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Abstract: We study the stochastic Kardar-Parisi-Zhang equation for kinetic roughening where the
time-independent (columnar or spatially quenched) Gaussian random noise f (t, x) is specified by the
pair correlation function 〈 f (t, x) f (t′, x′)〉 ∝ δ(d)(x− x′), d being the dimension of space. The field-
theoretic renormalization group analysis shows that the effect of turbulent motion of the environment
(modelled by the coupling with the velocity field described by the Kazantsev-Kraichnan statistical
ensemble for an incompressible fluid) gives rise to a new nonlinear term, quadratic in the velocity
field. It turns out that this “induced” nonlinearity strongly affects the scaling behaviour in several
universality classes (types of long-time, large-scale asymptotic regimes) even when the turbulent
advection appears irrelevant in itself. Practical calculation of the critical exponents (that determine
the universality classes) is performed to the first order of the double expansion in ε = 4− d and
the velocity exponent ξ (one-loop approximation). As is the case with most “descendants” of the
Kardar-Parisi-Zhang model, some relevant fixed points of the renormalization group equations lie in
“forbidden zones”, i.e., in those corresponding to negative kinetic coefficients or complex couplings.
This persistent phenomenon in stochastic non-equilibrium models requires careful and inventive
physical interpretation.

Keywords: kinetic roughening; critical behaviour; turbulence; renormalization group

1. Introduction

The Kardar-Parisi-Zhang (KPZ) model was proposed in [1] to describe evolution of
an interface that separates a randomly growing substance from the rest of the system.
As the interface evolves due to intrinsic dynamics and external disturbances, it becomes
progressively “rough”. This joint effect of various deterministic or/and random entries
results in what is known as kinetic roughening [2]. Flame fronts, surfaces of tumours or
bacterial colonies, and landscape profiles are all examples of interfaces undergoing kinetic
roughening; see, e.g., [3] and references therein 1.

The KPZ equation is one of the simplest semi-phenomenological models of kinetic
roughening. The model itself is a nonlinear stochastic differential equation for a smoothed
height profile h(t, x) of the moving interface. It assumes that the growth is lateral and
that its rate is a smooth function of the height gradient. Then, the leading term in the
gradient expansion determines the nonlinearity of the KPZ model. Another term, linear
in h, incorporates the “surface tension” or the forces of any kind that make the interface
smoother [1] . A random noise mimics various microscopic degrees of freedom that can
influence the roughening dynamics of the interface.

From physics viewpoints, kinetic roughening is a representative example of non-
equilibrium phenomena that occur in a wide variety of complex physical systems evolving
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due to intrinsic dynamics and undergoing extra disturbances 2. It was argued that it is such
competition that gives rise to nontrivial patterns [6,7]. Indeed, many of non-equilibrium
systems can evolve to critical states without the fine tuning of control parameters (in
contrast to near-equilibrium critical systems). Examples are provided by dissipative driven
open systems [8], turbulence [9,10] and, in a more general context, by systems revealing
the so-called self-organized criticality, the phenomenon observed in numerous physical,
biological, chemical, neural and social systems, etc. [11–14].

As such systems exhibit universal scaling behaviour, fluctuations of growing surfaces
can be viewed as the most pictorial representative for a wide range of phenomena with
the same types of critical behaviour (universality classes). Thus, the KPZ model, with its
simplest make-up, is customarily referred to as a non-equilibrium analog of the Ising model
in equilibrium phase transitions.

That is why an enormous number of papers concerned with the KPZ model is pub-
lished every year as the KPZ universality class is discovered in new systems or new
features of the KPZ model are established [15–24]. For example, in the recent paper [25], the
KPZ universality class has been detected in the morphology of the modern urban skyline
observed in the cities throughout the Netherlands.

However, the standard field-theoretic perturbative renormalization group (RG) analy-
sis does not reveal any infrared (IR) attractive fixed points of the RG equations for the KPZ
model [26,27] in the physical area of parameters. If an appropriate fixed point does never-
theless exist, it seems to be inaccessible within any kind of perturbative treatment. This
point would correspond to the rough phase, or to be precise, to the non-trivial asymptotic
behaviour of the interface in the IR range (which implies that times and distances are large
in comparison with the characteristic microscopic scales), i.e., to kinetic roughening (or
critical scaling).

