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Abstract: The free vibration spectrum of
thin shells is discussed. A shell model based
on the Kirchhoff-Love hypotheses is used.
The free vibrations of the shell are described
by a singularly perturbed boundary value
problem. The peculiarities of the spectrum
of this problem are analyzed. All results are
obtained by means of asymptotic methods,
where the relative shell thickness is consid-
ered as the main small parameter. Both
classical results, such as the classification of
the vibration modes, the spectrum density,
the turning points and lines, etc., as well as
new results, such as the asymptotically mul-
tiple frequencies and the localization of the
vibration modes near the weakly supported
edge are discussed.

Résumé: Le spectre des vibrations libres
des coques minces sont discutée. Le modéle
présenté s’appuie sur la théorie des coques
minces de Kirchhoff-Love. Les vibrations li-
bres des coques sont décrites par perturba-
tion d’une probleme aux limites. L’analyse
présentée se concentre sur le spectre des vi-
brations libres. Tous les résultats sont obte-
tu par I'application des méthodes assympto-
tiques, dans lesquelles I’épaisseur relative est
le petit parmetre principal. On discute les
résultats classiques, comme la classification
de forme de la vibration, la densite de spec-
tre, les points et les lignes de tournant etc.,
ainsl que les résultats nouvaux, tels comme
les fréquences assymptotiques multiples et
la localisation des modes de vibrations au
voisinage des extremités faiblement fixée.

1. Variational Principle and Boundary
Value Problem: We consider a thin elastic
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shell of small constant thickness i made of a
homogeneous isotropic elastic material. We
analyze the behavior of the shell by employ-
ing a 2D model of the Kirchhoff-Love type.
We introduce the orthogonal curvilinear co-
ordinates v = {x1, z2} € @ C R? on the
shell midsurface, and the unit vectors
1 or

e, = ———

A]ax]7 .] b b

n=e Xe,,

(1.1)

where 7 € R3. The displacement vector is
u = urey + uzey + usn (below we will de-
note us = w). The natural frequencies wy,
and the corresponding eigenfunctions may
be obtained from the following variational
principle expressed in its dimensionless form

as (see [1,2,3])
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Here II; and II, are proportional to the s(tretz
ching-shear and bending-twisting potential
energy of the shell, respectively, and T' is
proportional to the kinetic energy of the shell

11, :fﬂ (6%1—1—21/611622+6§2—|—(1—I/)6%2/2) dQ?,
I, = [, (31 2050115000+ 23, +2(1—v) f,) dQ,
T = [, (uf + 3 +u3) dQ.
(1.3)
All linear variables are related to the char-
acteristic length R of the midsurface, h. =
h/R is the small relative shell thickness, A
is the unknown frequency parameter, F is
Young’s modulus, v is Poisson’s ratio, and
p is the shell density; pu = hi/Z(l — )~/
is a small parameter; ¢;; and s;; are the lin-
earized tensors of membrane and bending



midsurface deformations. Their expressions
through w; are given in [1,3,4,5].

The displacements u; in relation (1.2) sat-
isfy the constraints at the shell edges 9. If
the edge is clamped then four conditions are

to be fulfilled

up =0, wuy=0, vy=0, (1.4)

U3:0,

where v is the angle of rotation about the
tangent to the edge. For other types of
boundary conditions some of the constraints
(1.4) may be skipped. For the free edge no
constraints are imposed on functions wu;. If
the number of constraints is less than four
then the linear combinations of conditions
(1.4) may be given.

The following boundary value problem cor-
responds to the variational problem (1.2)

(L(z1, x2) + ¢ N(zy, 23)) w + Au = 0,

(1.5)
where
Ly Ly L3 Ni1 Nig Nis
L=| La Lay Loz |, N=| Ny1 Ny N3
Ly Lsy Lss N3y N3y N3

are the linear differential operators. Their

explicit forms are given in [5, 6].

