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Abstract—A parallelepiped�shaped container, which is completely filled with a perfect incompressible
fluid, is considered. The container is covered with an elastic lid, which is modeled by a membrane or
a constant�thickness plate. The other faces of the container are nondeformable. The frequency spec�
trum of small free vibrations of the lid has been obtained taking into account the apparent mass of the
fluid the movement of which is assumed to be potential. The main specific feature of the problem for�
mulation is that the volume of the fluid under the cover remains unchanged in the course of vibrations.
As a result, the shape of the deflection of the lid should satisfy the equation of constraint, which follows
from the condition of preservation of the volume of the fluid under the lid.
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1. INTRODUCTION

The model problem under consideration belongs to the extensive class of dynamic hydroelasticity
problems. These problems are encountered in shipbuilding and aviation, in transport of liquids, in
describing natural phenomena, and in many other cases. Various approaches to solving these problems
and the extensive literature are presented in [1–4]. As the pioneer studies, we mention work of Rayleigh
[5] devoted to waves in an infinite plate in contact with a fluid and work of Lamb [6], which deals with
vibrations of a circular plate in water. Vibrations of elastic solids in a compressible fluid are accompanied
by the emission of sound waves [4], while vibrations of plates on the surface of a fluid induce surface waves
[7]. These waves remove the energy of vibrations, which yields a complex spectrum. The frequency spec�
trum of vibrations of elastic containers filled with a perfect incompressible fluid is real and discrete [1]. As
a rule, problems in which fluid has the free surface are considered [8, 9].

Below, a container is considered that is shaped as a rectangular parallelepiped that is completely filled
with an incompressible fluid and covered with an elastic rectangular lid. The lid is modeled by an elastic
membrane or a plate with the unrestrained sides. The frequency spectrum of free vibrations of this lid
together with the fluid is studied provided that the volume of the fluid under the cover remains unchanged.
This condition produces the constraint on the shape of the deflection of the lid. If there is a similar con�
straint in the shape of the deflection of a string and a beam, the frequency spectra of vibrations of these
objects are also obtained. 

A similar formulation of the problem was used in [10]. In that formulation, no constraint was intro�
duced on the shape of the deflection of the lid (plate); however, an analysis of the graphs of the proper
functions presented in [10] indicates that the condition of the preservation of the volume of the fluid under
the lid is satisfied. In the problems under consideration, it is assumed that the characteristic period of free
vibrations is substantially longer than the travel time of the fluid volume deformation wave. Therefore, the
fluid is considered to be incompressible.

2. VIBRATIONS OF THE MEMBRANE TOGETHER WITH THE FLUID

Let us consider the parallelepiped�shaped container 0 ≤ x ≤ a, 0 ≤ y ≤ b, and 0 ≤ z ≤ c, which is com�
pletely filled with a perfect incompressible fluid. A membrane is drawn on the face z = 0 with the tension
force T. The other faces of the container are stationary and smooth. It is required to find the frequency
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spectrum of vibrations of the membrane taking into account the apparent mass of the fluid. The velocity
of the points of the membrane is equal to the normal component of the velocity of the fluid at z = 0, i.e.,
Vz(x, y, 0, t) = ψ(x, y)sin(ωt).

Let us expand the function ψ(x, y) into the double Fourier series as follows:

(2.1)

where pm = mπ/a and qn = nπ/b. Then the potential of the velocities of the fluid, which satisfies the Laplace
equation and the above�presented boundary conditions, can be written as follows after the multiplier
sin(ωt) has been separated out:

(2.2)

The kinetic energy of the fluid can be described by the following equation:

(2.3)

where ρf is the density of the fluid.

In addition to expansion (2.1), in relation to the membrane fixity conditions ψ = 0 at x = 0, a and y =
0, b we present the function ψ(x, y) in the following form:

(2.4)

The coefficients ψmn and umn are related as follows:

(2.5)

The fluid incompressibility requirement imposes the following constraint on the function ψ(x, y):

(2.6)

The frequencies and shapes of vibrations are determined when minimizing the functional

(2.7)

in ψ, where λ = ω2, ω is the unknown frequency of free vibrations, and μ is the Lagrange multiplier. The
term ρfgψ2 takes into account the weight of the fluid and is only introduced when the vibrating membrane
is horizontal; here, g is the acceleration of gravity and ρ is the surface density of the membrane. Integration
yields the following result:

(2.8)

After differentiation with respect to umn, we obtain the following relations:
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Because of relations (2.5), the coefficients αrs = 0 if the sum of the subscripts r + s is even and the coef�
ficients γmn = 0 if at least one of these subscripts is even. Therefore, system (2.9) decomposes into four sub�
systems with odd m and n, even m and n, and even m and odd n, as well as odd m and even n.

The first subsystem has the following form:

(2.11)

in the other subsystems, the last term is absent.
Let us reduce system (2.9) to the dimensionless form. We assume that a ≤ b and take a as the unit length.

