measurements was used to classify clouds at
SMEAR II (Ylivinkka et al., 2020). It opens new possibili-
ties for studies of aerosol–cloud interactions.

Che et al. (2016) made an inter-comparison of three satel-
lite (AATSR Level-2) aerosol optical depth (AOD) products
(SU, ADV and ORAC) over China. The SU algorithm per-
forms very well over sites with different surface conditions
in mainland China from March to October but slightly un-
derestimates AOD over barren or sparsely vegetated surfaces
in western China. The ADV product has the same precision
and error distribution as the SU product. The main limits
of the ADV algorithm are underestimation and applicabil-
ity. The ORAC algorithm has the ability to retrieve AOD at
different ranges, including high values of AOD, but its stabil-
ity deceases significantly with an increasing AOD, especially
when AOD > 1.0 (see also Sect. 2.2.2, Urban air quality and
megacities).

One of the major problems for both interpretation of satel-
lite data and applications of empirical models of solar radi-
ation is related to elevated aerosol layers in the atmosphere.
It was demonstrated that their origin can be attributed to a
higher confidence when back trajectories are combined with
lidar and radiosonde profiles (Nikandrova et al., 2018).

Black carbon measurement methods have progressed. A
representative value for the multiple scattering enhancement
factor, a fundamental quantity correcting atmospheric black
carbon measurement using an aethalometer, was derived
for the first time in the Arctic environment (Backman et
al., 2017). By analysing BC measurements made with an
aethalometer in Nanjing, Virkkula et al. (2015) showed that
the compensation parameter of a widely used data process-
ing method depends both on single-scattering albedo and the
backscatter fraction of the aerosol (see also Sect. 2.2.2, Ur-
ban air quality and megacities). The multiple-scattering cor-
rection factor of quartz filters and the effect of filtering parti-
cles mixed in snow were estimated by Svensson et al. (2019),
who applied the method for analysing light absorption and
BC in snow samples taken from Finnish Lapland and the In-
dian Himalayas.

Measurement of atmospheric sub-10 nm particle num-
ber concentrations has been of substantial interest recently.
A new high-flow differential mobility particle sizer (HF-
DMPS) was built, calibrated and operated under field condi-
tions for 1 month (Kangasluoma et al., 2018). The counting
uncertainties of the HF-DMPS were reduced by about 50 %
as compared to the traditional DMPS. The HF-DMPS de-
tected about 2 times more particles than the DMPS in the size
range of 3–10 nm. Below 3 nm, the HF-DMPS is currently
limited by the inability of diethylene glycol to condense on
biogenic particles. To collect BVOC samples, a novel col-
lection method offering portability and improved selectivity
and capacity was developed. Solid-phase micro-extraction
(SPME) arrow sampling (Feijó Barreira et al., 2018) can
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be used for static and dynamic collection of BVOCs under
the field conditions. A significant improvement in sampling
capacity was observed with the new SPME arrow system
over SPME fibres. A fully automated online dynamic in-tube
extraction (ITEX)–gas chromatography/mass spectrometry
(GC/MS) method was introduced for continuous and quan-
titative monitoring of volatile organic compounds in air (Lan
et al., 2019). The stability and suitability of the developed
system were validated with a measurement campaign, and
the ITEX method provided 2–3 magnitude lower quantita-
tion limits than established methods. Parshintsev et al. (2015)
introduced a new, fast analysis method for the desorption
atmospheric pressure photoionization high-resolution (Orbi-
trap) mass spectrometry (DAPPI-HRMS). The DAPPI re-
sults agreed with the aerosol particle number measured with
an established method and were found to detect different
compounds and give complementary information about the
aerosol samples.

Fragmentation of molecular clusters inside mass spec-
trometers is a significant uncertainty source in many chemi-
cal applications. A novel model capable of quantitatively pre-
dicting the extent of fragmentation of sulfuric acid clusters
was developed (Passananti et al., 2019). The fragmentation
cannot be described in terms of rate constants under equi-
librium conditions, because clusters accelerate under electric
fields (Zapadinsky et al., 2019). A model describing an en-
ergy transfer to the cluster-internal modes caused by colli-
sions with residual carrier gas molecules was developed. The
model can be used to interpret experimental measurements
done with atmospheric pressure interface mass spectrome-
ters.

Recently, a new atmospheric observation site equipped
with state-of-the-art atmospheric aerosol instrumentation
was deployed in Beijing, China (Liu et al., 2020). At the
Beijing University of Chemical Technology (BUCT), the
Aerosol and Haze Laboratory (AHL) was established in
2018–2019, providing novel insights into air pollution in
a comprehensive manner. The station hosts comprehen-
sive instrumentation to concentrations of atmospheric trace
gases, aerosol particle size distributions and mass concen-
trations, and particle chemical composition on the levels
from molecules, clusters and nanometre- to micrometre-
sized aerosol particles. For example, the first results showed
increased cluster-mode particle number concentrations dur-
ing NPF events, whereas during haze days accumulation-
mode particle number concentrations were high (Zhou et al.,
2020). The observations have enabled us to quantify num-
ber emission factors and underlined the importance of traffic
(Kontkanen et al., 2020). Daytime sulfuric acid concentra-
tions in Beijing were typically around 4.9× 106 cm−3 (Lu et
al., 2019). During these measurements, evidence was found
of significant nighttime sulfuric acid production, yielding
gaseous sulfuric acid concentrations of 1.0 to 3.0× 106 cm−3

(Guo et al., 2021). For further results, see also Sect. 2.2.2,
Urban air quality and megacities.

Besides Beijing, measurements have been performed in
several other locations inside the PEEX area. We used novel
instrumentation to measure new particle formation and its
precursors at the background Fonovaya station in the Tomsk
region (Russia, Siberia), at the Värriö subarctic research sta-
tion (Finland), in Ny-Ålesund (Svalbard, Norway) and on
the German icebreaker, the Polarstern, during the MOSAIC
project. As an example, the first results from Fonovaya sta-
tion are shown in Fig. 2. Thanks to these deployments, in
the next years we will be able to understand the identity of
NPF precursors in those remote places. This will help us to
elucidate the human impact on aerosol formation and thereby
on aerosol–cloud interactions at high latitudes. In Siberia, we
will finally understand why new particle formation occurs in-
frequently and hopefully also identify the human role in this
phenomenon. In the Arctic, we will understand the marine
influence on NPF and will find out the detailed mechanism
that leads to the formation of small clusters that initiate NPF.

Model developments were made at several scales.
Aerosol–radiation and aerosol–cloud interactions are among
the main sources of uncertainties in climate models, and de-
tailed information on anthropogenic aerosol number emis-
sions is needed to improve this situation. Anthropogenic
aerosol number emissions in current large-scale models are
usually converted from corresponding mass emissions in pre-
compiled emission inventories using very simplistic meth-
ods. In the global aerosol–climate model ECHAM-HAM, the
anthropogenic particle number emissions, converted origi-
nally from the AeroCom mass emissions, were replaced with
recently formulated number emissions from the Greenhouse
Gas and Air Pollution Interactions and Synergies (GAINS)
model (Xausa et al., 2018). However, revisions are still
needed in the new particle formation and growth schemes
currently applied in global modelling frameworks.

For regional and urban scales, a fully integrated/on-
line coupled meteorology–chemistry–aerosol model, Enviro-
HIRLAM, was developed (Baklanov et al., 2017) and tested
for several applications in Europe, the Russian Arctic and
China (Shanghai) (Mahura et al., 2018, 2020). Key issues
for seamless integrated chemistry–meteorology modelling
for Earth system prediction were analysed and formulated
(Baklanov et al., 2018), highlighting the scientific issues and
emerging challenges that require proper consideration to im-
prove the reliability and usability of these models for three
main application areas: air quality, meteorology, and climate
modelling. Baklanov et al. (2018) also present a synthesis of
scientific progress in the form of answers to nine key ques-
tions and provide recommendations for future research di-
rections and priorities in the development, application, and
evaluation of online coupled models.

2.2.2 Urban air quality and megacities (Q5)

The rapid urbanization and growing number of megacities
and urban agglomerations require new types of research and
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Figure 2. Example of results from the state-of-the-art aerosol instruments NAIS and PSM displaying an NPF event at Fonovaya station,
Siberia, on 22 September 2019. Particles of different polarity, NAIS (a), ions of different polarity, NAIS (b), particle number distribution at
the smallest sizes, PSM (c), and number concentration of the smallest particles in different size bins, PSM (d).

services that make the best use of science and available tech-
nology. There are urgent needs for examining what the rising
number of megacities means for air pollution and local cli-
mate and what effects these changes have on global climate
(Baklanov et al., 2016). Such integrated studies and services
should assist cities in facing hazards, such as storm surge,
flooding, heat waves and air pollution episodes, especially in
changing climates (WMO, 2019). We discuss here the recent
observation of the atmospheric pollution in China and Rus-
sia.

Air quality in China – recent observations

China is one of the regions with the highest concentrations
of fine PM2.5 in the world (J. Wang et al., 2017). This has
serious consequences for air pollution and the associated
visibility reduction (haze) and adverse health effects (Zhao
et al., 2017). The number of haze days in China has been
growing during recent decades, but detailed understanding
of the factors governing the occurrence of haze is still not
clear (Wang et al., 2019). Both NO2 and SO2 concentrations

showed increasing trends during the 2004–2012 period, and
these trends could be linked to increased power plant and
traffic missions (Wang et al., 2019). A key feature of haze
formation seems to be an increased inorganic fraction of the
aerosol, suggesting that the reduction of nitrate, sulfate and
their precursor gases would improve air quality and visibil-
ity in China (Wang et al., 2019). In northern China, PM2.5
concentrations declined over the period 2013–2017, and ap-
proximately half of the inter-annual variability in this region
was attributed to atmospheric circulation changes (M. Li et
al., 2020). The maximum daily 8 h average O3 concentra-
tions increased over most of northern China during the same
time period, with large influences again due to atmospheric
circulation on a daily basis (J. Liu et al., 2019).

Compared with most other urban environments investi-
gated so far, measurements in urban China demonstrated a
relatively frequent occurrence of atmospheric NPF, and the
observed NPF events were typically characterized by high
particle formation rates and strongly size-dependent growth
of newly formed particles (Kulmala et al., 2016b; Z. B. Wang
et al., 2017; Chu et al., 2019). Since the first reported sub-
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3 nm particle measurements in China a few years ago (Xiao
et al., 2015), new insights into the formation pathways of
molecular clusters and their growth have been obtained, in-
cluding the relative roles of gaseous sulfuric acid, amines,
ammonia and organic vapours in these processes (Yao et al.,
2018; Yan et al., 2021). While high pre-existing particle load-
ings appear to suppress NPF during severe haze periods in
Chinese megacities, it is unclear how NPF is possible at all
under less but still quite polluted conditions typical of these
environments (Kulmala et al., 2017). Overall, the available
observations suggest NPF to be a major source of aerosol par-
ticles in urban China, with potentially large effects on haze
formation (Kulmala et al., 2021) and cloud properties (Chu
et al., 2019).

Urban measurements of particle number size distributions
give deep understanding of the sources and atmospheric pro-
cessing of fine particles. The longest urban continuous record
is from the SORPES station in the Yangtze River Delta (Qi
et al., 2015), covering almost a decade of measurements,
whereas the broadest size range (1.5 nm–1 µm) was measured
in the winter Beijing atmosphere (Zhou et al., 2020). The lat-
ter study found clear differences in particle sources in dif-
ferent size ranges: NPF was in general the largest source of
clusters and nucleation-mode (< 25 nm) particles, while traf-
fic contributed to all the size ranges and dominated both clus-
ter and nucleation modes on haze days. Aitken-mode (25–
100 nm) particles originated mainly from local emissions,
with additional contributions from regional and transported
pollution as well as from the growth of nucleation-mode par-
ticles. Regional and transported pollution was identified as
the main source of accumulation-mode (> 100 nm) particles.

Air pollution and chemical transformation, including an-
nual and seasonal variations of the concentrations of atmo-
spheric constituents, were analysed for North China for the
period 2005–2015 (Y. Bai et al., 2018). A photochemical link
that related the production of fine PM and O3 to VOCs was
detected, and this mechanism was found to be prominent in
summer. An intensive measurement campaign (SORPES sta-
tion, Yangtze River Delta) was carried out to investigate sul-
fate formation and the associated nitrogen chemistry (Xie et
al., 2015). That study highlighted the effect of NOx in en-
hancing the atmospheric oxidizing capacity and indicated a
potentially very important impact of increasing NO concen-
trations on particulate pollution formation and regional cli-
mate change in East Asia. In Changzhou, a highly populated
city in the Yangtze River Delta, primary organic aerosol con-
centrations outweighed secondary ones, indicating an impor-
tant role of local anthropogenic emissions in aerosol pol-
lution (Ye et al., 2017). The measurement also showed the
abundance of organic nitrogen compounds in water-soluble
organic aerosol, suggesting that these compounds are likely
associated with traffic emissions.

Aerosol impacts on warm cloud properties were investi-
gated over three major urban clusters in East China and the
East China Sea using multi-sensor satellite observations (Liu

et al., 2017, 2018). In addition to the amount of aerosol, ev-
idence was provided that aerosol types and environmental
conditions need to be considered to understand the relation-
ship between cloud properties and aerosols. Aerosol–cloud
interactions were found to be more complex and of greater
uncertainty over land than over the ocean.