System (1.5) is of 8th order, therefore, four

boundary conditions are to be imposed on

each shell edge. If the number of the given

constraints on an edge is less than four we

should complete them with the natural

boundary conditions for the variational prob-
lem (1.2). Then, problem (1.5) becomes the

self-conjugate one. Hence, the boundary con-
ditions may be separated into two groups:

the geometrical boundary conditions of type

(1.4) and the natural boundary conditions

for problem (1.2).

Relations (1.2) and (1.5) were first derived

by using the Kirchhoff-Love hypotheses when
the 3D problems were considered. One may

get the same problems considering the first

approximation of the asymptotic expansions

in powers of the small parameter h, (see for

example [3]). One can also directly postu-
late the 2D problems without any connec-
tion with the 3D ones [7].

2. General Properties of Free Vibra-
tion Spectrum of Shell: The operator
L + N is elliptic and positive so problem
(1.5) has the discrete spectrum with the sin-
gle point of accumulation at infinity.

That is a singularly perturbed problem. If
we assume g = 0 (which corresponds to
membrane-like shell vibrations), system (1.5)
is simplified to the 4th order system

Lu + Au = 0. (2.1)

Imposing two (tangential) boundary condi-
tions on the shell edges we again obtain the
self-conjugate boundary value problem. Sys-
tem (2.1) is not of elliptic type. Its type may
depend on the point x and on the parameter
A. As a consequence its spectrum is much
more complex than the spectrum of problem
(1.5). It may have finite points of accumu-
lation of discrete spectrum and intervals of
continuous spectrum [1, 6].

Sometimes the difference wyy1 —wy between
the neighboring natural frequencies is very
small, so, the density p(w) of the shell nat-
ural frequencies distribution may be intro-
duced by relation

n(w, w+ Aw) =~ p(w)Aw (2.2)

where n(w, w + Aw) is the number of fre-
quencies contained in interval [w, w + Aw).
The density p(w) was first found in [8] for
shallow shells for which the curvature radii
Ry and R, are (approximately) constant.
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Fig. 1. Density p(w).



In Fig. 1 the density p(w) for the positive
(left) and for the negative Gaussian curva-
ture is presented. The density is not con-
stant, it has one or two points of concentra-
tion. The density p(w) — po if w — co. The
value pg is equal to the constant density of
Kirchhoff’s transverse vibrations of a plate

_ 1 [am _ B (2.3)
C4rV D C12(1 —w?)” T

Here ) is the midsurface area and m is the
shell mass. This formula was obtained by
Courant.

Let us introduce the function n(A) which is
equal to the number of the eigenvalues Aj
of problem (1.5) for which Ay < A. The fol-
lowing expression for n(A) as h, — 0 was
reported in [6] (see also [9]) for the curvilin-
ear coordinates coinciding with the lines of
the curvatures

n() = V30—V [/ /%é)%\//\—FdeQ—I—O(hz) ,
dmh, aJo
(2.4)
F=F(x,6)= (Rl_l(x) sin? 0+ R5 ' (x) sin® 9)2.
(2.5)
Here R;j(x) are the main radii of the mid-
surface curvature. The residual term O(h7),
~ > 0, depends on the boundary conditions
at the edges 0€). For the general case rela-
tion (2.4) for v = 1/5 has been proved.
If we assume that the radii R;(x) are con-
stant then the derivative n(A) with respect
to w provides the spectral density obtained
in [8] and shown in Fig. 1.

3. Classification of Vibration Modes:
Unlike the spectra of elastic bodies of sim-
ple geometrical form such as strings, beams,

Po

membranes, and plates, the shell spectrum
is essentially more sophisticated. To study
the shell spectrum one should use a classifi-
cation based on the asymptotic properties of
the vibration modes. To classify the vibra-
tion modes it is convenient to use the index
of variation p, 0 < p <1

Ow| | 0w
max o ay

Y

} ~ h Plwl, L~ R
(3.1)

introduced by Goldenweiser [5]. Due to (3.1)
the index p is related to the characteristic
length [ of the picture of deformation.
There are four main types of vibration mo-
des, which are characterized by the following
asymptotic relations:

(i) the quasi-tangential vibrations

jw| < ful, 0 <p<1,r=p;

(ii) the Rayleigh type vibrations

wl > Jul, 0 <p<1/2,r=—142p;

(iii) the quasi-transversal vibrations with
small index of variation

lw| > |ul,0 < p<1/2,r=0;

(iv) the quasi-transversal vibrations with
large index of variation

lw| > |ul, 1/2<p<1l,r=—1+2p.