Let us set

(2.12)

Then, system (2.9) can be rewritten as follows:

(2.13)

with the subscripts at the unknown umn taking on even or odd values, depending on the subsystem under
consideration.

When calculating , we consider the final system (2.13) at m, n ≤ K and replace the infinite sums
with finite sums; the number K > max(m0, n0) is selected using the condition of attaining the required

accuracy of the variable .

System (2.10) comprises a number of particular cases. Using the parameter  in which ρf/ρp is the
ratio of the volume densities of the fluid and the membrane and h is the thickness of the membrane, the
apparent mass of the fluid can be taken into account. Because a/h � 1, the value of the parameter  can

be high. If the apparent mass of the fluid is neglected, it should be taken that  = 0.

The case  � 1 corresponds to the infinite depth c; in this case, qmn = 1/rmn.
If a � b, it can be assumed that δ = 0, which corresponds to the passage to the plane problem formu�

lation, i.e., to vibrations of a string.
With slight modifications, system (2.13) can also be used when the membrane is replaced by a plate

unrestrained over all its edges. In this case, the variable  in the first term of Eqs. (2.13) should be

replaced with the variable  and the following relations should be used instead of (2.9):

(2.14)

where D is the cylindrical rigidity, h is the thickness, and E and ν are Young’s modulus and Poisson’s ratio
of the plate.

For the other variants of the fixing of the plate, the form of system (2.13) remains unchanged, but the
coefficients, especially those related to formula (2.5), vary. An additional obstacle is that, under boundary
conditions different from the hinged�edge condition, the shapes of vibrations of the plate have no analyt�
ical representation.

At δ = 0, the passage from vibrations of the plate to vibrations of a strip�like beam in the fluid occurs.
The problem at hand has two specific features, i.e., the consideration of incompressibility, which leads

to the restriction on the deflection (the constraint), and the consideration of the effect of the apparent
mass of the fluid. Below (in section 3), the effect of this constraint on the frequencies and shapes of the
free vibrations is analyzed using an example of the simplest problem on the free vibrations of a string
(beam) without taking into account the apparent mass. This problem has an explicit solution. In addition
to its independent significance, this model problem supports the discussion of the more complex problems
considered in sections 2, 4, and 5.
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3. VIBRATIONS OF THE CONSTRAINED STRING

The equation of free vibrations of a string with the length a can be written as follows:

(3.1)

where T is the tension force, ρ is the mass of the unit length of the string, and ω is the frequency of the
vibrations. Let us determine the frequency spectrum of the proper vibrations of the constrained string as
follows:

(3.2)

Without the constraint, the frequencies and shapes of free vibrations have the following form:

(3.3)

Let us expand the unknown shape of the vibration into a series of functions (3.3) as follows:

(3.4)

Then, the problem of the minimization of functional (2.8) can be written in the following form:

(3.5)

where λ = ω2 are the unknown squared frequencies of the vibrations and μ is the Lagrange multiplier. As
a result, we obtain the following relation:

(3.6)

Because of (3.5), at even values of m, the frequencies and shapes of the vibrations of the constrained string
remain unchanged, while at odd values of m, the substitution of um into the equation of constraint yields
the following equation for λ:

(3.7)

which can be written in dimensionless form as follows:

(3.8)

The following shapes of the vibrations correspond to the roots  of Eq. (3.8):

(3.9)

The first roots are  =  = 2.8606, 4.9181, 6.9418, and 8.9548. The asymptotic formula  = 2k +

1 – 0.405/(2k + 1) + O(k–2), k  ∞ is true.
Thus, in the case of the constraint, the first frequency described by formula (3.3) vanishes; at even val�

ues of m, the frequencies remain unchanged, while at odd values of m, they decrease, and the above�pre�
sented values of  are taken instead the values 3, 5, ….

Figure 1 shows the graphs of the first two proper functions ψ1(x) and ψ2(x) normalized using the for�

mula  = 1/2, as well as (for comparison) the similar shapes of vibrations sin(3πx) and sin(5πx)

for the string without taking into account constraint (3.2).
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Vibrations of an unrestrained beam taking into account constraint (3.2) are studied using the same pro�
cedure. The difference is that, for the beam, the following formula is used instead of formula (3.3):

(3.10)

where EI is the flexural rigidity. For odd values of m, the dimensionless frequency parameter  can be
found using the following equation:

(3.11)

The first roots of this equation  = , which are equal to 8.541, 24.566, 48.375, and 80.55, are close

to the squared odd numbers (2k + 1)2. The shapes of the free vibrations of the beam taking into account
the constraint are similar to those of the string. Graphs of these shapes of the vibrations are not shown here
since they cannot visually be distinguished from the graphs presented in Fig. 1.