The atmospheric boundary layer (ABL) and especially
its dynamic behaviour are central to the evolution of near-
surface air pollution. Using atmospheric observations com-
bined with theoretical arguments, Petäjä et al. (2016) pro-
posed a feedback mechanism connecting ABL properties
with PM. According to such a mechanism, high concentra-
tions of PM enhance the stability of an urban boundary layer
(BL), decreasing its height and thus causing further accu-
mulation of pollution inside the BL. Ding et al. (2016a) and
Z. Wang et al. (2018) demonstrated an important role of BC
aerosols in this feedback using model simulations combined
with observations. A tight connection between the BL height
and pollutant concentration and indications of the presence
of the above feedback mechanism were also found based on
comprehensive observations made on a 325 m tower in Bei-
jing (Wang et al., 2020). In order to understand these feed-
backs, Kulmala (2018) and Hari et al. (2016) emphasized
the crucial role of continuous, comprehensive measurements
in a network of flagship stations in tackling the air pollu-
tion problem in urban China and megacities elsewhere in the
world. They also introduced the so-called SMEAR concept,
which consists of integrated atmospheric and ecosystem ob-
servations allowing the analysis of Earth surface–atmosphere
feedbacks and interactions. The first SMEAR-type station
in China, the SORPES station located in the Yangtze River
Delta, has been operating since 2011 (Ding et al., 2016b).

Anthropogenic emissions and environmental pollution in
Russia

In the complex situation of the plurality of emissions, an
important research task remains in the Moscow megac-
ity environment for the assessment of the air quality and
potential sources through aerosol composition analyses.
Moscow aerosol pollution has been studied using a spe-
cial AeroRadCity-2018 experiment (Chubarova et al., 2019a)
and satellite data with the application of the new MAIAC/-
MODIS aerosol algorithm with a 1 km resolution (Zhdanova
et al., 2020). An advanced source apportionment for this en-
vironment was performed using combined Fourier-transform
infrared spectroscopy data and statistical principal compo-
nent analysis (O. Popovicheva et al., 2020a). The main prin-
cipal component loadings revealed the source impacts of
transport and biomass burning, biogenic, dust and secondary
aerosol in spring. Identification of biomass burning-affected
periods discriminated between the daily aerosol composition
change with respect to air mass transport and the number
of fires detected in the surrounding areas. Measurements of
particulate BC were conducted at an urban background site
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(Meteorological Observatory of MSU) during the spring pe-
riod of 2017–2018 (O. Popovicheva et al., 2020b). The mean
BC concentrations displayed significant diurnal variations,
with a poorly prominent morning peak and minimum at day-
time. BC mass concentrations were higher at nighttime due
to the shallow boundary layer and intensive diesel traffic. The
aerosol optical thickness (AOT) over Moscow showed a pro-
nounced seasonal cycle, with a summer maximum and win-
ter minimum (N. Y. Chubarova et al., 2016). It was found
that during 2001–2014, the monthly-mean values of AOT de-
clined by 1 % yr−1–5 % yr−1, and this decline was attributed
to decreased emissions of aerosols and their precursors.

In general, the atmospheric environment over remote ar-
eas of Siberia and northern Asia is relatively clean compared
with other surrounding regions of Asia and eastern Europe
(Baklanov et al., 2013). However, air pollution from Siberian
industrial centres poses significant environmental threats. For
Siberian cities (e.g. Norilsk, Barnaul, Novokuznetsk), the air
quality is among the worst in Russian and European cities.
Similar to Arctic cities, stable atmospheric stratification and
temperature inversions dominate for more than half a year.
This leads to pollution accumulation near the surface, which
influences ecosystems and people. Moreover, not only severe
climatic conditions, but also man-made impacts on the envi-
ronment in industrial areas and large cities have intensified.
The impacts manifest themselves as the pollution of the en-
vironment, land use changes, hydrodynamic regimes and the
local climate. Ultimately, these impacts feed back to people,
affecting their health and well-being.

The Russian part of the Barents Euro-Arctic region in-
cludes severe emission “hotspots” for air pollutants. The
Kola Peninsula, despite the presence of areas with undis-
turbed nature in the eastern part, is the most industri-
ally developed and urbanized region in the Russian Arc-
tic. The main polluters are the smelters of the Severonickel
(Monchegorsk, central part of the peninsula) and Pechengan-
ickel (Nickel and Zapolyarnyi near the Russian–Norwegian
border) enterprises. For comparison, emissions of SO2 from
the nickel smelter alone are 5–6 times larger than the total
Norwegian emissions (Sandanger et al., 2013). In 2015, No-
rilsk Nickel in Siberia – the biggest mining and metallurgical
complex – emitted about 1.9 million tonnes of SO2 (GGO,
2016). With the nickel factory (located in the southern part
of the city), copper factory (just to its north) and metallurgi-
cal plant (12 km to the east), the city of Norilsk is influenced
by heavy industry no matter which way the wind blows. The
Blacksmith Institute declared in 2007 that Norilsk is one of
the top 10 worst-polluted places in the world. The impacts of
emissions are manifested as deterioration of forest ecosys-
tems and acidification of soils and surface waters (Derome
and Lukina, 2011), even at considerable distances from the
smelters. Heavy metals and alkaline pollutants contaminate
areas around the sources of pollution within a few hundred
kilometres, while acid sulfates can be transported over long
distances (Mahura et al., 2018).

A recent analysis of the total deposition and loading
on the population in north-western Russia and Scandina-
vian countries caused by the continuous sulfur emissions
from the Cu–Ni smelters in Murmansk indicates the domi-
nance of wet deposition, especially in wintertime (Mahura
et al., 2018). North-western Russia is influenced more by
the Severonikel emissions compared with countries in the
Scandinavian Peninsula. The cities of the Murmansk region
(Kola Peninsula) are under the highest impacts. On a yearly
scale, the individual loadings on the population are at the
highest level (up to 120 kg/person) in the Murmansk region,
much lower (15 kg/person) in northern Norway, and lowest
(< 5 kg/person) in eastern Finland, the Republic of Kare-
lia and the Arkhangelsk region. Distinct seasonal variability
was identified, with the lowest contribution during summer
and the highest contribution during winter–spring in Russia,
during spring in Norway, and during autumn in Finland and
Sweden.

The annual yearbook, the State of Atmospheric Pollu-
tion in cities in the Territory of Russia for 2018 (Roshy-
dromet and GGO, 2019), states that the highest atmospheric
emissions of PM were observed in Siberian and Ural cities.
In Novokuznetsk and Omsk, the observed PM was highest
(> 30 000 t yr−1), while emissions from other cities such as
Angarsk and Chelyabinsk were lower (< 20 000 t yr−1). Note
that in the 2015–2019 yearbooks, emissions from only sta-
tionary sources were provided due to revisions (approved
and implemented in November 2019 by the Russian Min-
istry of Natural Resources and Ecology, MNRE) of methods
applied for estimation of emissions into the atmosphere from
mobile sources. Depending on source type, different meth-
ods to calculate emissions are applied (MNRE, 2019). For
the gaseous compounds, such as SO2, the maximum emis-
sions included were very high from Siberian cities (e.g. No-
rilsk, Novosibirsk, Novokuznetsk, Omsk, Ufa, Irkutsk, An-
garsk) and from north-western Russian cities (Zapolyarny,
Nickel, Monchegorsk). High NO2 emissions were observed
in Novosibirsk, Omsk, Angarsk and Chelyabinsk. The CO
integral urban emissions depend on a city’s size. These var-
ied from less than 10 Gg yr−1 (for small regional centres like
Vladimir, Kursk, or Samara) to 406 and 804 Gg yr−1 for large
metropolitan areas such as St. Petersburg and Moscow. As a
whole, an analysis of spatiotemporal variation of trace gases
in the boundary layer over Russian cities indicated significant
emission variations between the urban environments and re-
mote sites (Elansky et al., 2016).

Cities, not being isolated systems, may distribute as much
pollution to the surrounding areas as they receive from out-
side them or from remote regions. The analysis of the trans-
boundary atmospheric transport between Russian Siberia and
bordering countries (e.g. China, Kazakhstan, and Mongo-
lia) is part of a mutual risk assessment for urban areas/cities
and their surroundings. For example, the city of Ulaanbaatar
(Mongolia) suffers from high levels of pollution due to ex-
cessive airborne particulate matter emanating from coal com-

https://doi.org/10.5194/acp-22-4413-2022 Atmos. Chem. Phys., 22, 4413–4469, 2022



4432 H. K. Lappalainen et al.: Recent advances in the understanding of the northern Eurasian environments

bustion mixed with traffic emissions and resuspended soil
dust, resulting in variable chemical source profiles (Gunchin
et al., 2019). Long-range transport from remote sources
might be an additional contributor. Moreover, there are in-
dications that such transport of biomass burning emissions
from Siberia could lead to pollution episodes and impact sur-
face ozone as far as in western North America (Jaffe et al.,
2004).

2.2.3 Weather and atmospheric circulation (Q6)

The observed evolution of weather and climate represents the
combined effects of external forcing (changes in the concen-
trations of greenhouse gases and aerosols, etc.) and internal
variability, related to a large extent to the atmospheric circu-
lation. It is also affected by local factors, particularly urban
heat islands in cities. Here we discuss these interconnected
processes, focusing on cold and warm episodes, cyclone den-
sity and atmosphere–ocean interactions, effects of circula-
tion on temperature and moisture, cloudiness in the Arctic,
and boundary-layer dynamics relevant to the Arctic-boreal
region.

Cold and warm episodes

The Arctic warming as well as the Arctic amplification have
been associated with changes in atmospheric large-scale cir-
culation together affecting the European winter tempera-
tures. In large parts of Europe, severe cold (warm) winter
events are significantly correlated with warm (cold) Arctic
episodes (Vihma et al., 2020). Air mass trajectory analysis
revealed that air masses associated with extreme cold (warm)
events typically originate from over continents (sea areas).
Despite Arctic and European-wide warming, winter cooling
has occurred in north-eastern Europe in cases of air masses
arriving from the south-east (Vihma et al., 2020).

Cyclone density dynamics and atmosphere–ocean
interaction

Transporting large amounts of heat and moisture from mid-
latitudes to the central Arctic, synoptic-scale cyclones are vi-
tal for the Arctic climate system. Recent findings, based on
atmospheric reanalysis, above all the global ERA-Interim re-
analysis available from 1 January 1979 to 31 August 2019,
are summarized below. During 1979–2016 in winter (De-
cember, January, February), the cyclone density increased in
the areas around Svalbard and in the north-western Barents
Sea but decreased in the south-eastern Barents Sea (Wick-
ström et al., 2020). This is related to a shift to more merid-
ional winter storm tracks in the Norwegian, Barents, and
Greenland seas. The shift is favoured by a positive trend in
the Scandinavian pattern and, in the areas north of Svalbard,
by a significant increase in the eddy growth rate (Wickström
et al., 2020).

Numerical model simulations of the storm activity in the
White, Baltic and Barents seas were analysed for the period
1979–2015 (Myslenkov et al., 2018). A high inter-annual
variability in the storm number was observed for all stud-
ied seas. No significant trends in the storm number during
the period 1979–2015 were found in the studied sea areas.
On average, the connection with global atmospheric circula-
tion is stronger for the Baltic Sea than for the other two seas.
Also, the future changes in wind wave climate were anal-
ysed. According to the RCP8.5 scenario, in the second part
of the 21st century the number of storm events will rise in the
Baltic and Barents seas.

In the Bjerknes compensation, changes in atmospheric
heat transport co-occur with opposing changes in ocean heat
transport. Observations and model simulations indicate a
central role for ocean–atmosphere heat exchange in the Bar-
ents Sea area in maintaining this compensation in the Arctic
(Bashmachnikov et al., 2018a, b).

Circulation effect on temperature

The effect of atmospheric circulation on temperature trends
in the years 1979–2018 was studied by Räisänen (2019,
2021) using a trajectory-based method. He found that the cir-
culation trends had reduced the annual mean warming dur-
ing this period in West and central Siberia locally by over
1 ◦C, with a much larger cooling effect in autumn and winter
(Fig. 3). His findings also confirmed a circulation-induced
amplification of warming over the Barents and Kara seas,
particularly in winter. However, in most areas the circulation-
related temperature trends have varied strongly from month
to month, leaving only a relatively small effect on the annual
mean temperature trends. The residual warming obtained af-
ter subtracting the circulation effect therefore tends to have
a smoother seasonal cycle than the observed temperature
trends, in better agreement with the multi-model mean trends
in the CMIP5 simulations (Taylor et al., 2012).

Circulation effect on moisture

The effects of large-scale circulation on moisture, cloud and
longwave radiation occur mostly via the impact of horizontal
moisture transport (Nygård et al., 2019). Evaporation is typ-
ically not efficient enough to shape those distributions, and
much of the moisture evaporated in the Arctic is transported
southward (Nygård et al., 2019). Strong moisture transport
events avail a large part of the northwards moisture trans-
port. The meridional net transport is only a small part of the
water vapour exchange between the Arctic and mid-latitudes
(Naakka et al., 2019). When a high-pressure pattern across
the Arctic Ocean from Siberia to North America is lacking,
the amounts of moisture, clouds and downward longwave ra-
diation are anomalously high near the North Pole (Nygård
et al., 2019). Using vertically integrated water vapour as a
metric, the Arctic (north of 70◦ N) has experienced a robust
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Figure 3. Linear trends of monthly mean temperature in West
Siberia (55–65◦ N, 65–90◦ E) in the years 1979–2018. In (a), the
red bars show the trend in the ERA5 reanalysis and the blue
bars the circulation-related trend. In (b), the residual trends are
shown. The error bars indicate the 5 %–95 % uncertainty range in
the circulation-related trend and the residual trend based on inter-
annual variability. Redrawn from Räisänen (2021).

moistening trend since 1979, and in absolute numbers this
trend is smallest in March and largest in August (Rinke et
al., 2019). However, the relative trends are largest in winter.
Although different atmospheric reanalyses are consistent in
spatiotemporal trend patterns, they scatter in the trend mag-
nitudes.