Here |u| = max{|u|, |uz|} and parameter r
denotes the asymptotic order of the natural
frequency w ~ h".
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Fig. 2. Index of variation p vs. frequency
order r

In Fig. 2 the dependence of the index of vari-
ation p on the frequency order r for four
types of vibration is shown.

For each type of vibrations problem (1.5)
may be simplified. For type (i) we may as-
sume g = 0 and neglect the transversal in-
ertia, i. e. the term Aw. For the other types
we may neglect the tangential inertia, 1. e.
Aug and Auz. For type (iii) we may assume
@ =0. If p =0 all components of the dis-
placements u;, and w have equal orders and
all inertia terms are essential.



At point A in Fig. 1, where p = 1/2 and
r = 0, the three types of vibration modes
coincide. In the neighborhood of this point
system (1.5) may be essentially simplified
and rewritten in the Donnell form

P AAw + 1 PAR® — dw = 0,

2
P AAD — 2 ARw = 0, (32)

where the differential operators are

st 20 20
A1As |0z \R2A1 Ox1/) Oxs \R1As Oxo
and A is the Laplace operator given by re-
lation (3.3) for Ry = Ry = 1. Here ® is the
unknown stress function.
It is interesting to note that only vibration
modes of type (iv) contribute to the spec-
tral density p(w). The number of natural
frequencies of the other types is asympto-
tically smaller compared to the number for
the (iv) type.
For p > 1 the 2D model is inapplicable.

4. Lower Part of Spectrum and Mid-
surface Bending: Sometimes it is neces-
sary to know the lowest natural frequency
of a structure. Only for the Rayleigh type
vibrations r < 0 and the frequencies w — 0
as h, — 0. Such vibrations are studied in
[1,10].

As it follows from relation (1.2), the natural
frequencies of the lowest order

At or we~ b, (4.1)

exist if there exist displacements w;(x) for

which II, = 0 or

€11 = €12 = €92 = 0 (42)

and which satisfy all imposed constraints of
type (1.4). Such displacements are called
pure bending and for them A may be ob-
tained from Rayleigh’s formula

L,
L

The existence of the non-zero solutions of
equations (4.2) depends on the boundary

A=p (4.3)

conditions. In [1] many cases were revealed
for which the pure bending does not exist
but there exist displacements for which the
value 1I, is small.

For example, if there is a constraint v = 0
among the others, and the pure bending ex-
ists without and does not exist with this con-
straint, then A ~ p®. An other example is
the case, when there are constraints w = 0
and/or v = 0 among the others, and the
pure bending exists without and does not
exist with these constraints, then A ~ p.

In these two cases the constraints that are
ignored may be satisfied with functions that
exponentially decrease away from the edge.
If the shell has a positive Gaussian curvature
and part of its edge is free or weakly sup-
ported then again A — 0 when h, — 0. The
console shells of revolution with weakly sup-
ported parallel edges are studied in [11,12].
In these cases the vibration modes are local-
ized near the weakly supported edge.

Let us return to Fig. 1. One can see in the
left side of Fig. 1 that for the shell of pos-
itive Gaussian curvature the non-zero spec-
tral density begins with the frequency wy >
0. Therefore, the frequency interval 0 < w <
wp contains a comparatively small number
of natural frequencies. For the shell of neg-
ative Gaussian curvature the non-zero spec-
tral density begins with w = 0 (in the right
side of Fig. 1). Hence there exist frequencies
such that w — 0 as A, — 0.

