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Abstract The effect of concomitant magnetic fields emerging in conjunction with

encoding gradients, which is important in the process of the magnetic resonance

imaging in low fields, has been considered. The manifestations of concomitant

magnetic fields in a concrete gradient system, namely in the system of two coaxial

gradient coils, have been thoroughly analyzed. It has been suggested to improve the

gradient system via optimization of the interspace between coils on the basis of the

standard criterion of the minimum of root-mean-square deviation of the encoding

field dependence from a linear one. It has been shown that the optimal interspace is

not the Maxwell condition.

1 Introduction

As a rule, the routine studies in the area of magnetic resonance imaging (MRI) are

carried out in high magnetic fields (several Tesla), that ensures a good signal/noise

ratio and, therefore, a small examination time. However, the increase in the

magnitude of a static magnetic field (and, hence, in the resonance frequency) is

associated not only with positive factors: (a) the radiofrequency power is more

absorbed at high frequencies due to the electric conductance of organism tissues,

which results in degradation of signal/noise ratio [1]; (b) because of the effect of

relaxation rate dispersion, in high fields, the decrease in the MRI-contrast for T1-

and T2-weighted images takes place [2]; (c) there are procedure difficulties for

certain patient groups (it is impossible to examine patients with metallic implants,

cardiac pacemakers, etc., persons suffering with claustrophobia; some patients

cannot stand the noise produced by gradient-switching systems) [3]. Nevertheless, a
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number of medical diagnostic and technological problems can be solved in low

magnetic fields, including the Earth’s magnetic field [4, 5].

The first detection of NMR in the Earth’s magnetic field (EFNMR) was carried

out in the early 50s [6], but for a long time, the EFNMR method was mainly used in

the area of magnetometry. Up to the recent time, EFNMR was realized outdoors,

where the level of external hindrances was very low and there was no disturbance of

the homogeneity of a static magnetic field. Now, a few successful realizations of

EFNMR in laboratory conditions have been described (see [5, 7]). The first

publications on MRI in the Earth’s magnetic field (EFMRI) appeared in the 80s

[8–12]. The following development of EFMRI is reflected, for example, in the

works [13, 14]. The low price and high mobility of equipment attracted the

additional attention to the EFMRI [15]. It is worth noting that MRI in low fields was

used for the visualization of polarized gases [16] that is applicable for the lung

imaging. The low field MRI is used not only in medicine, but also in oil and water

geophysics, in chemical technologies [17, 18], and it can be perspective for the

control of liquid explosives, theirs precursors, and other illicit and hazardous

compounds [4, 7]. Therefore, the magnetic resonance imaging in low fields [19], in

particular such as Earth’s field [20, 21] or less ones (microtesla NMR with

hyperpolarization and SQUID registration [22]), becomes the widespread subject of

studies.

For the realization of the MRI method, it is necessary to create accurately linear

magnetic field gradients (MFG) extending over rather big volumes (up to 0.1 m3).

Despite of the crucial role MFG in MRI, the surprising small number of works made

major contribution to the elaboration of the problem. There were few attempts to

optimize the design of gradient systems (they were partly reviewed in [23]).

In the aspect of the quality of MRI in low fields, it is useful to consider the effect

of additional, named ‘‘concomitant’’, fields which arise in gradient systems. It is

known that according to the Maxwell equations, the appearance of a gradient of the

certain component of a potential field unavoidably causes gradients of other

(orthogonal) field components. The static magnetic field is potential, and hence, this

effect must manifest in the procedure of getting NMR images (see [24]). To

determine the position of a volume element (voxel) or, in other words, to execute a

spatial encoding, an additional magnetic field with a spatially homogeneous

constant gradient is applied along the chosen coordinate axes. It is usually supposed

that in this way, the direct proportionality of the NMR frequency to a coordinate is

attained. Nevertheless, if one takes into account concomitant gradients, the

additional magnetic field components in orthogonal directions are shown up [25]

and the required proportionality is violated. As a result, the concomitant gradients

cause both an error in the mapping of a voxel position and distortion of the spatial

distribution of signal intensity. The effect is negligible for the routine MRI in high

fields; however, it can be very important in low field MRI experiments [13, 26–28].

Here, we consider the problem in detail and propose a method to minimize the

distortion of the ‘‘longitudinal’’ gradient (along the main field) by undesirable

‘‘transversal’’ gradients.