Analysis of moisture and aridity estimated using the web-
GIS “CLIMATE” and the ECMWF ERA-Interim reanalysis
data for southern Siberia (50–65◦ N, 60–120◦ E) from 1979
to 2010 with a 0.75◦× 0.75◦ grid resolution showed that the
mountain regions of eastern Siberia have become more arid
each month during the last 30 years (Ryazanova and Voro-
pay, 2017). In West Siberia, aridity increased in May and de-
creased in June, while in the other months positive and nega-
tive trends were found. The greatest differences in the trends
of the aridity index, air temperature and precipitation were
observed in July.

Cloudiness in the Arctic

The climatology and inter-annual variability of Arctic cloudi-
ness remain a wildcard in regional climate change projec-
tions. Both climate models and satellite data products need in
situ observations for calibration and validation. Chernokul-
sky et al. (2017) and Chernokulsky and Esau (2019) collected
and processed manual cloud observations from meteorologi-
cal stations in the PEEX area. The cloud records in the Arctic
have been available since the end of the 19th century. Since
1936, cloud observations have representatively covered the
Eurasian Arctic. This permits reconstructions of cloud type
and cloud cover climatologies as well as studies of inter-
decadal variability of cloudiness. A problem of special in-
terest is related to the co-variability of the total cloud cover
and sea ice concentration or extent. Both clouds and sea ice
affect the surface heat balance through surface albedo, but
their feedback mechanisms, dynamical impacts and climate
sensitivities are different. Chernokulsky et al. (2017) found
that the annual-mean total cloud cover (TCO) decreases dur-
ing warmer climate periods with a lower sea ice concentra-
tion but increases over sea ice in the Barents Sea as more
moisture is transported into the Arctic at higher tempera-
tures. Furthermore, the increasing TCO reduces the deficit
of the surface heat, and the intra- and inter-annual variabil-
ity of TCO over solid ice is higher than that over open water
(Chernokulsky et al., 2017). Long-term cloud climatologi-
cal analysis based on meteorological observations of the to-
tal and low cloud cover and cloud types from the Barents
Sea to the Chukchi Sea showed that significant transitions
between cloud types have taken place, and especially the
low-level stratus and stratocumulus types have been trans-
formed to convective cloud types (Chernokulsky and Esau,
2019). Chernokulsky and Esau (2019) addressed how their
results are relevant for understanding Arctic cloud processes
and feedbacks and how new knowledge is needed to connect
the changes in the Arctic radiation balance with the Arctic
cloud cover–cloud type climatology.

Boundary-layer dynamics and urban heat islands

Against the background of accelerated and amplified Arc-
tic warming, anthropogenic heat release and metabolism of
cities add up to persistent warm temperature anomalies in
urbanized areas (Fig. 4). Indeed, if the climate change forc-
ing approaches 2 W m−2, the urban heat forcing could be
10–100 W m−2 (Konstantinov et al., 2018). The urban heat-
ing trapped in shallow planetary boundary layers is potent to
raise the local temperatures by 1 to 10 ◦C or even more. This
local climate phenomenon is known as an urban heat island
(UHI) (Esau et al., 2020). A series of in situ and satellite
UHI studies in the northern cities revealed strong and per-
sistent warm temperature anomalies in almost all of the 28
northern West Siberian cities (Miles and Esau, 2017), in 5
cities covered by the UHIARC network (Konstantinov et al.,
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2018; Varentsov et al., 2018a) and in 57 Scandinavian cities
(Miles and Esau, 2020). The mean wintertime temperature
anomalies and the UHI intensity varied from 0.8 to 1.4 K
and had extreme intensities of up to 7 K during cold anti-
cyclone weather conditions. The complete data set of surface
UHI intensity derived from MODIS land surface tempera-
ture (LST) data products is freely available and published in
Miles (2020). Such a UHI-induced strong mediation of cold
temperature spells might cause significant socio-economic
and environmental impacts in the cities (Konstantinov et al.,
2018, Fig. 4). A survey of other UHI studies in 11 Arctic
cities and towns confirmed that even relatively small cities
at high latitudes may exhibit intensive UHIs. A recent anal-
ysis confirms the important role of the surrounding tempera-
ture in explaining spatial–temporal variation of the UHI in-
tensity (Miles and Esau, 2017). The major contribution to
the UHI was revealed for water, sparse vegetation, grassland
and scrubland. The mechanisms and pathways of the UHI
maintenance require an involvement of numerical experi-
ments with turbulence-resolving models to advance the un-
derstanding of the local climate features (urban heat islands –
UHIARC data set; see http://urbanreanalysis.ru/uhiarc.html,
last access: 18 January 2022). We would need a denser mete-
orological network, especially high-quality temperature data,
to better understand the urban climatology and the thawing
processes in urban soils and to better assess climatic trends
relevant to Arctic societies and welfare (Konstantinov et al.,
2018).

Urban climate anomalies may cause more extreme
weather and climate phenomena in densely populated
megacities. The Moscow agglomeration – the largest megac-
ity in the boreal continental climate within the PEEX domain
– demonstrates a profound effect of interactions between the
UHI and urban winds, known as a cross-over effect (Var-
entsov et al., 2018b). The UHI creates an urban heat “dome”
with near-surface air inflow into the urban central districts
and air outflow at higher levels in the atmosphere. The air up-
lift in the urban dome is connected to the increase in summer
rainfall on the lee side and over the central urban districts.
Stable atmospheric stratification over rural areas is strength-
ened by the downwind air motions coming from the urban
region.

The atmospheric boundary layer over the Arctic Ocean
has been studied on the basis of tethersonde sounding ob-
servations over sea ice (Palo et al., 2017) and research air-
craft observations over the open ocean and sea ice (Suomi et
al., 2016). Palo et al. (2017) found that in spring and sum-
mer, the occurrence and properties of temperature inversions
were controlled by the surface melt and warm air advection
rather than surface net radiation. During snowmelt/ice melt,
temperature inversions were frequently surface-based and
equally as strong as winter inversions over the Arctic Ocean.
To better understand atmospheric boundary-layer processes
in the Arctic, Suomi et al. (2016) developed a method to mea-
sure wind gusts from a research aircraft. It allows wind gust

Figure 4. The northern urban heat islands are forerunners of the
global warming. Winter season future temperatures for the Arctic
(60–90◦ N) averaged over 36 CMIP5 global climate models and ex-
pressed as departures from the means for the 1981–2005 period.
The red line is the ensemble mean for RCP8.5, and the blue line
is for RCP4.5. Shaded areas denote ±1 standard deviation from
the ensemble mean (Overland et al., 2014 and Fig. 2.15 of AMAP,
2017). The observed surface UHIs are shown as red dots collocated
with the expected future Arctic temperature anomalies; e.g. the
observed wintertime urban temperature anomaly in Nadym corre-
sponds to the regional warming as expected to be reached by 2060.
Observe that the present Arctic climate is already 1.5 ◦C warmer
than the historical normals 1960–1990.

observations at altitudes not reached by traditional weather
mast observations. The observed gust factors strongly de-
pended on the surface roughness, which differed for sea ice
and the open ocean.

2.3 Arctic-boreal aquatic system

We discuss the recent results on Arctic sea ice dynamics and
thermodynamics, snow depth and sea ice thickness, sea ice
research supporting navigation, and rare elements in snow
and the ocean sediments, especially from the perspective
of improvements in the observation and modelling methods
(Q7, Sect. 3.3.1). We introduce new results on the Arctic
marine ecosystem and focus on the primary production and
carbon cycle (Q8, Sect. 3.3.2). In Sect. 3.3.3 for the Arctic-
boreal lakes and rivers, we discuss the browning of lakes and
lake sediment with special attention to the Selenga River sys-
tem of Lake Baikal (Q9).
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2.3.1 Changing water systems, snow, sea ice and
ocean sediments (Q7)

Sea ice and thermodynamics with atmospheric and
ocean dynamics

Referring to the earlier discussion in Sect. 2.2.3 on atmo-
spheric circulation, we address here how the sea ice dynam-
ics closely interacts with the atmospheric and ocean dynam-
ics. A rapid decrease in the Arctic Ocean ice cover, particu-
larly in the Barents and Kara seas, has been taking place since
the late 1970s simultaneously with the cooling of winters
in central Eurasia (McCusker et al., 2016). This unexpected
winter cooling is related to increasing north-easterly winds
over the south-eastern flank of an anomalous high that has
developed over the north-western coast of Russia (McCusker
et al., 2016; Mori et al., 2019, Räisänen, 2021). However, the
causality between the atmospheric circulation changes and
the Arctic sea ice decrease is debated. Observations suggest a
strong correlation between these two, but climate model sim-
ulations forced by reduced ice cover produce much weaker
circulation changes than observed, resulting in only weak
cooling in central Eurasia (Mori et al., 2014, 2019; McCusker
et al., 2016). This suggests either that most models are un-
derestimating the sensitivity of the atmospheric circulation
to sea ice decrease, supported by Romanowsky et al. (2019),
or that the circulation change has not been primarily caused
by the decreasing sea ice. In the latter case, the correlation
between the reduced ice cover and atmospheric circulation
would mainly reflect the effect of circulation on sea ice. In
support of this, Blackport et al. (2019) showed that reduced
sea ice coincides with an anomalous heat flux from the atmo-
sphere to the ocean and that, on the sub-seasonal timescale,
anomalies in atmospheric circulation tend to precede rather
than follow those in sea ice. Thus, while the reduced sea ice
might partly explain the observed changes in atmospheric
circulation (Mori et al., 2019), the effect of circulation on
sea ice appears to be stronger than the effect of sea ice on
circulation.

Considering atmosphere–ice interactions, Jakobson et
al. (2019) studied the linkages between sea ice concentration
(SIC), atmospheric stratification, surface roughness and wind
speed at the 10 m height (W10) and 850 hPa level (W850). In
all the seasons except summer, a reduction in SIC favoured
reduced atmospheric stratification and aerodynamic surface
roughness, which resulted in a stronger W10. The effect was
strongest in autumn, and positive trends in W10 and its ra-
tio to W850 typically occurred in regions with the strongest
negative trends in SIC. The relationships were stronger on
inter-annual than sub-seasonal timescales. Large-scale atmo-
spheric circulation, characterized e.g. by the dipole anomaly
(DA), has also contributed to sea ice dynamics. A positive
polarity in the DA has contributed to the recent rapid loss
of summer sea ice in the Pacific part of the Arctic Ocean by
bringing warmer air masses from the south and transporting

more ice towards the north, enhancing the ice-albedo feed-
back (Lei et al., 2016). Another example of ice dynamics af-
fecting the ice-albedo feedback was the weakened Transpo-
lar Drift Stream in summer 2013. It reduced sea ice transport
out of the Arctic Ocean and restrained ice melt because of
the low air temperatures, weakened albedo feedback, and a
relatively small oceanic heat flux in the central Arctic (Lei et
al., 2018).

Solar radiation, being the main forcing factor for a sea
ice melt in summer, is difficult to parameterize in thermo-
dynamic models. This is due to the large variability in the
optical properties of sea ice in space and time. A two-stream
model provides a time-efficient parameterization of the ap-
parent optical properties (AOPs) for ponded sea ice, account-
ing for both absorption and scattering, and has a potential to
be implemented in sea ice thermodynamic models to explain
the role of melt ponds in the summer decay of Arctic sea
ice (Lu et al., 2016). This model was used to investigate the
role of solar radiation in the Arctic sea ice during the melt-
ing season considering layers of melt ponds, underlying sea
ice, and the ocean beneath the ice. It was found that the en-
ergy absorption profiles depend strongly on the incident irra-
diance and ice scattering but only weakly on the pond depth.
It seems that the incident solar energy is largely absorbed by
the melt pond rather than by the underlying sea ice (Lu et al.,
2018a). The model was further applied to investigate the in-
fluence of a surface ice lid on the optical properties of a melt
pond. The thickness of the ice lid determines the amount of
solar energy absorbed. Visual inspections of the colour of
refreezing melt ponds also help to judge the significance of
the influence of the ice lid. This will allow for an accurate
estimation of the role of surface ice lids during field inves-
tigations of the optical properties of melt ponds (Lu et al.,
2018a). The modelled pond colour agrees with field obser-
vations from the Arctic sea ice in summer. The analysis of
pond colour is a new potential method to obtain ice thickness
in summer; however, more validation data and improvements
to the radiative transfer model would be needed (Lu et al.,
2018b).