Let us analyze the shell with negative or zero
Gaussian curvature. One can easily con-
struct the deflection in the form (see [1])

w(xy, x2) = wo(xy, x2)sin (h*_pf(:zjl, :1;2)>
(4.4)
and the corresponding functions wy(xy, x2)
and ug(x1, x2) such that the tangential de-
formations ¢(ij) and therefore the potential
energy IlI; converge to 0 as hy — 0. The
function wq is introduced to satisfy the ar-
bitrary constraints at the edge 0. Such
displacement is called pseudo-bending.



For the negative Gaussian curvature

p=1/3, Auin=0 (1*?), wnin=0 (h/?)

(4.5)
and for the zero Gaussian curvature (for the
cylindrical and the conic shells)

p=1/4, Anin=O(1*) , Wanin=0 (h1/?).
(4.6)
These upper estimates do not depend on the
boundary conditions. If the shell has weakly
supported edges then the value of w,,;, may
be smaller.

5. On Asymptotic Solutions: In the
general case the construction of the asym-
ptotic solution for the singularly perturbed
problem (1.5) is very complex (see [4, 13]).
We consider, firstly, the shells of revolution.
For these shells the variables are separated
as

m=20,1,2,...

(5.1)
and problem (1.5) is reduced to a one-di-
mensional one, containing two main param-
eters: the small thickness parameter 1 and
the waves number in the circumferential di-
rection m. As curvilinear coordinates we use
the generatrix length s and the angle ¢ in
the circumferential direction. The form of
the asymptotic solution essentially depends
on the value m. We discuss the axisymmet-
ric vibrations (m = 0) and the cases with
large value m.

w(xy, x2) = w(s)cos mep,

6. Axisymmetric Vibrations: In this
case system (1.5) may be reduced to an equ-
ation of the 6th order

6 2

d*w

k=1 k=1
(6.1)
All coefficients a and b, are assumed to be
regular for s; < s < sy and ag(s) = 1,
by(s) = X — R;*(s).
Let us denote

A7= min {R;*(s)},

51<5<52

(6.2)

+_ -2
A= max {J;7(s)}:
(6.3)

In the intervals of s, where by(s) # 0, equa-
tion (6.1) has four solutions with the large
index of variation p = 1/2. Formal asymp-
totic expansions of these solutions are

s, 1) = kimm(s>exp typen
.

s
A4)
where for n = 1, 2, 3, 4 functions Ay, (z) are
regular and

Aoy = BTV g, = 0/ 'e ™2 (6.5)

Here B(s) is the distance between the axis
of rotation and the point s on the midsur-
face.

The other two solutions have asymptotic ex-
pansions in powers of p*

o0

wy(s) = Z/,L4kwkn(3), n=>56

k=0

(6.6)

where wqs and wgg are the solutions of the
membrane equation
d*w

d
by—— + 51—w

bow = 0.
ds? ds+0w 0

(6.7)
asymptotic expansions (6.4) and (6.6) are
valid near the turning points z. where
by(s.) = 0, since Ag,(s) = 0o as s — s, and
equation (6.6) has the singular point s = s..
Turning points appear in the frequency in-
terval A € [A7, AT].

For the conic shell of revolution the asymp-
totic representation of the integrals near the
turning point was first obtained in [14]. In
[15] the general case for the simple turning
point (b5(s.) # 0) is studied. Near the turn-
ing point the solution weg(x, ;1) has the ex-
pansion (6.6) and the other 5 solutions have
the following asymptotic expansions (n =

I.5)

W (s,6) =" eAx(s)of () +eb5107 (s, 1),
= (6.8)



where ¢,5 is the Kroneker symbol,

1/5 ([° 45
e =, 77(3):2<Z/ 55/4(5)613) :

(6.9)
The standard functions v{ satisfy equation
fv 0 (6.10)
— —n——v = :
dnb dn
and for the functions v}
)= [ o) dy, k=0,1
Uk-|—1(77) Vg (77) m, 5 Lo
(6.11)

