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Abstract. Modernmachine and deep learning systems are becoming part of high-
performance cloud services and technologies. It is extremely important to under-
stand that in systems such as recommendation systems, data is stored on local
machines, and the trained system (matrix) is located in the cloud vendor, for
example, in AWS or Google Cloud. Data on local machines can be updated or
deleted. Local machines are often networked, which requires the use of synchro-
nization methods and specialized protocols for the exchange of such information.
And the central server is used as a single computer center for machine learning
tasks. At the same time, it is necessary to control both the integrity of local data
and their relevance with respect to other local machines. An important aspect is
that the data center in the cloud should not know about our data, that is, we must
be able to transmit them in encrypted form. At the same time, the deep learning
model should be able to work with such encrypted data and send us the answers
in encrypted form too. All this should be calculated in polynomial time, that is,
quickly enough. For encryption purposes, it is proposed to use homomorphic
algorithms. This report attempts to combine two promising modern paradigms
for solving similar problems: machine intelligence and distributed ledger. For the
purposes of distributed deep learning in relation to recommender systems, this
symbiosis shows very serious practical prospects.

Keywords: Deep learning · Differential privacy · Homomorphic encryption ·
Machine learning · Secure computation

1 Introduction

Machine learning techniques are widely used in practice to produce predictive models
for use in medicine, banking, recommendation services, threat analysis, and authentica-
tion technologies. The popularity and relevance of cloud machine learning has grown
significantly. Moreover, often in such projects, in our opinion, due attention is paid
specifically to issues of confidentiality and data security. In this paper, we consider a
problem inwhich some neural network is located in the provider’s cloud. This network is
trained on some of its data and provides a service, for example, classification on images
or customer data. The purpose of this work is to show and identify possible problems of
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such interaction, as well as to demonstrate the possibility of building secure protocols
that would provide the ability to obtain classification results by a client without revealing
their data to a neural network.

In the past years, deep neural networks (DNNs) have achieved remarkable progress in
various fields, such as computer vision, natural language processing, andmedical images
analysis [1]. Consider a distributed recommendation system. Several data sources, for
example, medical, send data from each clinic to the cloud for automatic diagnosis. In the
cloud is a decision-making system based on a deep learning system [2]. In the general
case, the look of this service using the Amazon SageMaker implementation example is
as follows (Fig. 1):

Fig. 1. Deep learning framework to Amazon SageMaker (https://aws.amazon.com/sagemaker/).

If this architecture is used, a problem arises when transferring data in step 2 when
loading the model or, much more often, just data in S31 or Amazon ECR2. Let’s assume
that it happens very often that we do not want to at least somehow provide the cloud ser-
vice with access to our source data due to, for example, legislative restrictions. Suppose
this is data both of a personal nature (personal) and commercial, which we cannot send
in the usual way without encryption. In this case, we have the right to talk about Private
Distributed Recommender Systems (businesses with proprietary consumer data would
like to build recommender systems which can leverage data across all the businesses
without compromising the privacy of any party’s data) [3]. It should be understood that
at this stage we continue to face all the features of machine learning that are traditionally
inherent in this industry. Simple problem where standard deep earning either [4]:

1 https://aws.amazon.com/s3/?nc=sn&loc=0.
2 https://aws.amazon.com/ecr/

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/s3/%3Fnc%3Dsn%26loc%3D0
https://aws.amazon.com/ecr/
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• Does not work well

– Requires prior knowledge for better architectural/algorithmic choices
– Requires other than gradient update rule
– Requires to decompose the problem and add more supervision
– Requires more data

• Does not work at all

– No «local-search» algorithm can work
– Even for «nice» distribution and well-specified models
– Even with over-parameterization (a.k.a. improper learning)

In order to provide a secure exchange of data with cloud services, in addition to encryp-
tion, one or another protocol should be used that will make such data transactions more
secure (Secure Deep Learning Inference, SDLI) [5]. It seems very promising to consider
the possibility of using homomorphic encryption together with the use of blockchain
technology to control both data integrity and to track the chain of possible data changes
taking into account the distributed structure, which we will discuss later [6]. Deep learn-
ing as a service (DLaaS) has emerged as a promising to further enable the widespread
use of DNNs in industry/daily-life. Google3, Amazon4, and IBM5 have all launched
DLaaS platforms in their cloud services. Using DLaaS, a client sends its private data to
the cloud server. Then, the server is responsible for performing the DNN inference and
sends the prediction results back to the client. Obviously, if the private client data, are
not protected, using DLaaS will cause potential privacy issues. A curious server may
collect sensitive information contained in the private data (i.e. client’s privacy) [5].