Snow depth/mass and sea ice thickness

Snowpack on sea ice has a crucial role in insulating the sea
ice from the colder atmosphere, accordingly reducing sea ice
growth in winter, effectively reflecting the incoming solar ra-
diation, reducing sea ice melt in spring and summer and con-
tributing to its formation. The replacement of snowfall by
rain strongly enhances the ice-albedo feedback in the Arctic
Ocean (Dou et al., 2019). Shalina and Sandven (2018) refined
the description of snow depth on sea ice in the central Arctic,
providing new snow depth data for the Arctic marginal seas.
High autumn and winter precipitation and thinning Arctic sea
ice make snow–ice formation prevalent in the Atlantic sector
of the Arctic (Merkouriadi et al., 2017).
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Advances have been made in applying thermistor string-
based autonomous high-resolution Snow and Ice Mass Bal-
ance Array (SIMBA) buoys to measure snow depth and ice
thickness (Figs. 5 and 6). SIMBA has a lower cost, allowing
deployment in large numbers (Lei et al., 2015). The deter-
mination of snow depth and ice thickness from SIMBA tem-
perature profiles has so far been largely a manual process.
A SIMBA algorithm was developed to process SIMBA data
automatically (Liao et al., 2018), assuming a fixed snow–
ice interface. Snow–ice formation results in the snow–ice
interface moving upward. The SIMBA algorithm was fur-
ther developed to tackle the moving interfaces (Cheng et al.,
2020). The developed SIMBA algorithm works well under
cold conditions for lakes and polar oceans. For polar oceans,
the snow and ice are close to isothermal during summer,
which prevents the identification of interfaces on the basis of
the temperature gradient. Under such conditions, thermody-
namic modelling yields valuable information on snow depth
and ice thickness (Tian et al., 2017).

A challenge in sea ice thermodynamic modelling is the
uncertainty in the magnitude of the oceanic heat flux at the
ice base, especially for land-fast sea ice. Yang et al. (2015)
applied a one-dimensional thermodynamic model to investi-
gate impact factors in land-fast sea ice in the East Siberian
Sea. The modelled snow cover was less than 10 cm, having a
small influence on the ice thickness, but surface albedo and
oceanic heat fluxes were critical.

Also in the terrestrial Arctic and boreal zone, there is a
need for better efficiency and coverage of an in situ snow
observation network. Snow cover and snow mass are funda-
mental parameters for global energy and water cycles, and
the changes in the regional snowpack have societal impacts,
like on the amount of drinking water or the capacity for hy-
dropower generation (Bormann et al., 2018). Snow depth
data in the Arctic region are available from the synoptic
weather stations and snow mass data are systematically col-
lected from the snow courses, as demonstrated in extended
data (Fig. 2) by Pulliainen et al. (2020). The use of auto-
matic and cost-effective measurements together with harmo-
nized snow measurement practices is the way forward. A sur-
vey on harmonized snow monitoring in Europe demonstrated
that crucial parameters for operational services, such as pa-
rameters characterizing precipitating and suspended snow,
are measured by 74 % of the European snow network con-
tributors (COST Action ES1404), but the parameters char-
acterizing the snow microstructural properties, electromag-
netic properties and composition are currently measured by
only 41 %, 26 % and 13 %, respectively, of the network con-
tributors (Pirazzini et al., 2018). The observations at the con-
tinental scale, so far, demonstrate a widespread snow cover
retreat since the 1970s across the Northern Hemisphere, par-
ticularly in the Arctic (Derksen and Brown, 2012; Bormann
et al., 2018). By contrast, the results from the mountains are
mixed, and there is no consistent picture of what is happen-
ing at the regional scale (Bormann et al., 2018). Pulliainen

Figure 5. Trajectories of SIMBA buoys deployed in the Arctic in
the period 2018–2019. Red: Chinese National Arctic Research Ex-
pedition (CHINARE) (10 buoys), green: Nansen and Amundsen
Basins Observational System (NABOS) (5 buoys), dark blue: CAA-
TEX (2 buoys), and light blue: MOSAIC (15 buoys). SIMBA is a
thermistor string-based ice mass balance (IMB) buoy. It measures
high-resolution (2 cm) vertical environment temperature (ET) pro-
files (four times a day) through the air–snow–sea ice–ocean column.
The heating temperature (HT) measured by the thermistor string
once per day is based on the use of a small identical heater on
each sensor. The ET and HT data are used to derive snow depth
and ice thickness. SIMBA uses the GPS module to track the buoy
location. The Iridium satellite is used for data transmission. A to-
tal 15 SIMBA buoys were deployed in the Arctic Ocean during the
CHINARE 2018 and NABOS 2018 field expeditions in late autumn.
In 2019 17 SIMBA buoys were deployed during the CAATEX (2)
and MOSAIC expeditions (15, leg 1).

et al. (2020) provided new insight into the seasonal snow
mass and its trend by using a bias-corrected GlobSnow 3.0
estimate. Pulliainen et al. (2020) were now able to demon-
strate different continental trends based on the 39-year satel-
lite record: a decrease in North America, a negligible trend
in Eurasia, and a high regional variability in both areas.

Sea ice research supporting navigation

Recent research has addressed emerging opportunities for
Arctic navigation and the importance of operational sea ice
analysis. Lei et al. (2015) showed trends along the Arctic
Northeast Passage (NEP) and demonstrated an increase in
the spatially averaged length of the open period (the ice con-
centration less than 50 %) from 84 d in the 1980s to 114 d
in the 2000s. The summer sea ice along the high-latitude
sea route (HSR) north of the eastern Arctic islands has de-
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Figure 6. SIMBA observations of the temporal evolution of the
snow depth, ice thickness, and temperature profile from the ocean
through snow and sea ice to air. The results were obtained by ap-
plying the algorithm by Liao et al. (2018). The black lines are snow
surface (top), initial freeboard (middle) and ice base (bottom); 0
level refers to the snow–ice interface. The colours indicate the tem-
perature in degrees Celsius.

creased during the last decade, with the ice-free period reach-
ing 42 d in 2012. The HSR avoids shallow waters along the
coast, which eases access for deeper-draft vessels (Lei et al.,
2015). Considering operational sea ice analyses for the Bohai
Sea, work has been done to combine thermodynamic mod-
elling and Earth observation (EO) data from synthetic aper-
ture radar (SAR) and microwave radiometers (Karvonen et
al., 2017). The SAR-based discrimination between sea ice
and open water works well, and areas of thinner and thicker
ice can be distinguished. However, a larger comprehensive
training data set is needed to set up an operational algorithm
for the estimation of sea ice concentration and for the weight-
ing scheme for sea ice thickness (Karvonen et al., 2017).

Multi-decadal Arctic sea ice state estimates are impor-
tant for the strategic planning of Arctic navigation. These
estimates are usually based on climate models with a
thermodynamic–dynamic sea ice model. An up-to-date as-
sessment of large-scale sea ice models was with the aid of
sea ice models as a climate model component, and a compre-
hensive review was carried out by Leppäranta et al. (2020).
Specifically, Uotila et al. (2015) found that a model with
the subgrid-scale sea ice thickness distribution reproduces
more realistic sea ice and upper ocean, due to better-captured
spring evolution, than a model with just a single sea ice thick-
ness category. In terms of the validity of initial conditions for
multi-decadal predictions, Uotila et al. (2019) analysed a set
of ocean reanalysis products, including Arctic sea ice, and
found that the multi-model set mean is a useful product as a
state estimate. This finding increases confidence in the use of

the combination of ocean reanalysis for both initialization of
multi-decadal predictions and analysis of multi-decadal vari-
ability.

Ocean floor and sediments: composition and fluxes

A significant content of illite and muscovite among layer sil-
icates in most of the ice-rafted sediment samples taken from
selected Arctic regions suggests that sources of the sedimen-
tary material are mainly mineralogically similar to modern
bottom sediments of the East Siberian and Chukchi seas as
well as presumably sediments of the eastern Laptev Sea. A
significant kaolinite fraction in the samples from the North
Pole area can be caused by the influx of ice-rafted fine-
grained sedimentary material from the Beaufort or Chukchi
seas, where kaolinite is supplied from the Bering Sea. The
samples contained variable proportions of erosion products
of both mafic and felsic magmatic rocks and/or sufficiently
mature sedimentary rocks (Maslov et al., 2018a).

Quantification of CH4 sources is fundamental information
for the climate change mitigation (Fletcher and Schaefer,
2019). Methane stored in ocean floor reservoirs can reach
the atmosphere in the form of bubbles or dissolved in water.
Methane hydrates could destabilize with rising temperatures,
further increasing greenhouse gas emissions in a warming
climate. Subsea permafrost and hydrates in the ESAS act as
a substantial carbon pool and source of methane to the atmo-
sphere. Annual methane emissions of the region vary from
0.0 to 4.5 Tg CH4 yr−1 estimated by Berchet et al. (2016).
Yasunaka et al. (2018) estimated the monthly air–sea CO2
fluxes in the Arctic Ocean and adjacent seas located north of
60◦ N for the period 1997–2014 and ended up at a net annual
Arctic Ocean CO2 uptake of 180± 130 Tg C yr−1.

The Zeppelin Observatory data for 2014 suggest that
the CH4 fluxes from the Svalbard continental platform are
smaller than 0.2 Tg yr−1. All estimates are in the lower
range of values reported earlier (Pisso et al., 2016). Platt
et al. (2018) reported a potential region with high ocean–
atmosphere CH4 fluxes located north of Svalbard but ad-
dressed how at the time of the measurements the meteoro-
logical conditions were unique, including a short episode of
the highly sensitive emissions over an active seep site with-
out a sensitivity to land-based emissions.

River runoff affecting the hydrological processes in
coastal marine environments

The Arctic Ocean, including the Hudson Bay, receives
55.6 % of its river inflow from Russia, mostly via 19 large
rivers (Shiklomanov and Shiklomanov, 2003). This freshwa-
ter inflow of approximately 2920 km3 yr−1 (Shiklomanov et
al., 2008) is associated with large sediment and heat trans-
ports, which together affect the hydrography, marine climate
and ecosystems across the Siberian shelf seas (Magritsky et
al., 2018). A major part of seasonal and inter-annual varia-
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tions in the river runoff is anthropogenic due to regulation in
large reservoirs (Georgiadi et al., 2016). In addition, Magrit-
sky et al. (2018) detected an increased runoff trend of 5 %–
10 %, compared to a reference period of 1936 to 1975, in
most of the major Russian rivers discharging into the Arc-
tic Ocean. This trend is mostly due to a climate-induced in-
crease since the second half of the 1980s (Magritsky et al.,
2018). However, due to gaps in the monitoring programmes,
these estimates have a large uncertainty: focusing on river
discharges from the six largest Eurasian rivers to the Arctic
Ocean, estimates of the increase range from 7 % (Peterson et
al., 2002) to 1.5 % (Shiklomanov and Lammers, 2009).

Permafrost thawing has resulted in releases of old carbon
storages, but so far there is no clear evidence of the im-
pact of permafrost thawing on the net emissions of CO2 and
CH4 into the atmosphere (IPCC, 2019). A potential expla-
nation of no or weak net increase is that a fraction of the
released methane has been taken by rivers instead of being
emitted into the atmosphere. Increased amounts of organic
carbon in rivers impact the regional and global biochemical
and methane cycles (Shakhova et al., 2007; Wild et al., 2019).
With the accelerating permafrost thaw, the atmospheric emis-
sions are also expected to increase, in particular for CO2, but
also for CH4. Expected future changes in river ice regime
are consistent with the expected changes in the duration of
the cold season and accumulated negative air temperatures.
Significant changes are expected for the rivers in the Kola
Peninsula and the lower reaches of the Northern Dvina and
Pechora rivers, whereas the lowest changes are expected for
the central parts of eastern Siberia (Agafonova et al., 2017).
Due to anthropogenic activities (above all industry, munici-
pal services, and filling of reservoirs), water withdrawal from
Russian Arctic rivers and related groundwater systems is ap-
proximately 20.6 km3 yr−1, and it is expected to increase to
37 km3 yr−1 by 2025 to 2030 (Magritsky et al., 2018). Fea-
tures of these changes at the marine margin of the Lena River
Delta are different compared to changes in the delta head
area.

The hydrological representativeness of a glacier is a new
characteristic and of practical importance for basin-wide
tasks of hydrology and glaciology. For its evaluation, it is
proposed to replace the seasonal air temperatures with the
glacier summer mass balance (BS) or to include BS in the
multiple regression equations for calculating the runoff of
rivers fed by melting of snow and ice. This method can
be recommended for at least some glaciers in the existing
network of the World Glacier Monitoring Service (WGMS)
(Konovalov et al., 2019).

2.3.2 Marine ecology (Q8)

Living marine organisms weaken or even subdue CO2
accumulation

The important climatological role of the world’s oceans is to
reduce the CO2 accumulation into the atmosphere through
its absorption. This mechanism is ordinarily viable as the
partial pressure of dissolved CO2 in marine surface waters
is less than the content of CO2 in the overlying atmosphere.
Due to the organic pump, a net drawdown of atmospheric
CO2 into the ocean is put into effect. It proceeds in the pro-
cess of sinking of particulate organic carbon of algal ori-
gin: organically bound CO2 is released through remineral-
ization and further accumulated in the deep ocean. In con-
trast, owing to the processes of a carbonate counter pump,
CaCO3 is exported downward and, at depth, dissolves, caus-
ing a net release of CO2 into the atmosphere (Balch et al.,
2016). However, there are living marine organisms that are
able to weaken or even subdue CO2 accumulation, at least
within their habitat. Among this group of marine organisms,
the leading role belongs to coccolithophores. Among marine
biosystems, coccolithophores (class Prymnesiophyceae) are
the most productive calcifying algae (Taylor et al., 2017).
They both produce particulate inorganic carbon (in the form
of calcite) and promote the increase in CO2 partial pressure
(pCO2) in the ambient marine surface waters. Thus, the bio-
logical activity of coccolithophores can exercise a direct in-
fluence on both the CO2 flux exchange at the atmosphere–
ocean interface and the marine carbonate chemistry system
(CCS). The rain ratio, i.e. the ratio of particulate inorganic
carbon to organic carbon, determines the intensity and direc-
tion of CO2 flux at the atmosphere–ocean interface. In the
case of coccolithophores, the rain ratio is above unity within
their habitat area, which potentially can have climatic con-
sequences but also drive alterations in marine CCSs (Balch,
2018).