4. VIBRATIONS OF THE CONSTRAINED STRING TAKING
INTO ACCOUNT THE APPARENT MASS OF THE FLUID

In fact, the plane movement of the membrane and the fluid in the planes parallel to the Oxz plane is
considered. Taking into account δ  0, Eq. (2.9) can be written in the following form:
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where

As in the general case, system of equations (4.1) decomposes into two subsystems for even and odd val�

ues of m since  = 0 if the indices m and r have different evenness.

In dimensionless form, system of equations (4.1) has the following form:
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Fig. 1. Graphs of the first two proper functions.
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where

(4.4)

The proper values  of the parameter  are the roots of the determinant of system of equations (4.3).

The dimensionless proper frequencies  =  depend on the dimensionless parameters  and . With

decreasing parameter , the frequencies diminish and with an increase in the parameter  they tend to
the limiting values, which correspond to a deep container. As the parameter  increases, the effect of the

mass of the membrane on the frequencies vanishes; at  � 1, the frequencies decrease proportionally to

1/ . Figures 2a and 2c show the graphs of the functions ( ) for the first two roots of Eq. (4.3) at 

= 1/8, 1/4, 1/2, 1, 2, and 4. It can be seen that the increase in parameter  ceases to affect  at  = 2 for
the first root and at  = 1 for the second root.

At an odd value of m, cm ≠ 0 and the equation of constraint, which follows from the condition of the
incompressibility of the fluid, should be additionally satisfied. In this case, we obtain the following system
of equations instead of the system described by Eqs. (4.3) and (4.4):
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ĉ ω̂ ĉ
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The proper values  are the roots of the determinant of linear system of equations (4.5) in the unknown
u1, u3, …, u2K – 1, μ. As in the case without considering the apparent mass, the roots of this equation lie
between the roots of the determinant of system of equations (4.3). The dependence ( , ) for the first
root is shown in Fig. 2b.

Figure 3a shows the first shape of the deflection found by solving system of equations (4.2) and (for
comparison) the graph of the function sin(2πx). Figure 3b shows the shape of the deflection found by solv�
ing system of equations (4.5) and the graph of the function sin(3πx). It follows from the data presented in
Fig. 3a and from comparison of the data presented in Figs. 3b and 1a that the consideration of the apparent
mass of the fluid only slightly influences the shape of the deflection, while the effect of the incompress�
ibility is more pronounced.

5. TRANSFORMATION OF THE SYSTEM (2.13) AND NUMERICAL RESULTS 

As was noted in paragraph 2, the problem on the vibrations of the membrane together with the fluid
decomposes into four separate subproblems depending on the values of the wavenumbers m and n. If at
least one of these numbers is even, the equation of constraint, which follows from the condition of
the incompressibility of the fluid, is automatically satisfied. The calculations show that the shapes of
the free vibrations are close to the vibrations of the function ϕmn = sin pmxsin qny like the curves pre�
sented in Fig. 3a are close to each other. The dimensionless frequencies  depend on the parameters

, , δ, and . Without taking into consideration the effect of the fluid, these frequencies can be found

using the formula  =  = , while with the consideration of the apparent mass the depen�

dence of the frequencies  on the parameters  and  is similar to the dependence for the string shown
in Fig. 2.

Let us consider the case when both subscripts m and n have odd values in more detail. We renumber the
parameters

(5.1)

in ascending order and obtain the following result:
(5.2)

Then, the subscripts mk and nk depend on the position k occupied by the values of  in sequence (5.2).
Let us write system of equations (2.13) with the only summation index as follows:
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As an example, let us consider the square membrane (δ = 1) with the parameters  = 1.5 and  = 10.

For odd values of m and n, the first four dimensionless frequencies  found by solving system of equations
(5.3) at  = 0 are equal to 1.791, 2.738, 2.742, and 3.558; the corresponding shapes of the deflection are
shown in Fig. 4 (the upper panels). For comparison, the shapes of the deflection for a square plate with
the frequencies  = 5.840, 9.016, 11.224, 19.12 are presented in the lower panels (Fig. 4). These frequen�
cies and shapes have been obtained by solving system of equations (5.3) after performing the replacement

of  with . It can be seen that the shapes of the vibrations of the membrane and the plate in the fluid
substantially differ, while in the case of vibrations in air, these shapes are identical.

At a constant value of δ, all dimensionless frequencies grow with increasing parameter  and diminish
with decreasing parameters  and , which follows from the Courant theorem [11] on the minimum–

maximum property of proper values. In this case, at  � 1 the frequencies grow proportionally to ,

while at  ≥ 3, they are close to the values typical of the infinitely deep fluid (  = ∞).
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Figure 5 shows the dependences ( ) of the first four frequencies of the doubly odd group obtained

for the membrane (left panel) and the plate (right panel) at δ = 0.25 and  = 1.5 with (  = 1) and without
(  = 0) taking into consideration the effect of the force of gravity in the case of the overhead lid. It can be
seen that the consideration of the force of gravity leads to a substantial increase in the frequencies of the
proper vibrations of the membrane, but only slightly influences the frequencies of the vibrations of the
plate.
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