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Abstract: This paper is concerned with the
study of the localised buckling of anisotropic
shells. For a shell consisting of the matrix
reinforced by threads, the elasticity relations
are obtained for the general anisotropic case.
By considering the assumptions usually made
in the Donnell theory, the equilibrium
equations are simplified. For one parametric
loading the critical pressure and the buckling
modes are obtained by means of the asymptotic
method. As an example the buckling of an
elliptical shell under internal and external
uniform pressure is analysed.

Résumé: L’étude du flambage local des
coques minces anisotropes est presentée dans
cet article. Les équations de l’élasticité
anisotrope sont générées pour le cas d’une
coque composite fibrée. La théorie de Donnell
permet la simplification des équations de
l’équilibre. Pour obtenir les modes de flambage
et les pressions critiques dans le cas d’une
charge parametrique, une méthode
assymptotique est utilisée. A titre d’example,
le flambage d’une coque élastique élliptique
mise en pression uniforme interne et externe
est analysée.

Introduction: The purpose of this paper is the
generalisation for the case of anisotropic shells
of the results of asymptotic analysis of thin
shell buckling provided in [1]. In the
expressions obtained in this paper the
boundary conditions are not taken into account.
For this reason, the results of the study may be

applied in the cases when localisation of
buckling occurs, for example, for the buckling
of a convex shell under hydrostatic pressure or
under torsion.

Elasticity Equations for Thin Anisotropic
Shells: We consider a thin shell made of
composite material, consisting of the matrix
reinforced by threads situated in planes parallel
to the midsurface. On the shell midsurface we
introduce the curvilinear coordinates 1α , 2α
coinciding with the curvature lines. The
coordinate z  is directed along the normal to
the midsurface. We assume that the shell is
reinforced with N  systems of threads, inclined
at angles )(kθ  to the axis 1α , where

Nk ,,2,1= .

The shell stress ijσ  can be expressed as the

sum of the matrix stress )0(
ijσ  and the average

stress )(k
ijσ , caused by the extensions of the

threads
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Considering Kirchhoff's hypotheses, 033 =σ
and the stresses 3iσ  are determined from the
equations of equilibrium. The stress-strain
relations connecting ijσ  and the strains ijε  for

2,1, =ji  are given next. For the matrix, these
are [2]
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where 0E  is the Young modulus and 0ν  is the
Poisson ratio of the matrix. The coefficient

10 <δ  takes into account the ratio of the
volume filled by the matrix.

The stress-strain relations for the threads are
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where
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Here kE  is Young's modulus for the threads of
the k -th system, and kδ  is the ratio of the
volume filled with threads for the k -th system.
Poisson's effect in the threads under stretching
is neglected.

The strains ijε  are according to Kirchhoff's
hypotheses linear functions of coordinate z
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Here 1ε , ω , and 2ε  are the stretching-shear
strains and 1κ , τ , and 2κ  are the bending-
twisting strains of the midsurface that are
related to its displacements by the following
relations [1]
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Here 1γ  and 2γ  are the angles of rotation of
the normal to the midsurface with respect to
the coordinate lines 1α  and 2α ; 1u , 2u , and w
are the components of the midsurface
displacement; 1R  and 2R  are the principal
curvature radii; 1A  and 2A  are the metric
coefficients. In relations (5) the main nonlinear
terms are included with the multipliers iγ , and
the rest of the expressions - marked with l  -
are linear with respect to the displacements.

Neglecting the small values 1/ Rh  and 2/ Rh  in
comparison to 1, where h  is the shell
thickness, we obtain the expressions for stress 

         



resultants 1T , 2T , and S  and for the moment
resultants 1M , 2M , and H  [2]
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Here ijσ  are calculated from (1).

Assuming that the shell is symmetric with
respect to the midsurface, and taking into
account relations (2), (3) and (4) we obtain
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Here the coefficients ijK  and ijD  have the
form [3]
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For convenience, we introduce the notation
,,,, 3333 MHTS ==== κτεω  and re-

write relations (8) and (9) as

 ,, jijijiji DMKT κε ==                             (11)

where we use Einstein's summation
convention.

The values of 0δ  and kδ  in (10), as well as the
elastic constants of the materials may depend
on z . It is more reliable to find the coefficients

ijK  and ijD  directly from experiments, such
that the previous considerations just define the
structure of (11).