Emiliania huxleyi is the most widespread coccolithophorid
algal species in Earth’s oceans, which, in light of the above,
naturally explains why this is one of the best-studied marine
algae. Of all other coccolithophores, E. huxleyi is probably
the most successful in forming extensive blooms in world-
wide marine waters ranging from oligotrophic to eutrophic.
Unlike diatoms and dinoflagellates, this alga is phenomenally
immune to both light limitation and very high light inten-
sities. As high levels of incident light/irradiances enhance
calcification (which is predominantly a light-dependent reac-
tion), it is supposed that the calcification machinery enables
E. huxleyi cells to resist photodamage by dissipating excess
energy. This specialty is important in the case of nutrient-
depleted waters, especially in combination with the high
affinity of E. huxleyi for nutrients including nitrogen, but
especially phosphorous. The properties of both mixotrophic
nutrition and resistance, at least partially, to zooplankton
grazing and virus attacks (due to a cell’s coverage by calcite
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scales/coccoliths) contribute to this alga’s ability to sustain
a variety of unfavourable conditions and retain steadfastly
its ecological niche (Godrijan et al., 2020). Thus, the elabo-
rate biology of E. huxleyi cells imparts to them the intrinsic
and rather rare property of pursuing growth-maximizing and
loss-minimizing life strategies. This property reveals itself
through multiple manifestations, two of which are vastness
and sustainability of E. huxleyi bloom areas. A typical bloom
surface is not less than thousands of square kilometres, but
in many marine environments it is far larger (Kondrik et al.,
2018b). For example, in some years, the value of S in the
North and Norwegian seas can be well above 100 000 km2, in
the Bering Sea maximum bloom area (S) values were regis-
tered at 250 000 km2, and particularly large E. huxleyi bloom
areas (up to 380 000 km2) were observed in the Barents Sea
(Kondrik et al., 2017). Within the subpolar and polar zones of
the Northern Hemisphere, in the waters around Great Britain,
in the North, Norwegian, Labrador, Greenland, Barents, and
Bering seas, E. huxleyi blooms occur annually, although with
largely varying intensities (Pozdnyakov et al., 2017). The du-
ration of blooms in the North Atlantic and the Barents Sea
is on average about 3–4 weeks. The moment of onset of
the E. huxleyi bloom area maximum shifts from June–July
to September–October for the seas located at the temperate,
subpolar and polar latitudes of the Northern Hemisphere, re-
spectively. This sequence mimics the flow pattern of the Gulf
Stream. In the Bering Sea, the temporal pattern of S varia-
tions reveals two periods (1998–2001 and 2018–2020) of ex-
traordinarily intense E. huxleyi outbursts. It is hypothesized
that this phenomenon was driven by massive advection of Fe-
depleted North Pacific waters due to a significant weakening
of the Alaska Current. The latter is supposed to be a telecon-
nected aftermath of exceptionally strong El Niño events in
1996–1997 and 2017, respectively (Pozdnyakov et al., 2020).

Satellite-borne estimations made during 1998–2018
showed that E. huxleyi outbursts resulted in a release of
particulate inorganic carbon (PIC) in the form of CaCO3
in surface waters in amounts ranging from ∼ 10 to sev-
eral hundreds of kilotonnes. In the Barents Sea, the re-
leased PIC content varied between ∼ 100 and 250–300 kt,
whereas in the Bering Sea, during the two periods of excep-
tional activity, the PIC content was as high as 500 kt (Kon-
drik et al., 2017). There is ample evidence that the release
of PIC was accompanied by a significant increase in CO2
partial pressure (1pCO2) within the bloom area: between
1998 and 2016, the mean and maximum values of the ratio
1pCO2 / (1pCO2)background varied in the ranges of ∼ (20–
40) % and ∼ (30–60) %, respectively. The highest numbers
were registered in the Bering and Barents seas (Kondrik et
al., 2018a; D. Kondrik et al., 2019). Also, there is spaceborne
evidence of the atmospheric columnar 1CO2 enhancement
(1CO2)atm over E. huxleyi blooms: numerous case studies
in the aforementioned North Atlantic seas as well as in the
Barents and Black seas proved that (1CO2)atm could reach
2–3 ppm (D. V. Kondrik et al., 2019; Morozov et al., 2019).

Notwithstanding the remarkable ability of E. huxleyi to
grow under conditions unfavourable for algae of other func-
tional groups (e.g. diatoms, flagellates, cyanobacteria), a
highly irregular pattern of the registered 2-decadal (1998–
present) time series of S, PIC, and 1pCO2 is indicative of
susceptibility of this alga’s outbursts to environmental con-
ditions (Nissen et al., 2018; Kazakov et al., 2019; Silkin
et al., 2018). Statistical prioritization of non-biogenic forc-
ing factors (FFs) shows that the latter are sea- and time-
period-specific (Pozdnyakov et al., 2019). Thus, in the Bar-
ents Sea, sea water temperature (SWT) is the highest-ranked
FF, followed by PAR (photosynthetic active radiation). In
the Bering Sea, beyond the aforementioned periods (1998–
2001 and 2018–present), sea surface salinity (SSS) is the FF
leader, with PAR as a runner-up, whereas SWT is only third
in the series. Although these assessments are done without
explicitly considered nutrient concentrations (NCs), implic-
itly NCs were among the FFs. Indeed, arguably, variations in
SWT, SSS, CHL, MLD, and surface current speed/advection
(tested as FFs) indirectly account for the variations in NCs as
well in such CCS parameters as alkalinity and basicity (Du-
rairaj et al., 2015; Pozdnyakov et al., 2019, and references
therein).

In the long run, the steady accumulation of CO2 into the
atmosphere should closely be considered (Rivero-Calle et al.,
2015). The action of a rising atmospheric CO2 concentration
is expected to proceed through a number of direct and in-
direct interactions (Fig. 7), both of which should ultimately
cause alterations in the rain ratio. An increase in the atmo-
spheric CO2 concentration leads to the rising of the global
temperature and further to the strengthening of stratification,
intensification of irradiance within the euphotic zone and cut-
ting of nutrient fluxes from below. Although increases in CO2
fluxes to the surface ocean cause a reduction of pH and CO2−

3
levels in water, the large pool of HCO−3 remains to support
the calcification machinery. Thus, it will lead to the estab-
lishment of environmental conditions unfavourable for non-
calcifying phytoplankton (NCP) but beneficial (or at least
endurable) for coccolithophores in general and E. huxleyi
specifically. The reduction of NCP and uncontested growth
of E. huxleyi drives a further reduction of dissolved CO2
consumption by other groups of phytoplankton, increase in
pCO2 in the surface ocean and intensification of CO2 fluxes
into the atmosphere. Concurrently, through a system of feed-
back interactions, alterations in the rain ratio are bound to
affect the carbon fluxes at the water–atmosphere interface.
Therefore, the scenario of further increases in atmospheric
CO2 concentrations in the future, in all probability, implies a
vaster proliferation of E. huxleyi in the world’s oceans.

In combination with statistic-based mathematical models
of E. huxleyi blooms (Pozdnyakov et al., 2019), the avail-
able IPCC climate models permit mid-term projections of
the forthcoming changes (Gnatiuk et al., 2020). However,
our knowledge of the reciprocal influence of climate change
and both the structure and functioning of marine ecosystems
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Figure 7. (a) Biological pumps resulting in (i) an atmospheric CO2 sink and (ii) calcium carbonate transport from surface to deep ocean;
(b) anticipated forward and feedback alterations in ocean ecology driven by atmospheric CO2 increase. PIC: particulate inorganic carbon;
POC: particulate organic carbon (modified after Rost and Riebesell, 2004).

(even at the level of primary producers) is still insufficient
to confidently prognose the future dynamics of the E. hux-
leyi phenomenon. More studies are required even to fully un-
derstand the mechanism of intracellular light-dependent re-
action of calcification and its dependency on both seawater
carbonate chemistry and environmental FFs (Vihma et al.,
2019). Creation of respective multi-decadal databases (as in
Kazakov et al., 2019) as well as further delivery of satellite
and in situ/shipborne/laboratory data are necessary to im-
prove our capacity to assess with certainty the climatologi-
cal and ecological role of E. huxleyi blooms on regional and
global scales (Fig. 7).

2.3.3 Lakes and rivers (Q9)

Organic carbon in lakes

Spatial variability, an essential characteristic of lake ecosys-
tems, has often been neglected in field research and monitor-
ing. The detected spatial “noise” strongly suggests that, be-
sides vertical variation, the horizontal variation should also
be considered in the ecosystem monitoring and, most im-
portantly, when the role of dissolved organic carbon (DOC)
in the CO2 flux is estimated (Manasypov et al., 2015; Lep-
päranta et al., 2018). In natural waters with an increasing
level of coloured dissolved organic matter (CDOM) concen-
tration, the water colour is shifted towards brown. The key
“permanent” landscape variables, the coverage by lakes and
peatland in the catchment area, can be strongly correlated
with lake elevation above the sea level. A high lake cover-
age indicates a low CDOM concentration, while a high peat
coverage indicates the opposite (Arvola et al., 2016). For ex-
ample, in Finland, recent results from inland water studies

have not shown any overall, consistent large-scale changes
in CDOM concentrations over the last 101-year period (Ar-
vola et al., 2017). Rather, CDOM changes in individual lakes
have been related to changes in land use in the drainage
basin. Manasypov et al. (2015) reported results from Siberian
lakes, representing a discontinuous permafrost zone, and ad-
dressed how although the concentrations of most elements in
the lakes are lowest in spring, the maximal water coverage
of land made it a significant reservoir of DOC. The soluble
metals in the water column can be easily mobilized to the
hydrological network.

In very shallow freezing lakes, the volume of liquid water
is much reduced due to ice growth, and rejection of nutrients
and pollutants in the ice growth causes major enrichment of
the water body. This has major implications for the ecosys-
tem of these lakes (Yang et al., 2016; Song et al., 2019).
Freezing rejects some 80 %–90 % of the impurities in fresh-
water lakes. On the other hand, ice cover accumulates atmo-
spheric deposition over several months but releases them into
the water body within 1 month’s melting phase. Rejection
of nutrients and pollutants in lake ice growth causes major
enrichment of the water body in shallow lakes and notable
increases in nutrient concentrations in a shallow lake during
seasonal ice growth (Fang et al., 2015).

Lake carbon balance

Arctic and boreal lakes are an important natural source of
CH4 into the atmosphere (Bastviken et al., 2011). Methane
is produced mainly in the bottom sediments and/or hy-
polimnion, where most of the anaerobic decomposition of
organic matter takes place and then is either oxidized to
CO2 in the water column or emitted into the atmosphere.
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At Kuivajärvi, a typical meso-humid lake located in south-
ern Finland, it was found that 91 % of available CH4 was
oxidized in the active CH4 oxidation zone during hypolim-
netic hypoxia (Saarela et al., 2020). In warm springs, the
early onset of thermal stratification with the cold and well-
oxygenated hypolimnion delays the period of hypolimnetic
hypoxia and thus limits the production of methane. At Kuiv-
ajärvi measured CO2 fluxes (F-CO2) showed that the lake
acted as a net source of carbon during two open-water pe-
riods (Mammarella et al., 2015). During daytime, with typi-
cally high wind speeds, shear-induced water turbulence con-
trols the water–air gas transfer efficiency, thus enhancing the
vertical diffusive fluxes across the water–air interface. How-
ever, during calm nighttime conditions, buoyancy-driven tur-
bulent mixing, associated with penetrative cooling of surface
water, controls the gas exchange, and simple wind-speed-
based transfer velocity models strongly underestimate F-CO2
(Mammarella et al., 2015). Kiuru et al. (2018) developed a
model simulating CO2 dynamics of a boreal lake in a warm-
ing climate. The simulations for 2070–2099 showed a 20 %–
35 % increase in the CO2 flux from the lake compared to the
reference period of 1980–2009.

Lake ice cover

Wei et al. (2016) studied Lake Unari (67.14◦ N, 25.73◦ E),
Finnish Lapland, in the winters 1980/1981–2012/2013, and
observed an increasing trend in the air temperature during
the freezing season associated with an increasing trend in
the water precipitation during winter. Low temperatures with
less precipitation led to the formation of columnar ice, while
strong winds together with heavy snowfall favoured gran-
ular ice formation. Karetnikov et al. (2017) analysed long-
term ice conditions in Lake Ladoga, Russia, for the period of
1913–2015 and showed that the mean freezing and breakup
dates were 26 November and 15 May, respectively, and that
the annual frequency of complete freeze-over of the lake was
0.83. The period from 1990 to present was much milder than
the preceding years. The annual increase in the ice concen-
tration depended on the accumulated freezing degree days
(AFDDs) and the hypsographic curve, while the ice thick-
ness increased with the square root of an AFDD.