The functional RG is probably the only existing approach that gives access to that
fixed point [28–31] making it “essentially non-perturbative”.

Other open questions include the random noise interpretation [32,33], the value of the
upper critical dimension [3,19,34–38] and its very existence [20,39–43] 3.

All of these facts suggest that instead of a more sophisticated analysis, the KPZ model
may need modifications or adjustments that might lead to a drastic change in the RG
analysis. It does seem as if the KPZ model may be sensitive to various extensions and
modifications; e.g., the simple extension turns the model into one with an infinite number
of coupling constants [45,46].

One of the possible modifications consists of choosing a time-independent (spatially
quenched or columnar) noise with the correlation function

〈 f (x) f (x′)〉 = D0 δ(d)(x− x′), D0 > 0 (1)

instead of the white in-time random noise (that differs from (1) by additional Dirac’s
function δ(t− t′)) that was used in the original KPZ model. Here x = (t, x) are the space-
time coordinates, the brackets 〈. . . 〉 represent an average over many realizations of the
randomness4, and d is the dimension of space.

The spatially quenched noise (1) was suggested in [47] to model landscape erosion
where non-erodible (“quenched”) regions may be the main reason behind the scaling [48].

The KPZ model is usually considered with a more general form of a quenched disorder
that includes dependence on the height of the profile ∆(h− h′) [49–51]. This disorder is
often used in the study of driven interfaces in random media [52] (also confer [52] for a
detailed review of the types of quenched noises). However, the factor ∆(h− h′) is a hard
obstacle for analytical approaches [53].

Besides its relative simplicity, the noise (1) also stands aside for its connection with
nonuniversality (see [54–56] in relation to directed percolation, Ref [57] in relation to erosion
of landscapes, and [58] in relation to self-organised criticality).
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In this paper we propose to analyse the version of the KPZ equation where the
white noise is replaced with the time-independent spatially quenched noise (1). However,
one could include the spatially quenched noise in another way, namely, by coupling the
conserved KPZ equation (i.e., the modification of the model with conservation law) with
the spatially quenched noise [59]. Note that the resulting model is vastly different.

Another possible modification of the KPZ model involves inclusion of the motion
of the environment. Critical behaviour of nearly-equilibrium nearly-critical systems can
be dramatically affected by the motion of the medium either disappearing altogether or
acquiring new unexpected features [60–66]. Considering that environment motion is almost
impossible to exclude in real experimental settings, it is important to account for it while
studying critical behaviour.

Recent attempts [67–69] revealed that turbulent or random environment (modelled
either by stochastic Navier-Stokes equation or by a “rapid-change” Kazantsev-Kraichnan
velocity ensemble) dominates scaling and “washes away” the kinetic roughening.

In this paper, we apply the field theoretic RG to a nonlinear non-equilibrium nearly-
critical system, subjected to a quenched disorder and turbulent environment. The system
is described by the KPZ equation, while the disorder is described by the Gaussian time-
independent spatially quenched noise (1). The environment is modelled by the “synthetic”
Gaussian ensemble with vanishing correlation time known as the Kazantsev-Kraichnan
ensemble [70].

We found out that coupling with the turbulent velocity field leads to an emergence of a
new nonlinearity that must be included in the model to make it renormalizable. RG analysis
shows that there are six regimes of critical behaviour; critical exponents are calculated
for every regime in the leading order of the double expansion in ε = 4− d and velocity
exponent ξ (one-loop approximation). The most realistic values of parameters (d = 1, 2, 3
and ξ = 4/3) correspond to the regime where the turbulent advection is irrelevant (in the
sense of Wilson) while the new nonlinearity is relevant along with the KPZ nonlinearity.