All functions Ag, n, w*, and wg are regular
at s = s.. Series (6.8) are not asymptotic
any more for |s — s,| ~ 1. Hence one must
find the relations between solutions (6.8) in
the neighborhood of the turning point and
solutions (6.4) and (6.6). These relations are
given in [1,14,15]. Unfortunately, the uni-
form asymptotic expansion that is valid in
the entire interval [sq, s3] is not found. It
seems that such expansion does not exist.
Now we are ready to study the spectrum
of axisymmetrical vibrations. If A < A~
then membrane solutions (6.6) are the main.
Solutions (6.4) decrease exponentially away
from the ends of the interval [sq, s3] and
they help satisfy the non-tangential bound-
ary conditions. Such singular degeneracy is
termed in [16] as "regular”.

If A > At the frequency equation has the
form (for the clamped edges)

1 [
z = —/ 65/4 ds.
ILL 51

(6.12)
Here two types of eigenfunctions appear.
The first of them are the membrane modes
(Ag(A) = 0). The others are the bending
modes (cosz = 0). They are described by
solutions (6.4) that oscillate fast in s. We
note that the density of the bending axisym-
metric frequencies is u~! times larger than

Ag(A) cos z4+O0(u) =0,

the density of the membrane frequencies.
In the frequency interval A= < A < AT the
eigenfunction w(s) consists of two parts (see

Fig. 3). In the part of the interval where
bz(s) < 0 the function w(s) changes slowly,
whereas in the part where by(s) > 0 it os-
cillates fast. The shell has the maximal de-
flection near the turning point s,.

w

Sy S
T

Fig. 3. Mode with turning point.

Qualitatively, the non-symmetric vibrations
with fixed m ~ 1 do not differ essentially
from the axisymmetrical case. The bending
solutions (6.4) are the same and there are
four membrane solutions. Near the turn-
ing point s = s, relations (6.8) hold and
there are three regular membrane solutions

of type (6.6).

7. Non-symmetric Vibrations with Lar-
ge m: Let us assume that the number of
waves in circumferential direction m is large
and m ~ p~'. We assume that p = um,
then system (1.5) may be reduced to the
standard form
d o0
WE = Ay, Al =Y Aot
k=0
(7.1)
where A is an 8 X 8 matrix.
In the general case the solutions of system
(7.1) may be represented in the form of asym-
ptotic series

’w(”)(%u)ZZM’“wk(x)eXpG/@qn(S)dS
k=0

(7.2)
where ¢, (s) satisfies the algebraic equation

of the 4th order with respect to ¢*
det (A(s) —iqF) = 0. (7.3)

We consider the case when all 8 roots of
equation (7.3) are simple and there exist



only one pair of real roots +¢i(s). Then
eigenvalues A may be found from the fre-
quency equation

1 [
Z:;/ q(s)ds (7.4)

51

tan z(A, u) = d,

where d = d(), u) is a slowly varying func-
tion of A, which depends on the boundary
conditions at s = 5y and s = s,.

The lowest part of spectrum for a fixed m
corresponds to the case when there exists
a turning point s = s, at which two roots
coincide ¢1(s.) = qz(s.). Let for s < s,
equation (7.3) not have the real roots and
for s > s, let it have two real roots +¢i(s).
Then, the frequency equation has the form
(7.3) but the integral is calculated in the in-
terval [s., ss] and function d depends only
on the boundary conditions at s = s3. The
eigenfunction is shown in Fig. 4.

N ..
s \/ /U

Fig. 4. The mode with turning point.
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The parallel s = s, divides the shell surface
into two parts. One of them is intensively
vibrating, while in the other part there are
practically no vibrations.

We study vibrations of the prolate ellipsoid
of revolution. For the frequency set con-
taining the minimal frequency there exist
two turning points 5(*1) and 3(*2), and the
vibration mode concentrates between these
points near the shell equator. In this case
the frequency equation is (see [1,4,13])

(2)
1
ql(s)d3:u7r<n+§>, n=20,1,2,...

I
(7.5)

where ¢; is the real root of equation (7.3).