An analysis of a Siberian thermokarst lake located in the
Lena River Delta, characterized as a floating ice lake, showed
that the temporal dynamics and magnitude of heat fluxes and
surface energy balance closures are substantially different
depending on lake surface conditions (Franz et al., 2018).
Sensible heat and latent heat fluxes, modelled using available
heat bulk transfer models (Woolway et al., 2015; Verburg and
Antenucci, 2010; Andreas et al., 2002), tend to underestimate
the measured fluxes and show less variability over freezing
ice cover, melting ice in spring, as well as open water in
summer. However, the performance of these models also de-
pends on the accuracy of meteorological and hydrological

Figure 8. Field data for ice decay in Lake Kilpisjärvi in 2013 show-
ing decrease in ice thickness by surface melting and bottom melting
and increase in porosity until breakage of ice cover.

input parameters, which should be carefully measured, espe-
cially during challenging winter conditions.

The seasonal lake ice cover is a sensitive indicator
of climate variations in the Arctic (Kirillin et al., 2012;
Leppäranta, 2015). To work more on this question, Lake
Kilpisjärvi (surface 37.1 km2, maximum depth 57 m), a tun-
dra lake in northern Finland, has been under intensive ice-
related field programmes in recent years. The research cov-
ered the whole year but was focused on the melting period
in May–June. The heat budget over the ice season was domi-
nated by the radiation balance. Turbulent fluxes were signifi-
cant before the freeze-up in autumn, but in the ice season they
were small. The evolution of ice thickness served as a very
good approximation to the total surface heat flux (Leppäranta
et al., 2017) (Fig. 8). In the melting stage, solar radiation, the
strongest forcing of the water body beneath ice cover, breaks
the stability and initiates convective turbulent mixing. This
brings heat from the deeper water to ice, enhancing melting
at the ice bottom (Kirillin et al., 2018). Thus, the common
assumption of the heat flux from the water to ice being due
to molecular conduction does not hold in the melting stage,
but it is much higher. The ice–water interaction under lake
ice has not been well covered in earlier studies of ice growth
and melting.

The ice melting process was studied in detail in Lake
Kilpisjärvi. The melting progressed in the upper and lower
surfaces and in the interior, with proportions depending on
the solar flux and optical properties of the ice and therefore
being case-dependent. About one-third of the solar flux that
penetrated the ice returned to the ice bottom, providing heat
for melting. This was consistent with the under-ice results
by Kirillin et al. (2018). In 2013 a rapid ice breakage event
completed the ice breakup in a short time interval, with final
breakage at the ice porosity 40 %–50 %. A lake ice melting
model should include the thickness and porosity of ice, with
porosity connected to an ice strength criterion (Leppäranta et
al., 2019).
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Lake Baikal and Selenga River Delta

The Selenga River, the main tributary of Lake Baikal, has a
catchment area of 450 000 km2 in the boundary region be-
tween northern Mongolia and southern Siberia. This area
is well known by its climate, land use and dynamic socio-
economic changes which might have negative impacts on
the ecosystems of Lake Baikal and thus was selected as
a PEEX field laboratory within the PEEX sub-programme
Selenga-Baikal Network (https://www.atm.helsinki.fi/peex/
index.php/basenet/, last access: 18 January 2022). In the re-
cent past, hydroclimatic development together with land use
changes led to a contaminant influx from mining areas, and
urban settlements increased. Additional hydrological mod-
ifications due to the construction of dams and abstraction-
s/water diversions from the Selenga’s Mongolian tributaries
could lead to additional alterations (Karthe et al., 2017b). In
addition to the Selenga River, a key issue for an improved un-
derstanding of regional impacts of the environmental change
is to disentangle the influence of climate change from that of
other pressures within the catchment (Lychagin et al., 2017).
The PEEX sub-programme Selenga-Baikal Network aims at
integrated field-based and modelling knowledge to develop
a basin-wide conceptual framework of riverine fluxes (Kasi-
mov et al., 2017; Karthe et al., 2019).

As a PEEX field laboratory, regional large-scale assess-
ments made it possible to predict the comprehensive nature
of hydrological and geochemical changes driven by climatic
processes and human impacts. Heavy metals in water and
sediments (Kasimov et al., 2020a, b) and fish communities
(Kaus et al., 2017) were measured since 2011 in over 50 lo-
cations around the catchment. The mining zones are poten-
tial hotspots for increasing metal loads to downstream river
systems. Several metals (Al, Cd, Fe, Mn, Pb and V) are ex-
ported from mining sites to the downstream river system, as
shown by net increasing mass flows. Based on a novel par-
titioning coefficient approach (Table 2), contrasting patterns
with domination of both particulate and dissolved phases in
different parts of the basin were found. Such heterogeneity
in the metal partitioning is likely to be found in many large
river systems.

Multi-scale modelling ranged from the basin-wide (Malsy
et al., 2017; Frolova et al., 2017) to specific sub-regions, such
as particular segments of the river system (Kaus et al., 2017;
Thorslund et al., 2017; Garmaev et al., 2019) or its delta
(S. R. Chalov et al., 2017; S. Chalov et al., 2017; Shinkareva
et al., 2019), and identified reactions of hydrogeochemical
pathways to climate change. The mean flow reduction in
the Selenga River was 3 %–5 % during the 2020s to 2030s
and 4 %–25 % during the 2080s to 2090s, being a crucial
driver of ongoing and future hydrogeochemical changes. In-
creases in temperatures with permafrost thaw and the ex-
pansion of agricultural, mining and urbanization processes
may induce up to a 6 % increase in the particulate modes
and 3 % in the dissolved modes of some metals in the river

system (Chalov et al., 2018). Possible changes in the num-
ber or magnitudes of high-flow events, caused by climatic
or other anthropogenic factors, could influence the total sed-
iment deposition, which was primarily found to occur dur-
ing relatively short high-flow events. Such potential changes
have important implications for the possible spreading of
polluted sediments (Pietroń et al., 2015) and their storage in
the Selenga River Delta, which is an important wetland re-
gion forming the geochemical barrier which mitigates pollu-
tion of Lake Baikal by riverine fluxes (Voropay and Kichig-
ina, 2018; Chalov et al., 2015). The Selenga River Delta re-
gion sequesters various metals bound to Selenga River sed-
iments (Chalov et al., 2015, Pietroń et al., 2018). The wa-
ter shortage decreases the processes of suspended sediment
retention in the delta. The seasonal hydrogeochemical pat-
terns are explained by wetland inundation during floods and
channel erosion or Baikal wind surge during low-flow peri-
ods (S. R. Chalov et al., 2017; S. Chalov et al., 2017).

Asian water lakes

The largest internal drainage basins in the world are located
in central Asia, with a limited availability of both surface wa-
ter and groundwater (Karthe et al., 2017a). Since the 20th
century, water resources of this region have been overex-
ploited and, for example, from small Mongolian headwater
streams to the mighty Aral Sea, surface waters have been
partially desiccated. It seems that the implementation of the
Integrated Water Resources Management and water–food–
energy nexus approaches would lead to a more environmen-
tally friendly future (Karthe et al., 2017a, b). The lake-rich
Qinghai–Tibet Plateau (QTP) has recently been identified
as the “Third Pole” of the Earth. Due to its high elevation
and unique climate, the QTP affects the global and local cli-
mate and played an important role in the central and southern
Asian water cycle (J. Zhang et al., 2018). Lake–atmosphere
interactions have been quantified over open-water periods,
yet little is known about the lake ice thermodynamics and
heat and mass balance during the ice-covered season. A mod-
elling study for a thermokarst lake in the QTP was performed
(Huang et al., 2019a). Strong diurnal cycles were seen for all
surface heat fluxes. The ice mass balance was dominated by
the growth and melt at the base, but the surface sublimation
was also crucial for the ice loss, accounting for up to 40 % of
the maximum ice thickness and 41 % of the lake water loss
during the ice-covered period. The strong penetration of so-
lar radiative flux is the dominant contributor to the high value
of upward sensible heat flux at the ice bottom, resulting in a
relatively thin ice cover compared with the equivalent high-
latitude climate.

2.4 Society

The anthropogenic impact has been addressed as one of the
PEEX themes for the society system. The discussion on
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Table 2. Hydrogeochemical signature of a large river system – Selenga River case study. The figure represents metal(loid) partitioning
(median values) in the Selenga River basin in the upper (Mongolian) and downstream (Russian) parts between 20 July and 10 August 2011
under dominant high-water (a) and between 7 June and 10 July 2012 under dominant low-water conditions. Dark orange fill corresponds to
the share of suspended forms of elements > 75 % (green), light orange to 75 %–50 %, light blue to 50 %–25 %, and dark blue to < 25 %. The
figure indicates that in the large river system some metals are mostly found in dissolved form (84 %–96 % of Mo, U, B, and Sb on average),
whereas many others predominantly existed in suspension (66 %–87 % of Al, Fe, Mn, Pb, Co, and Bi). A consistently increasing share of
metals in suspended particulate modes (about 2–6 times) is observed under high-discharge conditions. For details and other hydrological
seasons, see Kasimov et al. (2020b).

the mitigation and adaptation, including urban infrastruc-
ture design and risk assessment, is addressed in this con-
text (Q10, Sect. 2.4.1). The social transformations are dis-
cussed in terms of how local reindeer grazing interacts with
the environment (Q11, Sect. 2.4.2). The adaptive capacity
of the northern societies depends on their environment, de-
mographic structure and economic capacity, and the envi-
ronmental hazards and environmental health under a chang-
ing climate are the key research areas in this context (Q12,
Sect. 2.4.3).

2.4.1 Anthropogenic impact (Q10)

Mitigation

Arctic climate change generates a need for long-term plan-
ning and development of new socio-economic infrastruc-
tures, such as dams, bridges, roads and transnational and
regional energy networks. For this task, new climate-based
forecasting tools, cost and operational risk estimates as well
as other methods and tools for an infrastructure and urban
design are needed. As an example, engineering calculations
for maximal discharges were provided for the Nadym River
in Russia (Shevnina et al., 2017). Badina (2018) introduced
a method for the natural risk assessment by using indices
based on socio-economic potential data and spatial distri-
bution of natural hazards. This method has been tested and
used to identify the most vulnerable municipalities in south-
ern Siberia. Another example of new methods is a “green
factor tool” to increase the share and effectiveness of green
areas in urban environments and cities. An ambitious target
set in this tool could encourage or force urban developers to

aim higher with the planning of green areas and construc-
tion; however, the existing regulations challenge the use of
this approach (Juhola, 2018).

The energy production is of fundamental importance for
the society’s functions, and new clean energy technologies
are needed to hinder the climate change. The potential of
hydropower production under probabilistic projections of
annual runoff rate and future changes in the potential hy-
dropower production need to be evaluated (Shevnina et al.,
2019). All the Nordic countries are vulnerable to various de-
grees to potential cross-border impacts due to their energy
sectors being highly globalized and interconnected. How-
ever, cross-border impacts are not yet properly included in
Nordic climate assessments or energy strategies. The EU’s
new Green Deal is pivotal in this respect, as for the first time
emissions along the whole supply chain (oil, gas, coal, re-
newables) come under scrutiny as part of a normative gover-
nance. Therefore, policy makers and energy planners should
be assisted in making comprehensive vulnerability assess-
ments that address both domestic and international climate
risks (Groundstroem and Juhola, 2019).

2.4.2 Environmental impact (Q11)

Reindeer (Rangifer tarandus L.) grazing and ground
vegetation structure and biomass

Reindeer (Rangifer tarandus L.) grazing in the north af-
fect the ground vegetation structure and biomass and cover
of lichens. It seems that reindeer affect GHG fluxes from
the forest field layer. Grazing changes affect the vegetation
composition and thereby emissions (K. Köster et al., 2018).
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K. Köster et al. (2017) provided detailed information on soil
CO2 effluxes, which were mostly affected by the year of
measurement, time of measurement, soil temperature and the
management, resulting in higher CO2 emissions in the grazed
areas. Soil moisture content did not affect the soil CO2 efflux.
For example, in Finnish Lapland the average soil CO2 ef-
flux values were significantly higher in 2014 compared with
2013, mainly due to differences in the soil temperature at
the beginning of the season (K. Köster et al., 2017). Further-
more, grazing significantly decreased the biomass and cover
of lichens and also the amount of tree regeneration. In a sub-
arctic mature pine forest, grazing did not affect the soil tem-
perature or soil moisture. No statistically significant effect of
grazing on the soil CO2 efflux, soil C stock or soil microbial
C biomass was found. The soil microbial N biomass was sig-
nificantly lower in the grazed areas compared with the non-
grazed areas. It seems that in the boreal subarctic coniferous
forests, grazing by reindeer can be considered “C neutral”
(K. Köster et al., 2015). There is also an indication that rein-
deer grazing affects the boreal forest soils, e.g. their fungal
community structure and litter degradation (Santalahti et al.,
2018).

2.4.3 Natural hazards (Q12)

Under this theme, PEEX research has so far focused on en-
vironmental health issues. These include diseases, impact of
UV radiation, and air pollution in urban environments. The
spread of diseases caused by living pathogens is basically de-
termined by environmental conditions. Medico-geographical
assessments are usually based on identification of the links
between the spread of diseases and factors of the geographi-
cal environment.