The plan of the paper is as follows: the problem is described in Section 2; Section 3
details renormalization procedure up to calculation of renormalization constants; fixed
points of the RG equation, their stability regions, and corresponding critical exponents are
considered in Section 4; Section 5 contains conclusion and discussion of the implications.

2. Formulation of the Problem

Kinetic roughening of growing interfaces can be described by a power law for asymp-
totic behaviour of the so-called structure functions in the IR range. It could be entered
as following:

Sn(t, r) = 〈[h(t, x)− h(0, 0)]n〉 ' rnχ Fn(t/rz), r = |x|. (2)

Here h(t, x) stands for the height of the surface profile (here and below, t and x are the
time and the space coordinates, respectively), while the averaging 〈. . . 〉 is defined as above.
The roughness exponent χ, the dynamical exponent z and the universal scaling functions
Fn(·) determine the universality class of the scaling behaviour.

To calculate the critical exponents χ and z, we perform the RG analysis of the model
which consists of the equation for the interface growth and statistical ensemble for the
velocity field that models environment motion.

The KPZ model that describes interface growth is a nonlinear differential equation for
the field h(x) = h(x, t):

∂th = ν0∂2h +
λ0

2
(∂h)2 + f . (3)

Here ∂t = ∂/∂t, ∂i = ∂/∂xi, ∂2 = ∂i∂i, (∂h)2 = (∂ih)(∂ih), i = 1, ..., d and d is the
dimension of the space. Summation over repeated tensor indices is implied throughout
the paper. The parameter ν0 > 0 corresponds to the “surface tension”, and λ0 (can be
either positive or negative) stays by the nonlinear term of the equation. The nonlinearity
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models lateral growth or decay. Let us first set λ0 = 1 as a non-trivial λ0 that can always be
scaled out.

The random noise f is supposed to simulate the processes occurring at small scales
(which means the smallness of the noise correlation radius in comparison with the distances
we are interested in). So it is reasonable to choose the noise correlation function in the form
of a spatial δ function. A δ function in time would correspond to a vanishing correlation
time which is also a reasonable assumption. Here, however, we choose the spatially
quenched noise (1) discussed in Section 1.

This choice violates the Galilean symmetry of the original deterministic equation (the
symmetry is preserved for the white in-time noise with 〈 f (x) f (x′)〉 ∝ δ(t− t′)).

Let us proceed with the description of the turbulent motion of the environment (e.g.,
some fluid). The velocity of the mixing field is represented by the Kazantsev-Kraichnan
statistical ensemble (see, e.g., [70]), i.e., the Gaussian distribution with zero mean and the
pair correlation function of the form 5

〈vi(t, x)vj(t′, x′)〉 = δ(t− t′)Dij(x− x′),

Dij(r) =
B0

(2π)d

∫
k>m

dk
kd+ξ

Pij(k)ei(k·r).
(4)

Here, Pij(k) = δij − kik j/k2 is the transverse projector, it reflects the incompressibility
of the fluid (∂ivi = 0); k = |k| as the wave number, B0 > 0 is a positive amplitude. The
sharp cutoff k > m serves as an IR regularization.

The advection by the velocity field is provided by the “minimal” replacement

∂th→ ∇th = ∂th + (vi∂i)h (5)

in the Equation (3), where ∇t is the Lagrangian (material, or Galilean covariant) derivative.
However, as we will shortly see below, in the present model this replacement is not self-
sufficient. The coupling to the external velocity field, given by (5), necessarily leads to the
emergence of another effective interaction, proportional to a v2 term in the Equation (3).