688 V. Chizhik et al.

123



2 Preliminary Remarks

To produce the spatial encoding of NMR signals, the spatially homogeneous

gradients of a static magnetic field are used. Components of a magnetic field B obey

the Maxwell equations which in current-free space take the form

rot B ¼ 0;

div B ¼ 0:

From the first equation, it follows:

oBl

oxm
¼ oBm

oxll

(xl denotes x, y, and z) and from the second one:

oBz

oz
þ oBx

ox
þ oBy

oy
¼ 0:

Therefore, the appearance of any derivative inevitably leads to the existence of at

least another one. The appearance of transversal components is visually demon-

strated with Fig. 1 where field lines of the additional field BG with a longitudinal

gradient Gz =
oBGz

oz
(along z) are represented. The existence of the z-component of a

gradient G is reflected by an increasing of the density of the field lines. Since in the

presence of some gradient field, lines cannot be parallel, an orthogonal x-component

BGx appears.

Fig. 1 Field lines of the field BG with a gradient Gz and the vector diagram, which reveals the
appearance of the x-component of BG
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The total field Btot is the vector sum of a «main» (homogeneous) field B0 (along

z) and a field produced by gradient system BG. In the case of the longitudinal

gradient Gz

Btot ¼ B0 þ Gzzð Þ2þ x
oBx

ox

� �2

þ y
oBy

oy

� �2
" #1=2

: ð1Þ

Here, Gz is the gradient, which is routinely used to obtain an image, and Bx and

By are the concomitant field components. As a result, the NMR frequency is not

directly proportional to the z-coordinate but depends on the module of the total field

|Btot|.

It follows from Eq. (1) that the encoding field is Bencod ¼ Btot � B0 (instead of

Bencod ¼ GzzÞ, and it is not linear with respect to the z-coordinate. Thus, the

existence of concomitant magnetic fields leads to distortions of the mapping of

voxel spatial position, especially in remote from the origin elements of an

investigated object. The less the main magnetic field B0 is, the more the effect of

concomitant gradients is important. Here, we propose and describe, in detail, a

simple method to minimize this harmful effect on the example of a concrete

gradient system.

The basic design of an axial gradient system is the pair of coils (with oppositely

directed currents) of a radius R which are separated by a distance L ¼
ffiffiffi
3

p
R (the

Maxwell condition). Let the field B0 is directed along the z-axis (see Fig. 2) of the

polar coordinate system (z, q, u). The realization of the Maxwell condition provides

the equality to zero of the third derivative of the z-component of the magnetic field

Fig. 2 Cross-sectional drawing of an axial gradient system consisting of two coils. Three positions of an
object under study: symmetric (a), half-shifted (b), completely shifted to positive z (c) are shown. The
formation of the encoding field Bencod for point P as the difference between Btot and B0 is also
demonstrated
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BG on z at the system isocentre (z = 0, q = 0) that allows one to obtain the best

field linearity, but only near the coordinate origin. It is also obvious from Eq. (1)

that the concomitant gradients do not create any additive fields on the axis

z (x = y = 0 or q = 0). However, voxels, which are out of the z-axis, form the basic

area of an image. The NMR frequency for an every voxel is determined by the total

field module according to Eq. (1), and the Maxwell condition is not optimum to get

the best linearity of the encoding field over the whole object volume. We propose a

simple option to minimize the undesirable effect of concomitant gradients via the

change of interspace-to-diameter ratio for coils that can allow one to optimally use

the ‘‘working volume’’ of a tomograph.

3 Basic Relations. Maxwell Gradient System

The calculations of magnetic field components in polar coordinates (z, q, u) were
carried out using the well-known integral formulas based on the Biot–Savart–

Laplace law [29, 30]:

BGz ¼
1

p

Zp

0

1�qcosuð Þ

� 1

1þ z�Zð Þ2þq2þ 2qcosu
h i3=2� 1

1þ zþZð Þ2þq2þ 2qcosu
h i3=2

2
64

3
75du;

ð2Þ

BGq ¼ z� Z

p

Zp

0

cosudu

1þ z� Zð Þ2þq2 þ 2 cosu
h i3=2

� zþ Z

p

Zp

0

cosudu

1þ zþ Zð Þ2þq2 þ 2q cosu
h i3=2 : ð3Þ

Here, BGz and BGq are the axial and radial components of the magnetic field of

the gradient system, respectively. In Eqs. (2) and (3) and below, the dimensionless

units are used for both distances and fields: all distances are measured in units of the

coil radius R and magnetic fields are expressed in units of l0In/2R, where l0 is the
magnetic constant (4p 9 10-7 X s/m); I is the electric current in the coils (a

filamentary current approximation is supposed); n is the number of turns. The

numeric computations and graphics were performed using MathCad� 15.