Naturally determined diseases

Climatic factors are deemed among the main determinants
for the spread of naturally determined diseases (Malkhazova
et al., 2018). Emerging zoonotic diseases are expected to
be particularly vulnerable to climate and biodiversity distur-
bances. Anthrax is an archetypal zoonosis that manifests its
most significant burden on vulnerable pastoralist communi-
ties. Ezhova et al. (2021) investigated the dynamics of envi-
ronmental factors that led to an anthrax outbreak in the Ya-
mal Peninsula, Siberia, during 2016. They found that the lo-
cal permafrost was thawing rapidly for the last 6 years before
the outbreak, supporting the hypothesized role of permafrost
thaw in triggering this outbreak, and concluded further that
the spread of anthrax was likely intensified by the extremely
dry summer of 2016 in the region. Overall, the recent find-
ings highlight the significance of warming temperatures for
anthrax ecology at northern latitudes and suggest potential
mitigating effects of interventions targeting megafauna bio-
diversity conservation in grassland ecosystems and animal
health promotion among small to midsize livestock herds

(Walsh et al., 2018). Equally important is the monitoring
of climatic factors, such as warming and precipitation ex-
tremes, in Arctic regions previously contaminated by anthrax
(Ezhova et al., 2021).

UV variations

Different geophysical parameters affecting the UV molecu-
lar number density show that, especially at high altitudes,
the increased surface albedo has a significant effect on the
UV growth. The new parameterization of the online UV tool
(http://www.momsu.ru/uv/, last access: 18 January 2022) for
northern Eurasia allows us to determine the altitude depen-
dence of UV and to estimate the possible effects of UV on
human health considering different skin types and various
open body fractions for January and April conditions in the
Alpine region (N. Chubarova et al., 2016). Using UV satellite
retrievals, ERA-Interim data and the INM-RSHU chemistry–
climate model, the changes in the UV irradiance and UV re-
sources were estimated over northern Eurasia for the 1979–
2015 period, demonstrating significant UV increases over
vast areas (Chubarova et al., 2020). Referring to long-term
UV measurements and model simulations in Moscow, a sta-
tistically significant positive trend of more than 5 % per
decade since 1979 was evaluated (Chubarova et al., 2018).
Related to the connection between UV variation and strato-
spheric O3, see also Sect. 2.2.1, Atmospheric composition
and chemistry.

Examples of air pollution episodes

Street level urban air pollution is one of the key topics in ur-
ban environments. For example, in Bergen, Norway, the most
extreme cases of repetitive wintertime air pollution episodes,
followed by increased large-scale wind speeds above the val-
ley, were transported by the local re-circulations to other less
polluted areas with only slow dilution. This result under-
lines the need for better-described assumptions about trans-
port paths and weak dispersion in classical air pollution mod-
els in order to improve the current air quality forecasts in
urban areas (Wolf-Grosse et al., 2017b). A link between the
persistence of the flow above the Bergen valley and the oc-
currence and severity of the local air pollution episodes was
found. Analysis of the large-scale circulation over the North
Atlantic–European region, with respect to air pollution in
Bergen, revealed that the persistence in meteorological con-
ditions connected to air pollution episodes is not necessarily
caused by large-scale anomalies of the atmospheric circula-
tion over the Norwegian western coast but is rather connected
to anomalies as far away as Greenland (Wolf-Grosse et al.,
2017a).

In Russia, especially intensive atmospheric pollution
episodes have severe impacts on the environment and human
health. O. B. Popovicheva et al. (2019) analysed the Tver re-
gion, north of Moscow, which was considerably affected by
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the secondary organic aerosol (SOA) formation originating
from long-lasting peat bog fires. Spectral absorbance char-
acteristics were similar to peat burning and traffic source
emissions during fire- and non-fire-related days and con-
firmed the effect of transported peat smoke on air quality
in a megacity environment (O. B. Popovicheva et al., 2019).
O. B. Popovicheva et al. (2019) also showed that long-term
transport from north-western Russia and Scandinavia influ-
ences the local population.

Local Arctic air pollution alone can seriously affect pub-
lic health and ecosystems locally, especially in wintertime,
when the pollution can accumulate under inversion layers
(Schmale et al., 2018a). We need more research on the
contributing emission sources and the relevant atmospheric
pollution mechanisms and more detailed epidemiological
or toxicological health impact studies in the Arctic. Socio-
economic changes (shipping, tourism, natural resource ex-
traction, increasing number of population) are already taking
place in the Arctic, and they will increase in the future. It
is also expected that the emission types and magnitudes will
increase the number of exposed individuals (Arnold et al.,
2016). There is still a large variation in the number of loca-
tions as a source of emissions. Future predictions are even
more difficult due to the as yet unknown development of the
Arctic economic activities and their emissions (Arnold et al.,
2016; Schmale et al., 2018a, b).

3 Synthesis and future prospects

3.1 Future research needs from the system
perspectives

For the land ecosystem, the recent progress towards under-
standing of the northern Eurasian Arctic-boreal land ecosys-
tems (Sect. 3.1) deals with improved methodologies relevant
to land processes (Q1), observations of permafrost thawing
(Q2), and observed changes in the northern ecosystems, es-
pecially soil conditions (Q3).

Improved satellite-based methods and (validation) data to-
gether with better quantification and, especially, the scaling
of the GPP are enabling better identification and quantifica-
tion of Earth surface characteristics and ecosystem carbon
balance compared with the earlier capacity (Gurchenkov et
al., 2017; Rautiainen et al., 2016; Nitzbon et al., 2019; Boike
et al., 2019; Terentieva et al., 2016; S. Zhang et al., 2018; Pul-
liainen et al., 2017; Matkala et al., 2020; Bondur et al., 2008a,
b). Intensive research has been carried out on the quantifi-
cation of the GPP, a key variable for biological activity, in
different conditions and at different scales (Pulliainen et al.,
2017; Kulmala et al., 2019; Matkala et al., 2020). Further in-
vestigations are called for, for a more detailed understanding
of the seasonal dynamics of the biological activity.

The northern Eurasian ecosystems’ tipping points are re-
lated to multiple simultaneous stress factors. The key stress
factors here are the permafrost thawing and factors impor-

tant for ecosystems, such as the prolongation of the grow-
ing season, increase in the mean temperature of the growing
season and forest fires (Kukkonen et al., 2020; Biskaborn et
al., 2019; Payne et al., 2016; K. Köster et al., 2016; Miles
and Esau, 2016; Miles et al., 2019). New evidence of the
progress of permafrost thawing in Siberia has been intro-
duced by Kukkonen et al. (2020) and Biskaborn et al. (2019).
The permafrost thawing is also triggering as yet not clearly
known processes related to changing fluxes, ecosystem pro-
cesses and dynamics of greenhouse gas sinks and sources
(Schuur et al., 2008; Thompson et al., 2017; Commane et
al., 2017; Euskirchen et al., 2017; Dean et al., 2018; Thonat
et al., 2017). The progress affecting permafrost thawing has
not yet been analysed in detail. For example, we need more
information on the dynamics of how the thawing processes
vary between soil types due to differences in water move-
ment and, in the wintertime, how the snow cover affects
ground surface temperatures (Bartsch et al., 2010). In addi-
tion to permafrost processes, the recent advances in observed
changes in the northern ecosystem reveal a significant role of
soil processes in biogeochemical cycles, especially the nitro-
gen cycle (Voigt et al., 2016; Pärn et al., 2018). Knowledge
of the soil microbiological composition and the effect of for-
est fires has been improved (K. Köster et al., 2015, 2016;
Zhang-Turpeinen et al., 2020), but further research is needed
for vegetation changes influencing the below-ground micro-
biology, its composition and enzymatic activity (Payne et al.,
2016; K. Köster et al., 2016). The NDVI methods have made
it possible to detect vegetation changes (Miles and Esau,
2016). A range of vegetation cover changes in Siberia have
been reported, such as the Arctic greening and browning pro-
cesses, but e.g. the greening of Siberian cities will also re-
main an issue of intensive research in the future (Miles and
Esau, 2016; Miles et al., 2019).

For the atmospheric system, the recent progress in
understanding the northern Eurasian Arctic-boreal land–
atmosphere system and the aspects of the megacity air qual-
ity (Sect. 3.2) are dealing with atmospheric composition
changes (Q4), key feedbacks between climate and air qual-
ity (Q5), and synoptic-scale weather (Q6). Recent results
demonstrate improved quantification of the carbon balance
and CO2 fluxes and concentrations due to land use change,
forest fires in Siberia, and new understanding of aerosol
sources and properties in the Arctic environment and across
northern Eurasia (Pulliainen et al., 2017; Karelin et al., 2017;
Rakitin et al., 2018; Skorokhod et al., 2017; Alekseychik
et al., 2017). However, most of the results deal with atmo-
spheric aerosol chemistry and physics in boreal and Arctic
environments originating from measurements in the few flag-
ship stations in Finland and Russia (Kerminen et al., 2018;
Wiedensohler et al., 2019; Freud et al., 2017; Paasonen et
al., 2018; Östrom et al., 2017; Kalogridis et al., 2018; Bon-
dur et al., 2016; Bondur and Ginzburg, 2016; Bondur et al.,
2019c, d; Bondur and Gordo, 2018; Mikhailov et al., 2017;
Breider et al., 2017), indicating the need for a comprehen-
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sive station network in the PEEX region. Black carbon emit-
ted by the Siberian forest fires and some other sources and
its long-range transport to the Arctic are also widely dis-
cussed (Kalogridis et al., 2018; Bondur et al., 2016; Bon-
dur and Ginzburg, 2016; Mikhailov et al., 2017; Breider et
al., 2017; Shevchenko et al., 2015; Konovalov et al., 2018;
Marelle et al., 2018). In addition, measurements of ozone
in the troposphere and stratosphere provide insight into at-
mospheric chemistry in urban environments (Skorokhod et
al., 2017), UV radiation and human health (Chubarova et al.,
2019b). Environmental health, including the impacts of air
quality and UV radiation, is foreseen as a high-momentum
research topic in the PEEX domain, and further research is
called for in this area.

Related to air pollution, we reported several new results on
the dynamics between the haze pollution and boundary-layer
meteorology in enhancing air pollution in megacity environ-
ments (Zhao et al., 2017; Ding et al., 2016a; Wang et al.,
2018b; Y. Bai et al., 2018; Ye et al., 2017). The long-term
and comprehensive measurements carried out especially at
the SORPES station in Nanjing provide valuable data pools
for such studies (Ding et al., 2016a). However, the backbone
of the recent progress has been the improved online atmo-
spheric measurements and the use of machine learning meth-
ods combined with different methodologies, such as back tra-
jectories together with the lidar and radiosonde data. In addi-
tion, improved models of emission inventories together with
the ECHAM-HAM and GAINS models have led to a better
quantification of aerosol number emissions. New knowledge
has enabled the introduction of new theoretical arguments
on the feedbacks between high aerosol concentrations and
the urban boundary layer (Petäjä et al., 2016). New measure-
ments have also been obtained from Siberian cities (Elan-
sky et al., 2016; N. Y. Chubarova et al., 2016; Mahura et al.,
2018). However, we are still in the early phase of having a
holistic picture of large-scale feedbacks due to the lack of
long-term, comprehensive measurements in these regions.

Changes in the atmospheric dynamics in the north have po-
tential impacts on short-term local/regional and sub-seasonal
to seasonal large-scale weather predictions and on long-term
projections on biogeochemical systems. It is therefore cru-
cial to understand changes in boundary-layer processes as
well as synoptic- and large-scale circulation in the Arctic and
northern Eurasia. Recent results show potential, but causally
arguable, connections between the alarming sea ice decline,
evaporation, cloudiness, atmospheric circulation and mois-
ture transport as well as Arctic and European winter temper-
atures (Nygård et al., 2019; Rinke et al., 2019; McCusker et
al., 2016; Mori et al., 2014; Blackport et al., 2019; Cohen et
al., 2020). Further investigations are needed for atmosphere–
ice–ocean interactions, coupling between small-scale pro-
cesses (such as clouds and turbulence) and synoptic-scale
weather, as well as polar prediction and extreme events. Fur-
thermore, more quantitative knowledge is needed on pan-
Arctic energy budgets (Spengler et al., 2016). The UHI phe-

nomena taking place in Arctic cities have received increasing
attention, and there is a special need for improved forecasting
services for Arctic cities (Miles and Esau, 2017; Konstanti-
nov et al., 2018; Varentsov et al., 2018b).

For the water system, we discussed the Arctic sea ice dy-
namics and thermodynamics, snow depth and sea ice thick-
ness, sea ice research supporting navigation, and rare el-
ements in the snow and ocean sediments, especially from
the perspective of improvements in the observation and
modelling methods (Q7, Sect. 3.3.1). New evidence of
atmosphere–Arctic sea ice interactions has been provided by
Lei et al. (2018) and Jakobson et al. (2019). Lei at al. (2018)
analysed how the climate warming would affect the winter
growth rate of thin and thick ice, and Jakobson et al. (2019)
gave new insight into the relation between sea ice concentra-
tion and wind speed. Furthermore, advances have been made
in understanding the thermodynamics and metamorphosis of
the snowpack on sea ice and their interactions with surface
albedo changes (Dou et al., 2019). Operational sea ice analy-
sis is increasingly important for Arctic shipping and naviga-
tion (Lei et al., 2015; Karvonen et al., 2017). New results on
rare elements, mineral composition and CO2 and methane
fluxes associated with ocean sediments have been attained
(Maslov et al., 2018b; Yasunaka et al., 2018). This serves as
important information for mitigation plans as well as for new
estimates of the river runoff and discharge in Russian rivers
into the Arctic seas (Grigoriev and Frolova, 2018; Agafonova
et al., 2017).