3. Field Theoretic Formulation and Renormalization of the Model
3.1. Field Theoretic Formulation

According to the general de Dominicis-Janssen theorem (see, e.g., chapter 5 in the
monograph [44] and references therein) the stochastic problem (1), (3), (4) can be reformu-
lated as the field theoretic model for an extended set of fields Φ = {h, h′, vi} with the action
functional S(Φ) = Sh(Φ) + Sv(Φ), where

Sh(Φ) =
1
2

h′D0h′ + h′{−∇th + ν0∂2h +
1
2
(∂h)2} (6)

is the action functional for the stochastic Equations (1), (3) and (5) at fixed velocity
field, while

Sv(v) = −
1
2

∫
dt
∫

dx
∫

dx′vi(t, x)D−1
ij (x− x′)vj(t, x′) (7)

provides the averaging over the Gaussian velocity statistics defined by Equation (4).
In the Equation (6), the random noise f was integrated out in favor of the auxiliary

response Martin-Siggia-Rose field h′. In the Equation (7), D−1
ij (x− x′) is the kernel of the

integral operation inverse to Dij in (4).
The field theoretic Formulation (6) and (7) means that all the correlation, structure and

response functions of the original full stochastic problem problem (1), (3), (4) given by the
joint averaging over the Gaussian statistics for f and v defined by the Equations (1) and (4)
can be represented by functional averages 〈. . . 〉 =

∫
DΦ . . . exp S(Φ) over the full set of

fields with weight exp S(Φ), and with the proper normalization 〈1〉 = 1.
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All the needed integrations over the arguments t, x and summations over the vector
indices are implied for all terms in the expressions for the action functionals (6), (7) and
similar expressions below, e.g.,

1
2

h′D0 h′ =
1
2

D0

∫
dt
∫

dt′
∫

dx h′(t′, x)h′(t, x),

h′∇th =
∫

dt
∫

dx h′(t, x)∇th(t, x).
(8)

The parameters g̃0, w̃0 serve as the coupling constants (“charges”):

g̃0 = D0/ν4
0 ∼ Λε, w̃0 = B0/ν0 ∼ Λξ . (9)

The above relations follow from the dimensional analysis (detailed in Section 3.2); Λ
sets the typical ultraviolet (UV) momentum scale.

The expressions for the bare propagators are obtained by considering the terms
quadratic in the fields in the action functional (6). The propagators have the following form
in the frequency–momentum representation:

〈h′h′〉0 = 0, 〈hh′〉0 = 〈h′h〉∗0 =
1

−iω + ν0k2

〈hh〉0 =
2πD0δ(ω)

ν2
0 k4

, 〈vivj〉0 =
B0

kd+ξ
Pij(k).

(10)

The propagators (10) include the amplitudes B0, D0. This is not ideal because while
we can still proceed with the calculations, critical dimensions for the fixed points of RG
equations with coordinates equal to zero will have to be readjusted. Indeed, the propagators
that involve bare charges should be treated carefully in the vicinity of trivial renormalized
charges, e.g., when a fixed point has coordinates g̃∗ = 0 or w̃∗ = 0. Otherwise, the
expressions for the critical dimensions naively derived for such points using the standard
Formulas (32) can be wrong. To avoid that complication, let us dilate the fields {h, h′, vi} so
that the couplings g̃0, w̃0 are removed from quadratic terms.

The appropriate choice for the re-scaling is h′D0h′ → h′h′ and vivj/B0 → vivj, i.e.,
we exchange the set of fields {h, h′, vi} with the set {h g̃−1/2

0 ν−2
0 , h′ g̃1/2

0 ν2
0 , vi w̃−1/2

0 ν−1/2
0 }.

Additionally, we pass to new charges g2
0 = g̃0, w2

0 = w̃0.
We arrive at the following action functional:

S(Φ) =
1
2

h′h′ + h′{−∂th− w0ν
1
2
0 (vi∂i)h + ν0∂2h +

1
2

g0ν2
0(∂h)2}+ Sv(Φ),

Sv(Φ) = −1
2

∫
dt
∫

dx
∫

dx′vi(t, x)D−1
ij (x− x′)vj(t, x′),

Dij(r) =
1

(2π)d

∫
k>m

dk
kd+ξ

Pij(k)ei(k·r).

(11)

Note that we did not change notations for the fields and for the operator Dij(r) even
though those quantities were dilated.