As it follows from the above, the manifestation of the concomitant field effect

depends on (a) the relation between the size of an object to be investigated and the

dimensions of a gradient system, and (b) the object position in a gradient system.

Herewith, the system design must provide the maximal workspace of a tomograph

with the admissible nonlinearity of the encoding field Bencod. In the case of axially
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symmetric systems, namely the radial component of the total field, BGq, takes on the

role of a concomitant field and determines the nonlinearity of the encoding field. In

Fig. 3, the dependence of BGq on z and q in the Maxwell gradient system is shown.

Fig. 3 Relief diagram of the q-component of the Maxwell gradient system field

Fig. 4 Dependences of the field BG (produced by Maxwell gradient system) on z for different distances
from axis (q)
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Figure 4 represents the field BG dependence on z for different q, and it is important

that the marked increase in the nonlinearity occurs for big q at small z-values where

z-component is most linear. The effect is explained by the fact that the encoding

field in this zone is determined mainly by the q-component. For z-values close

to ± L/2, the main cause of the encoding field nonlinearity is the own behavior of

the z-component (see the comments to the Maxwell condition).

To realize MRI, the combination of a homogeneous (‘‘main’’) field and a field of

a gradient system is always used. It is convenient to introduce the parameter k which

is determined as the ratio of the main field B0 to the maximum field of a gradient

system, BGz, in the limits of an investigated object:

k ¼ B0=BGzmax:

For definiteness, we have chosen the k value for the cylindrical object which the

length and the diameter were equal to the coil radius R.

Figure 5 demonstrates the contribution of the Maxwell gradient system to the

encoding field (Bencod) for different values k and distances from the axis q. In Fig. 5a,
the dependences of Bencod on z for q = 0.5 are represented for different k. The similar

dependences for different q values and for k = 0.5 and 2 are presented in Fig. 5b. It is

evident that in Fig. 5a and b, the zone of negative z, where theB0 and gradient fieldBGz

are opposite is absolutely unfitted for the spatial encoding when k B 1. In that

situation, it is reasonable to shift an investigated object to positive z.

4 Optimization of Gradient System. Results and Discussion

We suggest to improve the gradient system via the optimization of the coil

interspace L on the basis of the standard criterion of the minimum root-mean-square

deviation of the z-dependence of the encoding field from a linear one. The

dependences of the encoding field on z-coordinate were obtained (analogously to

(a) (b)

Fig. 5 Encoding field in the Maxwell system as a function of z for different main field values (k) at
q = 0.5 (a) and for different distances (q) from the axis for k = 0.5 and 2 (b)
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Fig. 5) for different interspaces between the coils. Then, the relative standard error

(RSE) of the deviation of those dependencies from linear ones for various object

positions was calculated. The linear dependences were obtained within Mathcad�

using functions line(x,y), where x = z and y = Bencod. The calculus of the Standard

Error was made within Mathcad� function stderr(x,y). The relative standard error

was obtained as the ratio of the standard error to the maximum field produced by

gradient system, (BGzÞ max in the limits of an investigated object. This maximum

field is defined as the product of a slope of the calculated linear dependence into the

half length of an object.

First, the calculations were carried out for the case of the above cylindrical

object which the length and diameter were equal to the coil radius (see Fig. 2).

The RSE dependences on the coil interspace L for different values of k in the case

of the symmetric object disposition (a in Fig. 2) are represented in Fig. 6. One can

see from Fig. 6a that the use of the Maxwell system results in the large RSE in

the case, when a homogeneous field is comparable to a gradient system field

(k� 1Þ. To reduce RSE, it is possible to increase the coils interspace, but the

disadvantage of this approach is the significant increase of a system dimension

and the reduction of gradient system efficiency. For k[ 1, it is possible to suggest

the better solution, because the RSE dependences on the interspace have a

minimum. This fact allows us to realize the minimum RSE by the moderate

change of the interspace L (see Fig. 6b). To illustrate the latter, we present in

Fig. 7 the relative deviation (not RSE!) of the field Bencod from linear dependence

in the case of the symmetrical position of an investigated object (a in Fig. 2) for

the optimal interspace and Maxwell condition and for two values of the main field

(k = 1.1 and 10). Note: if the homogeneous (main) field is in ten times greater

than the maximum gradient field in the limits of an object (k = 10), the interspace

optimization reduces RSE in four times (in comparison with the case of the

Maxwell condition).