To address this privacy issue, researchers have employed the homomorphic encryp-
tion to perform various DNN operators on encrypted client data [7]. As a result, the
cloud server only serves as a computation platform but cannot access the raw data from
clients. However, there exist two major obstacles in applying these approaches. First,
some common non-linear activation functions, such as ReLU and Sigmoid, are not cryp-
tographically computable [8]. Second, the inference processing efficiency is seriously
degraded by thousands of times. To tackle these problems, a recent work proposes using
an interactive paradigm. A DNN inference is partitioned into linear and non-linear com-
putation parts. Then, only the linear computations are performed on the cloud server
with encrypted data. The nonlinear computations are performed by the client with raw
data. However, in such an interactive paradigm, the intermediate features extracted by
the linear computations are directly exposed (sent back) to the client. Thus, a curious
client can leverage these features to reconstruct the weights of the DNN model held by
the cloud. This issue is called the leakage of server’s privacy [5].

In fact, a practical solution for secure DNN inference should protect both client’s
privacy and server’s privacy. In addition, it should support DNNs with all types of

3 https://cloud.google.com/products/ai.
4 https://aws.amazon.com/machine-learning/
5 https://www.ibm.com/analytics/machine-learning.

https://cloud.google.com/products/ai
https://aws.amazon.com/machine-learning/
https://www.ibm.com/analytics/machine-learning
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non-linear activation functions. Unfortunately, there still lacks an effective approach in
literature. Our key strategy is to combine deep learning, homomorphic encryption and
distributed ledger.

The traditional approach of using distributed ledger involves the use of this tech-
nology in artificial intelligence systems, for example, in robotic systems. For example,
cyberphysical systems (Robotics) exchange some information among themselves, the
integrity of which should be controlled. Such systems learn, store this data, pass it to
other nodes, and so on. There are even some implementations of such an approach and
such solutions on the market [9]. There were other concepts for using distributed ledger
in artificial intelligence. For example, there were prerequisites and ideas for building
decentralized platforms that would allow the user to create, organize joint participation
and monetize artificial intelligence systems using blockchain technologies [9]. And of
course, the use of distributed ledger in conjunction with artificial intelligence systems
was not at all limited to such solutions, of which there were, in fact, quite a lot. One
of the curious examples is the use of machine learning for joint decision making or
forecasting of certain processes [10]. The use of a distributed machine learning system
along with blockchain technologies has been successful enough to predict the market
prices of certain assets [10].

2 Materials and Methods

We introduce a few basic primitives that we will need for our solution, namely:

• Deep Neural Network (DNN), which is located at the cloud provider.
• Homomorphic encryption (HE). Additive homomorphic encryption (AHE).
• Secret Sharing (SS) and Garbled Circuit (GC).
• Oblivious ROM (OROM).
• Data Aggregation (DA).
• Differential Privacy (DP).

2.1 Deep Neural Network

DNN, for example, Convolutional neural network (CNN) in cloud provider. Suppose
that a cloud provider or we, as the owners of this service, would not want to discover
both the weights of this neural network, its hyperparameters, and the models that we
used in the training process (Fig. 2):

In fact, in the provider’s cloud, we store amatrix with the weights of a neural network
of the form:

⎡
⎢⎣

ω1,1 · · · ω1n
...

. . .
...

ωm,1 · · · ωm,n

⎤
⎥⎦ (1)

That is, we enter a certain vector with signs at the input, it is multiplied by matrices and
at the output we get again the response vector and belonging to some class (Fig. 3):

It is important that the neural network does not know about the input data and their
structure, and, preferably, does not remember the output data or stores it in its memory.
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Fig. 2. Convolutional neural network (https://towardsdatascience.com/a-comprehensive-guide-
to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53).

Fig. 3. Deep learning inference

2.2 Homomorphic Encryption (HE)

Homomorphic encryption is a form of encryption that allows computation on cipher-
texts, generating an encrypted result which, when decrypted, matches the result of the
operations as if they had been performed on the plaintext. Homomorphic encryption
can be used for privacy-preserving outsourced storage and computation. This allows
data to be encrypted and out-sourced to commercial cloud environments for process-
ing, all while encrypted [11]. Fully Homomorphic Encryption (FHE), is an encryption
method that allows anyone to compute an arbitrary function f on an encryption of x,
without decrypting it and without knowledge of the private key [12]. Using just the
encryption of x, one can obtain an encryption of f (x). The major bottleneck for these

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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techniques, notwithstanding these recent developments, is their computational com-
plexity. But recent efforts, both theory and in practice have given us large results in the
performance of homomorphic scheme [13, 14] (Fig. 4)

Enc (x)

Something that decrypts into 

Client: X Sever: «efficient»

Fig. 4. Homomorphic encryption

It is very important to use an effective homomorphic encryption model. What is
efficient?