We can express the elastic energy Π  of the
shell as a sum of the stretching energy εΠ  and
the bending energy κΠ  [2] ,κε Π+Π=Π
where εΠ  and κΠ  are given by

( )

( ) .2
2
1

,
2
1

2
1

2211

2211

Σ++=Π

Σ=Σ++=Π

∫∫

∫∫∫∫
dHMM

dKdSTT jiij

τκκ

εεωεε

κ

ε

Here 2121 αα ddAAd =Σ  is the area element
and the integration in εΠ  and κΠ  is
performed on the entire midsurface.

In the case the reinforcing threads are
symmetric with respect to the directions 1α
and 2α , i.e. for each thread system with an
angle kθ  there corresponds a system with an
angle kl θθ −= , then the sums in the last two
relations in (10) vanish and

.2,1,03333 ===== iDKDK iiii  As a result
we obtain the orthotropic shell, for which
relations (8) and (9) have the form
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Equations of Equilibrium: The equilibrium
equations for a shell element have the form [4]
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where iq  are the components of the external
pressure (external loading per unit area of the
midsurface).

The third equation in (12) contains the main
nonlinear terms 11Tκ , Sτ , and 22Tκ .

The last two equations in (12) express the fact
that the total moment of the internal stresses
(the sum of the moment resultants, and the
moments of stress and transverse shear
resultant) is equal to zero for a shell element.
The transverse shear resultants 1Q  and 2Q
may be found from these equations and then
substituted into the first three equations in (12).
As a result we obtain the system of three
equations in the displacements 1u , 2u , and w .

We simplify equations (12) and the equations
of the first Section by considering the
assumptions usually made for the Donnell
equations for shallow shells [5]. The metric of

the midsurface is described as the metric of a
plane, and we assume that the values of 1A ,

2A , 1R , and 2R  are constant.

Let dx1= A1dα1 and dx2= A2dα2. In (6) and (7)
we neglect the displacements u1 and u2
compared to w. We also neglect the terms
containing the transverse shear resultants Q1
and Q2 in the first and second equations in (12).
As a result, relations (5)–(7) and equations (12)
become:
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If the loads 1q , 2q  and 3q  have the same order
or { } 321 , qqq << , then with the same error it
may be assumed that 021 == qq  in (14).

The simplified system (13)-(14) may be used
not only for the analysis of shallow shells but
also for the vibration and buckling analysis of
arbitrary thin shells. In that case the stress-
strain state of a shell may consists of many
waves of deformations, but in the limit of one
deformation wave the shell should be
considered as shallow.
Local Buckling Modes: In this section, the
results known for local buckling of isotropic



shells are generalized for the case of
anisotropic shells. Let consider that as a result
of loading, there exists in a shell a momentless
stress-strain state determined by the initial
stress resultants 0

1T , 0
2T , 0S . The stress-strain

state is referred to as momentless or
membrane-like if the moment resultants

021 === HMM . Next we analyse the
stability of such a state.

The bifurcation equations for the equilibrium
equations (14) become
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These equations together with the strain-
displacement relations (13) and the elasticity
relations (8) and (9) form a closed system,
provided linear approximation for tangential
deformations is assumed in (8), i.e. l

jj εε = .

Next we study the one parametric loading by
introducing the loading parameter λ  as
{ } { }.,,,, 321

00
2

0
1 tttSTT λ−=  The minus sign is

necessary in order to seek 0>λ , since
buckling is possible only if there exist
directions in which compressive stresses are
developed. Such directions exist if and only if
at least one of the following inequalities is
satisfied [1]
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We seek the displacements under bifurcation in
the form
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where the amplitudes 0
1u , 0

2u , 0w  and the wave
numbers 1k , and 2k  must be determined.

 From the first two equations in (15) we find
0
1u  and 0

2u  as functions of 0w
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Here we denote as ijA  the minors for the
elements of matrix { }ijK , given by (10)
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Now we can cancel 0w  in the third equation in
(15) since all functions are only of 0w  and find
λ  as
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Here we denote by k∆  the determinant of the
matrix { }ijK . The variables κB , εB  and tB  are
proportional respectively to the bending-
twisting shell energy κΠ , the stretching-shear
shell energy for additional displacements εΠ ,
and the work of the initial momentless stress
resultants on the additional rotations of the
normal.

