## УФИМСКИЙ ИНСТИТУТ ХИМИИ УФИМСКОГО ФЕДЕРАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЦЕНТРА РОССИЙСКОЙ АКАДЕМИИ НАУК

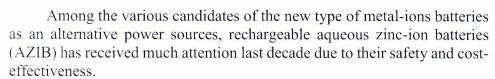
## ИНСТИТУТ ФИЗИЧЕСКОЙ ХИМИИ И ЭЛЕКТРОХИМИИ ИМЕНИ А.Н. ФРУМКИНА РАН

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

## АКТУАЛЬНЫЕ ПРОБЛЕМЫ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ В ЛИТИЕВЫХ ЭЛЕКТРОХИМИЧЕСКИХ СИСТЕМАХ

Материалы XVI Международной конференции 20 – 24 сентября 2021 года

Ответственный редактор профессор Колосницын В.С.


УФА, Россия



## V<sub>2</sub>O<sub>5</sub>@PEDOT as high-performance cathode material for aqueous zinc-ion batteries

S.N. Eliseeva<sup>1,\*</sup>, F.S. Volkov<sup>1</sup>, M.A. Kamenskii<sup>1</sup>, E.G. Tolstopjatova<sup>1</sup>, V.V. Kondratiev<sup>1</sup>

<sup>1</sup> Saint Petersburg State University, Institute of Chemistry 7/9 Universitetskaya nab., Saint Petersburg, Russia, 199034





 $V_2O_5$  has been regarded as a promising cathode material for AZIBs, attributed to its unique layered structure providing possibility to reversibly intercalate  $Zn^{2+}$  ions and relatively high theoretical capacity. However, there are several drawbacks of  $V_2O_5$  like its dissolution structural instability, low electronic conductivity. Different strategies can be applied to overcome these problems: 1) nanostructuring the materials with specific architecture; 2) introducing other metal ions; 3) selection the electrolyte; 4) surface modification by graphene carbon nanotubes, conducting polymers.

Vanadium oxide coated by poly(3,4-ethylenedioxythiophene) ( $V_2O_5$ @PEDOT) was successfully synthesized by chemical oxidation of EDOT.  $V_2O_5$ @PEDOT was characterized by energy dispersive X-ray and thermogravimetric analyses to evaluate the amount of PEDOT on the oxide surface and by scanning electron microscopy. Electrode materials were prepared by mixing of  $V_2O_5$  and  $V_2O_5$ /PEDOT (70 wt.%) with carbon black (20 wt.%) and polyvinylidene fluoride (10 wt.%) dissolved in N-methylpyrrolidone. The resulting viscous slurry was cast on the titan foil, dried under vacuum and pressed. Coin cells CR 2032 were assembled vs. Zn foil as anode with 3 M ZnSO<sub>4</sub> as electrolyte. Comparative study of electrochemical properties of  $V_2O_5$  and  $V_2O_5$ @PEDOT electrodes was performed by cyclic voltammetry and galvanostatic charge/discharge in a potential range 0.3 - 1.4 V vs.  $Zn/Zn^{2-}$ .

The gradual transformation of  $V_2O_5$  material structure and the corresponding development of cyclic voltammograms shapes were observed for first several cycles (1-5 cycles). Finally, two pairs of anodic/cathodic peaks in the CV curves. For  $V_2O_5$ @PEDOT electrode the two pairs of peaks were observed right after first cycle, their potentials were at 1.05/0.95 and 0.75/0.65 V, respectively. These peaks are attributed to the formation of new Zncontaining phases of  $Zn_xV_2O_5$ , corresponding to the different degree of intercalation of  $Zn^{2-1}$  ions.

Enhanced specific capacities of  $V_2O_5$ @PEDOT-electrodes were observed immediately from the first cycles compare to  $V_2O_5$  at different current (see Table 1, Q for  $1^{st}$  / 10 cycles).

Table 1. Specific capacities of V<sub>2</sub>O<sub>5</sub> and V<sub>2</sub>O<sub>5</sub>@PEDOT-electrodes.

|                                      | Q, mAh·g <sup>-1</sup>                |                                       |                     |                     |
|--------------------------------------|---------------------------------------|---------------------------------------|---------------------|---------------------|
|                                      | $0.1 \; \text{A} \cdot \text{g}^{-1}$ | $0.3 \; \text{A} \cdot \text{g}^{-1}$ | 1 A·g <sup>-1</sup> | 5 A·g <sup>-1</sup> |
| $V_2O_5$                             | 100 / 260                             | 125 / 187                             | 62 / 110            | 32 / 64             |
| V <sub>2</sub> O <sub>5</sub> @PEDOT | 320 / 280                             | 300 / 360                             | 333                 | 265                 |

Acknowledgements: The financial support from RFBR (grant № 21-53-53012) is gratefully acknowledged. The authors would like to thank the Research Park of Saint Petersburg State University: 1) the Center for X-ray Diffraction Methods, 2) the Interdisciplinary Center for Nanotechnology, the Center for Thermogravimetric and Calorimetric Research.

<sup>\*</sup>corresponding author: <u>svetlana.eliseeva@spbu.ru</u> (Eliseeva S.N.) SPbU