(a) (b)

Fig. 6 Dependence of the relative standard error on the coil interspace L; in the case, the symmetrical
object position for different values of the homogeneous field: a k = 0.5, 0.75, 1, 1.1, and 10; b in the
larger scale k = 1.1, 1.25, 1.5, and 10. The dotted line indicates the Maxwell condition
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In Fig. 8, the dependences of RSE on the coil interspace for an object shifted from

the center of a gradient system (the position b and c in Fig. 2) are represented.

Figures 6b and 8 demonstrate that it is possible to considerably improve the linearity

of the field Bencod choosing the optimum coil interspace (without the increase in

dimensions of a gradient system and with the better use of a work volume).

Fig. 7 Comparison of the relative deviation of the field Bencod from the linear dependence for the
Maxwell condition and optimal interspace in the case of the symmetrical position of an investigated
object (a in Fig. 2)

(a) (b)

Fig. 8 Dependence of RSE on the coil interspace for the shifted object. a Object is shifted by half of the
coil radius to the positive z (the position b in Fig. 2); b object is completely shifted to the positive z (the
position c in Fig. 2). The dotted line indicates the Maxwell condition
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Figure 9 shows the computed dependences of the optimal interspace Lopt and

RSE on the position (Fig. 9a) and on dimensions (Fig. 9b) of an object for different

values of the main field. As above, an object is supposed of cylindrical form, and its

diameter is equal to the coil radius R, and besides for Fig. 9a, the object length is

equal its diameter. It can be seen that the shift of an object (in the direction of the

main field) decreases the dependence on the main field, but RSE increases.

Figure 9b demonstrates the absence of the optimum for k = 1, but the dependence

of the optimal position on the main field quickly relaxes for k[ 1 (the dependences

for k = 2 and k = 10 are virtually indistinguishable).

5 Conclusion

In connection with the growing interest to the magnetic resonance imaging in low

fields, it was important to consider in detail the effect of concomitant magnetic

fields emerging in conjunction with encoding gradients. We investigated this effect,

which distorts the quality of magnetic resonance images, in the case of the basic

design of an axial gradient system—the pair of coils with oppositely directed

currents (a particular case is the Maxwell gradient system). It has been suggested to

improve the gradient system via the optimization of the interspace between coils on

the basis of the standard criterion of the minimum root-mean-square deviation of the

z-dependence of the encoding field from a linear one. In particular, if the maximum

gradient field in the limits of an investigated object is less than the main

homogeneous field (k[ 1), the interspace L between the coils should be

decremented in comparison with the Maxwell condition (
ffiffiffi
3

p
) up to 1.2–1.4 for

objects which dimensions are about the coil radius. In the case of low main fields

(k B 1), it is expedient to increase strongly the interspace L (see Fig. 6a) and to shift

an object in the direction of the main field (Fig. 8), but wherein the efficiency of a

(a) (b)

Fig. 9 Dependences of the optimal interspace Lopt and RSE on an object position (a); dependences of
RSE for the optimum and Maxwell interspaces on an object dimensions (b) for the main field
characterized by the values k = 1, 2, 10. See the text for the information on the length and diameter of an
object
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gradient system is reduced (it is necessary to increase significantly the current in

coils).

In conclusion, we present the estimations of the parameters of the experimental

conditions for obtaining MR images in the Earth’s magnetic field (50 lT, i.e., the
proton resonance frequency is about 2100 Hz). The required encoding gradient is

determined by the acceptable dimension of a pixel and NMR line width dm = 1/

(pT2), where T2 is the spin–spin relaxation time. The T2 values for tissues lie within

the range 50–300 ms [3]. Assuming that the spin–spin relaxation time of an

investigated object is T2 = 100 ms, one can conclude that the frequency difference

between adjacent pixels should be of 3 Hz. If the object diameter and length are

25 cm (a human head) and the desirable spatial resolution (pixel dimension) is

2–3 mm, then the gradient characterized in the frequency scale will be about

300 Hz and the parameter k = 7. If the coil diameter is 50 cm (such a relation with

the object dimensions was supposed in our study), from the graph of Fig. 6, we

obtain L = 1.3, R = 65 cm, with RSE of 0.5% (for the Maxwell system, RSE is

about 2%).

The diminution of the coil diameter on 20% gives the error in three times more

but for the Maxwell distance—more than 10 times. However, its enlargement up to

1 m reduces RSE for the optimal interspace to a neglected value\0.01% and for the

Maxwell distance—to 0.13%.
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