• Small low-degree arithmetic circuit.
• Small Boolean circuit.

2.3 Additive Homomorphic Encryption (AHE)

A (private-key) additive homomorphic encryption (AHE) scheme is private-key encryp-
tion scheme with three additional algorithms Add; CAdd and CMult, which supports
adding two ciphertexts, and addition/multiplication by constants. We require our AHE
scheme to satisfy standard IND-CPA security and circuit privacy, which means that a
ciphertext generated from Add, CAdd and CMult operations should not leak more infor-
mation about the operations to the secret key owner, other than the decrypted message
[15].

2.4 Secret Sharing and Garbled Circuit

Gabled circuit (GC) is a cryptographic protocol that enables two-party secure compu-
tation in which two mistrusting parties can jointly evaluate a function over their private
inputs without the presence of a trusted third party. In the garbled circuit protocol, the
function has to be described as a Boolean circuit. The invention of garbled circuit was
credited to Andrew Yao, as Yao introduced the idea in the oral presentation of his paper
[16]. Improvements to GC have been proposed in literature, for example, free-XOR and
half-gates [17]. Using Advanced Encryption Standard (AES) as the block cipher, we
leverage Intel AES instructions for faster garbling procedure [15]. Yao’s garbled cir-
cuits [16] and the secret-sharing based Goldreich-Micali-Wigderson (GMW) protocol
[18] are two leading methods for the task of two-party secure computation (2PC). Now,
after three decades theoretical and applied work about improving and optimizing these
protocols, we have modern and efficient implementations [19].



Secure Machine Intelligence and Distributed Ledger 233

Oneof themain problemsof all these protocols and techniques until recentlywas their
communication complexity6. Indeed, three recent works followed the garbled circuits
paradigm and designed systems for secure neural network inference: the Secure ML
system [20], the Mini ONN system [21], the Deep Secure system [14, 22]. Actually, it is
not so obvious to use only Secret sharing or Garbled circuit in machine learning security
problems. Our vision is that compromises should be sought, in which case it is better to
use both technologies depending on the tasks.

We can use Hybrid protocols:

• mix homomorphic encryption and garbled circuits via secret sharing
• Homomorphic Encryption for linear operations and Garbled Circuits for non-linear
operations

• Homomorphic Encryption for fully-connected layers and Garbled Circuits for ReLu-
activation [15].

3 Oblivious RAM

Consider the simplest model of our calculations and secure compute a[i] (Fig. 5):

Fig. 5. Securely compute a.

The key problem is that the network often stores the data of our access to it, infor-
mation about transactions, other data. Ideally, I would like the network to somehow
know how to forget all this and not even store encrypted data accessing it. Oblivious
RAM (ORAM) algorithms, first proposed by Goldreich and Ostrovsky [23], allow a
client to conceal its access pattern to the remote storage by continuously shuffling and
re-encrypting data as they are accessed. An adversary can observe the physical storage
locations accessed, but the ORAM algorithm ensures that the adversary has negligible
probability of learning anything about the true (logical) access pattern. Since its pro-
posal, the research community has strived to find an ORAM scheme that is not only
theoretically interesting, but also practical [24, 25].

In this case ORAM, distributed machine learning is characterized by the following
types of possible threats and attacks (Fig. 6):

At the very key factor of all these attacks is the ability Data Aggregation.

4 Data Aggregation

Here,we introduce themost prominent data privacypreservingmechanisms.Not all these
methods are applied to deep learning, but we briefly discuss them for the sake of com-
prehensiveness. These methods can be broadly divided into two groups of context-free

6 https://en.wikipedia.org/wiki/Communication_complexity.

https://en.wikipedia.org/wiki/Communication_complexity
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Existing Threats

• Untrusted Cloud
• Untrusted Data Curator
• Untrusted Communication Link

• Property Inference
• Membership Inference Model Inversion 

and Attribute Inference
• Parameter Inference Hyperparameter

Inference

Directed Information
Exposure

Indirect Information
Exposure

Fig. 6. Existing threats deep learning.

privacy and context-aware. Context-free privacy solutions, such as differential privacy,
are unaware of the specific context or the purpose that the data will be used for. Whereas
context-aware privacy solutions, such as information-theoretic privacy, are aware of the
context where the data is going to be used, and can achieve an improved privacy-utility
tradeoff.

4.1 Naïve Data Anonymization

What we mean by naive anonymization in this survey is the removal of identifiers from
data, such as the names, addresses, and full postcodes of the participants, to protect
privacy. This method was used for protecting patients while processing medical data
and has been shown to fail on many occasions [26].