The marine Arctic ecosystems are under a progressive
increase in anthropogenic impacts, the main issues calling
for better understanding being the integrated effect of Arc-
tic warming, ice melt and snowmelt, ocean freshening, air
quality and acidification of the Arctic marine ecosystems,
primary production and the carbon cycle (Q8, Sect. 3.3.2).
Quantitative information about the CO2 accumulation into
the ocean has high momentum. Marine organisms, such as
coccolithophorid algae, are influencing the CO2 flux ex-
change (Kondrik et al., 2018b; Pozdnyakov et al., 2017). In
addition to changing marine environments, the Arctic-boreal
lakes and rivers may undergo changes in flooding, increas-
ing the amount of freshwater and allochthonous materials
(Q9, Sect. 3.3.3). In addition to the Arctic Ocean, the ice and
snow conditions of northern lakes are under pressure. Lake
Kilpisjärvi (Finland) (Arvola et al., 2017; Leppäranta et al.,
2017) and Lake Ladoga (Russia) (Karetnikov et al., 2017)
have been subject to intensive research, and the recent results
demonstrate changes in heat fluxes, ice cover periods and
stratification. The browning of lakes and lake sediments was
discussed, and new results were attained from the Selenga
River of Lake Baikal. Dramatic changes will be expected in
the water runoff and in the number of dissolved modes of
metals, also having a serious impact on environmental health
(S. R. Chalov et al., 2015, 2016, 2017; S. Chalov et al., 2017;
Karthe et al., 2017a, b). As a comparison with the north-
ern high latitudes, we also discussed freezing lakes in cen-

Atmos. Chem. Phys., 22, 4413–4469, 2022 https://doi.org/10.5194/acp-22-4413-2022



H. K. Lappalainen et al.: Recent advances in the understanding of the northern Eurasian environments 4447

tral Asia, where the climate is cold and arid. There the ice
is typically snow-free or possesses only a thin snow cover,
allowing penetration of sunlight into the water body (Huang
et al., 2019b).

For the societal system, the anthropogenic impact has been
addressed as one of the main themes (Q10). The discussion
on the mitigation and adaptation, including the urban infras-
tructure design (Juhola, 2018) and risk assessment, was ad-
dressed in this context (Sect. 3.4.1). In social transforma-
tions, special attention was given to one of the most impor-
tant local livelihoods in Lapland: reindeer grazing and how it
interacts with the environment (Q11 Sect. 3.4.2). The adap-
tive capacity of the northern societies rests on their environ-
ment, demographic structure and economic activities (Q12).
Referring to the earlier statement about future research needs
for the atmospheric system with respect to environmental
health, here again we would like to pay increasing attention
to environmental health under a changing climate, including
the spread of diseases and air pollution and their combined
effects (Sect. 3.4.3).

3.2 Feedback mechanisms under changing climate,
cryosphere conditions and urbanization

During recent years, Kulmala et al. (2004, 2021) focused
on the quantification of the COntinental Biosphere-Aerosol-
Cloud-Climate (COBACC) feedback loop relevant to the
boreal region in northern Eurasia. Previous results on the
COBACC feedback loop addressed the role of BVOC emis-
sion dynamics (Arneth et al., 2016). Both higher tempera-
tures and increased CO2 concentrations are (separately) ex-
pected to increase emissions of BVOCs into the atmosphere.
It also seems that the GPP is controlled by the BVOC ef-
fects on the clouds. Sporre et al. (2019) used an Earth sys-
tem model to estimate aerosol scattering due to enhanced
BVOC emissions and estimated the associated negative di-
rect radiative effect (−0.06 W m−2). The total global radia-
tive effect associated with this feedback was estimated to be
−0.49 W m−2 (Sporre et al., 2019), indicating that it has the
potential to offset about 13 % of the forcing associated with a
doubling of CO2. The direct effect of aerosol on GPP due to
an increase in the fraction of diffuse radiation was estimated
at between 6 % and 14 % increase in GPP at maximum ob-
served aerosol loading compared to low aerosol loading in
northern Eurasian forests (Ezhova et al., 2018b).

The results from the Tibetan Plateau demonstrate notable
feedbacks between vegetation, BVOC emissions and aerosol
particles. The historical wetting of the TP region has in-
creased the vegetation cover, allowing for feedback pro-
cesses via biogenic aerosol formation and aerosol–cloud–
precipitation interactions. A significant wetting trend since
the early 1980s in the Tibetan Plateau is most conspicu-
ous in central and eastern Asia. Fang et al. (2015) hypoth-
esized that the current warming may enhance emissions of
BVOCs, which can increase secondary organic aerosol con-

centrations, contributing to the precipitation increase. The
wetting trend can increase the vegetation cover and has a
positive feedback on the BVOC emissions. The simulations
suggest a significant contribution of increased BVOC emis-
sions to the regional organic aerosol mass, and the simulated
increase in BVOC emissions is significantly correlated with
the wetting trend in the Tibetan Plateau.

To estimate the net effects of various feedback mecha-
nisms on land cover changes, photosynthetic activity, GHG
exchange, BVOC emissions, formation of aerosols and
clouds, and radiative forcing (Q14) call for intensive collabo-
ration and integration between the Arctic Ocean sciences and
terrestrial sciences across the pan-Arctic domain and across
the Arctic and high-latitude domain. The Arctic greening and
browning (Sect. 3.1.3) call for a multi-disciplinary scientific
approach, improved modelling tools and new data to deeply
understand the biosphere–atmosphere–anthroposphere inter-
actions and feedbacks. Petäjä et al. (2020a, b) discussed
the complexity of feedbacks, especially in the Arctic con-
text, and the interplay between the temperature, GHG, per-
mafrost, land cover and water bodies and between photo-
synthetic activity, aerosols, clouds and radiation budget. The
current downturn of the Arctic cryosphere (Sect. 3.1.2) to-
gether with the changes in sea ice dynamics and glaciers and
the permafrost thawing affect both marine and terrestrial car-
bon cycles in interconnected ways (Sect. 3.3.1). Parmentier
et al. (2017) discussed the changing Arctic cryosphere and
how the processes in the ocean and on land are too often stud-
ied as separate systems, although the sea ice decline connects
the rapid warming of the Arctic, Arctic Ocean marine pro-
cesses and air–sea exchange of CO2. Thus, future priorities
would be on the development of our modelling tools towards
an all-scale modelling approach to cover the feedbacks, pro-
cesses and interactions at the land–ocean interface and also
in urban environments in the Arctic region. We also need to
support the further development of ground-based observation
networks.

3.3 Climate scenarios for the Arctic-boreal region

Climate scenarios set the urgency for the mitigation and
adaptation actions for the northern Eurasian region. The
Arctic-boreal region combines an area of both amplified cli-
mate change (Arctic amplification) and large diversity in the
model predictions (Collins et al., 2013; Hoegh-Guldberg et
al., 2018). Under the “low-to-medium” RCP4.5 forcing sce-
nario (van Vuuren et al., 2011), the CMIP5 multi-model
mean temperature changes during the 21st century indicate
the strongest wintertime warming of > 5 ◦C in the Arctic
Ocean, whereas the majority of the terrestrial region will
warm by 2–4 ◦C (Fig. 9). Even during summertime, the con-
tinental warming over the region will generally exceed 2 ◦C.
It is important to note that the diversity of model projections
is accentuated over the Arctic and northern Eurasian domain:
the mechanisms behind the Arctic amplification are imple-
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Figure 9. Changes in 2 m temperature (◦C, upper panels) and precipitation (%, lower panels) during the 21st century. Present-day climatology
is averaged over the years 1981–2010 and end-of-century climatology over 2070–2099. Winter (left) and summer (right) are shown separately.
Dotted areas indicate high variability in the model ensemble (for temperature: standard deviation of 21st century change exceeds 1 ◦C; for
precipitation: standard deviation of 21st century change exceeds 100 % or present-day precipitation). The model results are from IPCC AR5,
based on 42 individual models in CMIP5 experiments under the RCP4.5 scenario.

mented in varying details in the distinct models, and the asso-
ciated interactions and feedback processes provide a diverse
picture of the future in the Arctic-boreal regions.

In addition to considerable trends in atmospheric temper-
atures, the models further indicate prominent changes in pre-
cipitation (Collins et al., 2013; Hoegh-Guldberg et al., 2018).
For the Arctic-boreal region, this is largely depicted as in-
creasing rainfall during both winter and summer, extending
to 15 %–25 % over most of the terrestrial domain over the
winter and somewhat less during summer (Fig. 9). Contem-
porary warm Arctic temperatures and large sea ice deficits
(75 % volume loss) demonstrate climate states outside our
previous experience. The modelled changes in the Arctic
cryosphere demonstrate that even limiting the global temper-
ature increase to 2 ◦C will leave the Arctic a much differ-
ent environment by mid-century, with less snow and sea ice,
melted permafrost, altered ecosystems, and a projected an-
nual mean Arctic temperature increase of+4 ◦C. Even under
ambitious emission reduction scenarios, high-latitude land
ice melt, including Greenland, is foreseen to continue due
to internal lags, leading to accelerating global sea level rise
throughout the century (Overland et al., 2019).

4 Concluding remarks

Only the integration of different observing networks and pro-
grammes into an inter-operable and integrated observation
system can provide data needed for understanding the mech-
anisms of the Arctic-boreal system. There is a fundamental
need for an integrated, comprehensive network of state-of-
the-art in situ stations measuring Earth surface–atmosphere
interactions (Kulmala et al., 2016a, 2018; Uttal et al., 2016;
Hari et al., 2016; Alekseychik et al., 2016; Vihma et al.,
2019). The results obtained in the Pan-Eurasian Experiment
(PEEX) programme in Russian and China introduced in this
paper are based on a combination of long-term observations
and campaign data. In addition, the Arctic marine regions re-
quire comprehensive observations and subsequent synthesis,
as these regions are under a lot of environmental stresses.
Therefore, we need more in situ observations of the Arctic
system covering the marine atmosphere, sea ice and ocean.
However, there are pronounced technological and logistical
challenges to set up such continuous, marine in situ observa-
tions (e.g. Vihma et al., 2019). Furthermore, improved mon-
itoring is needed for river discharge and associated fluxes
of greenhouse gases and other key compounds and more re-
search on the understanding of coastal processes and atmo-
spheric transport and specific regional socio-economic issues

Atmos. Chem. Phys., 22, 4413–4469, 2022 https://doi.org/10.5194/acp-22-4413-2022



H. K. Lappalainen et al.: Recent advances in the understanding of the northern Eurasian environments 4449

and their interactions with changing environments (Vihma et
al., 2019; Petäjä et al., 2020a).

The international organizations and bodies like the Arc-
tic Council (SAON’s Roadmap for Arctic Observing and
Data Systems, ROADS), EU Horizon 2020 (Blue Growth IN-
TAROS and APPLICATE projects), GEO-CRI (high moun-
tains and cold regions), the Belmont Forum COPERNICUS
and the WMO are coordinating development of the Arc-
tic data and services. New data products are expected from
the large-scale MOSAIC campaign and projects like ERA-
PLANET iCUPE (Petäjä et al., 2020b) or ArcticFLUX to
monitor the interface between the marine Arctic and Eurasian
continent. Also, national-based Arctic observations and re-
search programmes like AC3 by German institutes are play-
ing a significant role. Russia conducts extensive research in
the Arctic region, notably on the manned drifting ice stations.
These Arctic observation activities are coordinated and car-
ried out by Roshydromet, universities and Russian Academy
of Sciences institutes.

Concerning global energy markets, the Arctic region holds
25 % or more of the world’s undiscovered oil and gas reser-
voirs (Bird et al., 2008). The plans of China and Russia to
build an “Ice Silk Road” along the Northern Sea Route link-
ing China and Russia to Europe highlights the growing eco-
nomic and strategic importance of the polar regions and the
increasing pressure on the Arctic environment and local com-
munities. In addition, wide areas of the high latitudes and
Arctic regions are under the pressure of the changing eco-
nomic activities of the Arctic and also under high pressures
of the changing environment and climate. A comprehensive
observation network providing in situ data in close coordi-
nation with satellite observations and ground-based remote
sensing is required to monitor the environmental impacts of
the envisioned operations.

Over the last few years, Earth system science has been
driven by the need to understand the scientific processes of
climate change and air quality, their interrelations with the
Earth system and their societal impacts. The interplay be-
tween science, politics and business and the analysis of the
existing policies and strategies help us to recognize and anal-
yse new and emerging trends of Arctic governance (e.g. pro-
tection and resilience vis-à-vis economic activities), geopol-
itics (e.g. state sovereignty vis-à-vis internationalization),
geo-economics (e.g. tourism vis-à-vis reindeer herding), and
science (e.g. climate change). The intensive work towards the
new Arctic observations and data systems together with the
intensive observations of the land–atmosphere interactions
taking place at the high latitudes will provide the baseline
for a cross-disciplinary research era. PEEX aims for these
directions.
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