Since κΠ  and εΠ  are positive definite, the
matrix { }ijK  is also positive definite and
therefore
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Analysis of Expression for Critical Loading:
Expression (18) is rather general. It may be
used for estimation of the value of a critical
loading and expected buckling mode in many
problems. We obtain the critical value 0λ  for
the parameter λ by minimizing the function

),( 21 kkf  in all real 1k  and 2k , such that
0>tB . Due to condition (16) such values of

1k  and 2k  exist.

Let .sin,cos 21 ϕϕ rkrk == . Taking into
account that the functions in (18) are
homogeneous in 1k  and 2k  we introduce
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Due to (17), the pits are significantly inclined
at angle 0ϕ−  to the axis 2x .

In fact, the algorithm described above may be
applied only for shells of positive Gaussian
curvature ( 021 >RR ). For shells of negative
Gaussian curvature ( 021 <RR ), due to (18) for

εB  we get
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 Similarly, for shells of zero Gaussian
curvature ( 01

1 =−R ), i.e. cylindrical and
conical, we obtain from (18)
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ϕ
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 Relations (19) and (20) mean that for shells of
zero or negative Gaussian curvature the order
of the critical loading ( 00 =λ ) decreases and
the buckling mode is not localized ( 00 =r ). To
obtain the critical loading and buckling modes
for such shells one should apply the method of
the asymptotic integration that is described
below for a circular cylindrical shell as an
example. The case of the axially compressed
cylindrical shell 032 == tt , 01 >t , is the only
one, when the application of relations (18)
provides a nontrivial result.

Anisotropic Ellipsoid under External
Uniform Pressure: As an example we
consider an elliptical shell of revolution with
the semi-axes (a,a,b). The angle between the
axis of symmetry and the normal to the surface
is denoted as θ. We select the parameter R=a as



a characteristic length. Then for the principal
curvatures
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Here d is the coefficient of the ellipsoid
compression.

The elliptical shell consists of the matrix made
of the uniform material of thickness h, Young's
modulus E and Poisson's ration ν  The shell is
reinforced with two similar systems of threads.
The angles between the threads and the
meridional direction are equal to α± . The
threads occupy the volume V)1( 0δ− , where V
is the entire volume of the structure; Young's
modulus of the thread material is e times larger
than E.

The elliptical shell is under uniform normal
pressure λ. The relations for the initial stresses
are well-known [1]:
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For the external pressure sign λ>0, and for the
internal pressure sign λ<0. Note that for the
external pressure the buckling may occur due
to (14) for elliptical shells of arbitrary form,
whereas for the internal pressure only for such
shells that satisfy the condition 122 ρρ < , i.e.

.2 22
2 d>ρ                                                     (22)

It follows from (21) that for 2ρ  the following
relations hold

1< 2ρ <d, for d>1, and d< 2ρ <1, for d<1.    (23)

The simultaneous inequalities (22) and (23) are
satisfied only for 12 2 <d .

For the system of threads described above the
shell is orthotropic and the relation for λ has
the following form
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Bt
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 = t1 cos2ϕ +t2 sin2ϕ,

∆=A22 cos4ϕ +(2A12+A33)cos2ϕ sin2ϕ+A11sin4ϕ,
A11 = K22K33-K23

2,    A12 = K13K23-K12K33,
A22 = K11K33-K13

2,    A33 = K11K22-K23
2.

We start with the analysis of the isotropic
elliptical shell under external pressure (δ0 =0).
In this case relation (18) may be written as
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Minimising by ϕ the above expression we
obtain
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if t2ρ2=t2ρ1.
In the last case the angle ϕ is undefined. It
means that there exist multiple buckling
modes. At the same time the value of the
buckling loading is unique.
For the case under consideration the condition
t2ρ2=t1ρ1 may be written as



( ) ( ) ( )21221 222 ρρρρρ −= , or ρ1=ρ2, which
corresponds to d=1, i.e. spherical shell. For
d>1,  t2ρ2>t1ρ1, and for  d<1,  t2ρ2<t1ρ1.

Therefore the relation for the critical loading is
given as
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Now minimising by θ  we obtain
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For d>1 the weakest parallel is on the equator
θ0=π /2, and the pits are stretched in the
direction of the meridian ϕ0=π /2.