4.2 K-Anonymity

A dataset has k-anonymity property if each participant’s information cannot be dis-
tinguished from at least k − 1 other participants whose information is in the dataset.
K-anonymity means that for any given combination of attributes that are available to the
adversary (these attributes are called quasi-identifiers), there are at least k rows with the
exact same set of attributes. K-anonymity has the objective of impeding re-identification
[26].



Secure Machine Intelligence and Distributed Ledger 235

4.3 Semantic Security and Encryption

Semantic security (computationally secure) is a standard privacy requirement of encryp-
tion schemes which states that the advantage (a measure of how successfully an adver-
sary can attack a cryptographic algorithm) of an adversary with background information
should be cryptographically small.

5 Distributed Ledger

Actually, there are not so many works and studies where qualitative integration of two
such well-known paradigms as machinery intelligence and blockchain was given or
offered one way or another. Existing works clearly, of course, solve certain problems
facing the industry and researchers, but this is clearly not enough if we are talking about
the integration of such important modern technologies [9, 27, 28]. In our approach to
distributed machine learning as a service, the use of Blockchain technology is due to a
number of important circumstances, namely:

• Oblivious RAM implies a limit on the number of transactions N , where N must
necessarily be bounded above by some integer variable:

N ≤ K (2)

• All participants in the distributed computer network ofmachine learning, in the case of
access to the cloudprovider (AWS,GoogleCloud), save themost important parameters
of the access to the database in the blockchain, for example, the number of requests
or transactions ni, where:

N ≈
∑m

i=1
ni (3)

• When the counter of transactions or hitsN becomes greater than or equal toK N ≥ K ,
then controlled deletion of data from the neural network should take place, or, as an
option, reconfiguration of its parameters, hyperparameters which in theory should
entail the removal of data from the network [29].

• A temporary restriction t ≤ T on the use of this neural network if, for some reason,
users have stopped changing the counter settings or even stopped accessing the services
of a cloud provider.

Thus, the general algorithm of work will consist in the fact that each time the service
provider is accessed, the client stores data on the number of transactions in the distributed
ledger, after exceeding which the saved user data on the neural network are reset, as well
as the possible setting of new parameters in accordance with the concept Oblivious ROM
[30].
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6 Differential Privacy

Definition 5.1. ε −Differential Privacy(ε − DP). For ε ≥ 0, an algorithm A. satisfies
ε − DP [31] if and only if for any pair of datasets D and D′ that differ in only one
element:

P[A(D) = t] ≤ eεP
[
A
(
D′) = t

]∀t (4)

Where, P[A(D) = t] denotes the probability that the algorithm A outputs t. In this
setup, the quantity bel is named the privacy loss:

ln
P[A(D) = t]

P[A(D′) = t]
(5)

DP tries to approximate the effect of an individual opting out of contributing to
the dataset, by ensuring that any effect due to the inclusion of one’s data is small. One
of the widely used DP mechanisms when dealing with numerical data is the Laplace
mechanism [32].

Definition 5.2. Laplace Mechanism. Given a target function f and fixed ε ≥ 0, the
randomizing algorithm Af (D) + x where x is perturbation random variable drawn from
Laplace distribution:

Lap

(
μ,

�f

ε

)
(6)

Is called the Laplace Mechanism and is ε −DP. Here,�f is called global sensitivity
of function f , and is defined as:

�f = sup
∣∣f (D) − f

(
D′)∣∣ (7)

For all the dataset pair
(
D,D′) that differ in only one element. Finding this sensitivity

is not always trivial, specifically if the function f is a deep neural network, or even a
number of layers of it [33].Differential privacy satisfies a composition property that states
when two mechanisms with privacy budgets ε1 and ε2 are applied to the same datasets,
together they use a privacy budget ε1 + ε2. As such, composing multiple differentially
private mechanisms consumes a linearly increasing privacy budget. It has been shown
that tighter privacy bound for composition can be reached, so that the privacy budget
decreases sub-linearly (Fig. 7):
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Fig. 7. How work differential privacy in deep learning [32]

7 Conclusion and Discussion

In this paper, we examined modern approaches and concepts that relate to distributed
machine learning. We in no way claimed to be an exhaustive exposition of this area,
which is impossible in principle. Nevertheless, we showed that it is extremely important
to use a distributed ledger in order to control both the integrity of the data in the cloud,
and forcibly delete data or reconfigure the parameters of the neural network. In the case
of joint and remote operation of several nodes at once, in the case of joint and remote
operation of several nodes at once, these requirements become extremely important.
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