8. Asymptotic Separation of Variables:
For cylindrical and conic shells of revolu-
tion limited by two parallels the separation
of variables (5.10) may be performed. For
the shell of zero Gaussian curvature, if it
is non-circular and/or its edges are slanted
the exact separation of variables is impossi-
ble. But for low-frequency vibrations of such
shells the variables may be asymptotically
separated [17]. For simplicity, we consider
here only the cylindrical shell and seek the
low frequencies (see Fig. 5).

s =5 (0)
4

s =8,(0)

N

Fig. 5. Localized mode.

Due to estimations (4.6) we rewrite system
(3.2) for the cylindrical shell, for which
1/R; =0, and Ry = Rs(¢), in the form

1 2
pse* AAw + _8_61) — X =0,
RQ 882 8 1
IAAD — —— =0
ILL* R2 682 Y
where
’w 0w
Av=——+—-——, A=p’\, ©=p
w 632 68«927 /’L 2 /’L* /’L
(8.2)

Here X, is the new frequency parameter and
i« 1s the new small parameter. Boundary
conditions are imposed at the edges s =
Sk(g‘o)v k= L,2.

The vibration modes are stretched in the
longitudinal direction (Fig. 5). In the gen-
eral case there exist modes localized near
the generatrix ¢ = ., which are called the
weakest. Such modes may be represented in



the form

V|3

& ) o— fx
w(svg‘ovﬂ*):ZM* wn(svg)elzv f: T 9
n=0 *

ﬂ

r= s €+ (1/2)ag?,
Ao = Ao+ Ay + 2 + .

g>0, Sa>0,

(8.3)
where w, (s, £) are the polynomials in £ with
the coefficients depending on s and satis-
fying the one-dimensional boundary value
problems.

In particular, wo(s, &) = Hp, (§)Wo(s), where
H., (&) is a Hermit polynomial, and Wy(x)
satisfies the equation

1 d'W,
R3(p) dst

+ (¢ =AY =0 (8.4)

and two boundary conditions at s = sg(¢p).
The problem of choosing two boundary con-
ditions from the four given conditions is dis-
cussed in [18].

The first two values Ay and A; in expansion
(8.3) for A may be expressed through the
eigenvalue A(yp, ¢) of problem (8.4)

Ag = rg/lyiqn/\(y, q), A= (m + %) A/ AppAss — AL
(8.5)
where Ay, Ays, and Ay, are the partial deri-
vatives.
The eigenvalues A, are asymptotically dou-
ble. It means, that there exist two real eigen-
functions C7 Rew + C3Imw with the con-
stants (1 and Cy and two corresponding
eigenvalues )\(*1) and )\(*2) which have the same
expansion (8.3) and

XD XD =0 (™), e¢>0. (8.6)
As an example, the low-frequency vibrations
of a thin elliptical cylinder are studied [19].
The vibration modes are localized near the
generatrix with the largest radius of curva-
ture R2(p). Since two such generatrices ex-
ist, each natural frequency is fourfold. The
vibration modes are even or odd with re-
spect to the ellipse diameters (see Fig. 5

where these four modes are schematically

plotted).
[AY e ! [AY
CR DO
e n A
X Avi X
e-e 0-0 e-o o-e

Fig. 6. Figenfunctions scheme.

Using the symmetrical property of the prob-
lem one can calculate numerically these fre-
quencies and examine the peculiarities of the
fourfold frequencies. It was revealed that
for some set of parameters the frequencies
differ in the 5th decimal digits. Moreover,
frequencies "e-e” and "0-0” (and also "e-0”
and "o0-e”) differ in 10th decimal digits.

9. Rectangular Panel Vibrations: As
a second example of asymptotic separation
of variables we consider the low-frequency
vibrations of a rectangular cylindrical panel

[20] (see Fig. 7, right side).
/ [
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Fig. 7. Plate and cylindrical panel.