For d<1 the weakest parallel is the pole θ=0.
Note, that in the last case the value of λ0 does
not depend on the angle ϕ  and, therefore, angle
ϕ0  is undetermined.

Now we consider the orthotropic shell. Unlike
the isotropic case for the orthotropic shell
relation (18) cannot be simplified and one
should seek the minimum of function (24)
numerically. For that we fix the parameters α
and δ0 and find the minimum of the function
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The domain of the parameters (ϕ, ρ2) where we
seek the minimum is:

∈ϕ  [0, π/2] and ∈2ρ [1,d] for  1≥d ,
∈ϕ  [0, π/2] and ∈2ρ [d,1] for 12

2 ≤≤ d , (25)
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The numerical calculations revealed that the
function attains its minimum at θ0=0 for d <1,
and at θ0=π /2 for d >1. This result does not
depend on the values of the other parameters.

The effect of the parameter of the shell
compression  d  on the relative critical loading
is shown in Figure 1. The value of the critical
loading for the isotropic sphere is assumed to
be equal to 1. Poisson's coefficient is ν =0.3.
Line 1 corresponds to the isotropic case δ0=1,
line 2 to the case δ0=0.9, α =0, line 3 to the
case δ0=0.9, α =π /16, line 4 to the case  δ0=0.9,
α =π /8, line 5 to the case δ0=0.9, α =π /4.

As it might be expected, increasing the
threads’ stiffness and their relative volumes
leads to an increase of the critical loading.

The angle ϕ0 depends on the values of the
parameters d, α and δ0. For large values of d the
pits are stretched in the direction of the
meridian, that angle ϕ0 converges to π/2 as d
increases and for highly prolate orthotropic
elliptical shells the buckling modes are similar
to those for the isotropic shells. The increase of
the thread stiffness leads to a smaller angle ϕ0



Figure 1 Critical loading under external
pressure vs. shell compression d.

The dependence of the critical loading and
buckling mode on the angle between the
systems of threads is more complicated. Note
that for the angles α larger than π/4 the critical
loading and buckling modes are equal to the
critical loading and modes for the isotropic
elliptical shell. For the slightly prolate ellipsoid
the critical loading attains its maximum for
angles close to π/
For the oblate orthotropic elliptical shell (d<1)
the value of ϕ0 may be determined in an unique
way from the conditions:
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∗
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from which it follows that
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For small and large values of d the following
approximate formulas may be used to obtain
the critical loading:
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Anisotropic Elliptical Shell under Internal
Uniform Pressure: We start the consideration
with the case of the isotropic shell (δ0 =0).
Since for the shell under internal normal
pressure t1<0, and t2>0, then the inequality
t2ρ2>t1ρ1 holds for any values of the parameter
d. Therefore, we should seek the minimum of

the function 22
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21

2
21

2
2

2
2
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− ρ
ρ

ρρ
ρρ  under

condition 12 2
2

2 << ρd . For d<1/2 the function
attains its minimum at ρ2=2d, i. e. on the
parallel θ=arcsin(3d2/(1-d2)) and this minimum
is equal to 16d2

. For 1/2<d< 2 /2 the minimum
is reached at ρ2=1, i.e. on the equator and it is
equal to 2/(1-2d2).

Hence, the pits are stretched in the direction of
the meridian and they move away from the
equator to the pole as d  decreases.

Now we consider the orthotropic elliptical
shell described in the previous section. Then,
the relation for the critical loading may be
written as
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As before, we seek the minimum for all
positive λ0. We recall that the buckling of the



elliptical shell under the internal pressure may
occur only if d< 2 /2.

In Figure 2 the dependence of the relative
critical loading on the parameter d is plotted.
The parameters of the shell are the same as in
the previous section. It is assumed that the
critical loading for the isotropic shell with
d=1/2 is equal to 1.

Figure 2 Critical loading under internal
pressure vs. shell compression parameter d.

For the shell reinforced with threads the critical
loading is higher than for the isotropic shell,
and the weakest parallel is closer to the equator
for 1/2<d< 2 /2. At the same time, the
orientation of the pit axis ϕ0 changes
significantly.

The critical loading decreases as the angle α
increases. For α >π /4 the buckling modes and
critical loadings of isotropic and orthotropic
shells practically coincide.
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