We study the arbitrary boundary conditions
at the curvilinear edges and assume that one
of the rectilinear edges (¢ = 0) is free or
weakly supported, so there exists a vibration
mode localized near this edge. Under these
assumptions for the lowest eigenvalue A, the
following asymptotic relation holds

Ao =a® (No + pdo + O(13)) . (9.1)

Here a is the eigenvalue of the beam vibra-
tions equation

XV —a'X =0 (9.2)

with two so-called main boundary conditi-
ons (see [18]) at the curvilinear edges.



The value Ay is the eigenvalue of equation

d®Y d*Y @

d778 0 d774 —I' ” n [h
with four given boundary conditions at the
rectilinear edge n = 0 and the condition of
decreasing Y — 0 as n — oo.

(9.3)

constraints Ao

free edge 0.113 and 0.973
up =0 or 1, =0 0.223
up =0and v =0 0.419
s =0 or w=20 0.809

(9.4)
The non-zero solution of problem (9.3) ex-
ists if the shell edge is free (¢ = 0), or the
boundary conditions have the form of any
of the 5 types given by (9.4) with the corre-
sponding eigenvalues Ag. For the free edge
two eigenvalues exist.
All boundary conditions on the curvilinear
and the rectilinear edges affect parameter A,
in expansion (9.1).

10. Vibrations of Rotating Shells of
Revolution: In Section 3 we mentioned
that for m > 1 the shell of revolution has
double frequencies. These frequencies split
due to the rotation of the shell.

We consider the vibrations of the shell of
revolution that rotates with the constant an-
gular velocity about the axis of symmetry.
Instead of (5.1) we seek in this case the par-
tial solution in the form (m =0,1,2...)

w(s,p,t) =wcos(mp —wt +a). (10.1)

Then, we obtain the system of equations

S <%hz’j + lz’j) uj =
E?:l (w25ij + QWQCZ']‘ + Qzeij) uj

(10.2)
where the operators n;; and [;; may be ob-
tained from operators in (1.5), after substi-
tution (10.1). Here §;; is the Kroneker sym-
bol, the term with ¢;; takes into account
the Coriolis forces, and ¢13 = ¢33 = cosb,
€3 = ¢33 = —sinf, the other ¢;; = 0, ¢

is the angle between the axis of symmetry
and the normal to the shell. The last term
in (10.2) takes into account the centrifugal
forces and the initial asisymmetric stresses
in the shell. The specific form of this term
may be found in [21].

Let w,gm) be the mth spectrum of the rotat-
ing shell. Here k£ = +1,42,... (m)

since wy,

may be either positive or negative. For the
non-rotating shells w_; = wy and one may
consider only the positive wi. We consider
the forced vibrations under an external har-
monic force, that is fixed with respect to the
shell and has the frequency v > 0. The res-
onance conditions is

v = iw,gm)

(10.3)

if the force is non-orthogonal to the corre-
sponding vibration mode.

The parameters ) and v are given in the
non-dimensional form similar to (1.2) For
the shells made of metals @ < 1. For Q ~ 1
the initial deformation € caused by the cen-
trifugal forces has the order of 0? and the
shell is destroyed. Since () is small we can
use the perturbation method considering the
non-rotating shell as the unperturbed case.
For m > 1 we get

Wi = o™ (Q) + Q8M(Q), k>0

ozggm) = w,(:;)) + QQOzEIS) + -

6}(;”) — 6}(;8) + Q?ﬁl(;g) + -

where ozggm) and ﬁ,gm) are the even functions

of €; w,(fg) are the frequencies of the non-

rotating shell. Let u; be the vibration mode

for the non-rotating shell corresponding to
(") Then

Wro -

(m) 2 f:f ug(ug cos @ — wsin 0) B ds
Peo = T (il + wh) Bds

Due to (10.3) the resonance frequencies for
small €2 form the couples of the close fre-
quencies, the difference between which is



2080 [21].

For m = 0 the rotation of the shell leads
only to the shift of the frequencies, but does
not split them.

11.

Conclusion: The knowledge of the

qualitative properties of shell vibration mo-
des and the approximate asymptotic formu-
las help us avoid the large errors that may
occur when applying numerical analysis.
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