3.2. UV Divergences and Renormalization

To eliminate UV divergences, the renormalization procedure is applied. Analysis of
UV divergences is based on canonical dimensions, see, e.g., [44]. Dynamic models have
two independent scales: a time scale [T] and a space scale [L]; therefore, the canonical
dimension of any quantity F is determined by two numbers, namely, by the frequency
dimension dω

F and by the momentum dimension dk
F:

[F] ∼ [T]−dω
F [L]−dk

F . (12)
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Values of canonical dimensions are found from the requirement that all terms of an
action functional be dimensionless with respect to both canonical dimensions; the obvious
normalization conditions are

dk
ki
= −dk

xi
= 1, dω

ki
= dω

xi
= 0, dk

ω = dk
t = 0, dω

ω = −dω
t = 1. (13)

A total canonical dimension dF is defined by the expression dF = dk
F + 2dω

F . The factor
2 follows from the fact that ∂t ∝ ∂2 in the free theory. All the canonical dimensions for the
theory (11) are presented in the Table 1. Parameters x0, x, µ will be defined later on.

The model is logarithmic (all coupling constants become dimensionless) at ε = 0, i.e.,
at d = 4, and ξ = 0.

Table 1. Canonical dimensions of the fields and the parameters in the theory (11); ε = 4− d.

F h h′ vi ν0, ν g0 w0 x0 µ g, w, x

dω
F −1 1 1/2 1 0 0 0 0 0

dk
F d/2 d/2 −ξ/2 −2 ε/2 ξ/2 ξ − ε/2 1 0

dF d/2− 2 d/2 + 2 1−ξ/2 0 ε/2 ξ/2 ξ − ε/2 1 0

A total dimension dΓ of a 1-irreducible Green’s function Γ that involves Nh fields h,
Nh′ fields h′, and Nv fields vi is determined by the following expression

dΓ = d + 2− dhNh − dh′N
′
h − dvi Nv. (14)

In the logarithmic theory, dΓ coincides with the formal index of UV divergence δ of the
corresponding Green’s function. Thus, the divergent part of the function Γ and the possible
counterterms are polynomials of degree δ = dΓ|d=4.

In the case of the theory (11), the real divergence index differs from the formal one:
δ′ = δ− Nh. This is due to the fact that the field h enters the action functional only in the
form of a spatial derivative.

Considering the last condition, one can list possible counterterms: ∂2h′, ∂th′ (these
two are responsible for renormalization of the mean value of h), h′h′, h′∂2h, h′∂th, h′(∂h)2,
h′(vi∂i)h (these five already exist in the action functional), h′(∂ivi) (this one vanishes owing
to the incompressibility of the fluid), and, finally, h′v2 which is a new counterterm.

For the model to be renormalizable, the new term x0
2ν0

h′v2 must be added to the action
functional (11):

S(Φ) =
1
2

h′h′ + h′
{
−∂th− w0ν

1
2
0 (vi∂i)h + ν0∂2h +

1
2

g0ν2
0(∂h)2 +

1
2

x0

ν0
v2
}
+ Sv(Φ). (15)

The coupling constant corresponding to the new nonlinearity is notated as x0. The
factor ν−1

0 appears from the dimensionality considerations.
Up till now we have been considering the KPZ equation with turbulent advection

incorporated via the the Lagrangian derivative ∇t (5):

∇th = ν0∂2h +
1
2
(∂h)2 + f . (16)

It should be stressed that by including a new term into the action functional we
effectively changed this equation into another one:

∇th = ν0∂2h +
1
2
(∂h)2 +

1
2

g0x0

w2
0

v2 + f (17)

(here notations {h, h′, v} stand for the fields before re-scaling).
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Now that we ensured multiplicative renormalizability of the theory (15), bare fields
and parameters can be expressed in terms of their renormalized counterparts:

h0 = Zhh, h′0 = Z′hh′, v0 = Zvv,

g0 = Zgµε/2g, w0 = Zwµξ/2w, x0 = Zxµξ−ε/2x.
(18)

Here we added the subscript 0 to the fields to differentiate them from the renormalized
ones. The renormalization mass µ is an additional parameter of the renormalized theory
while the set {Z} are renormalization constants.

The renormalized action has the form

SR(Φ) =
1
2

Z1h′h′ + h′
{

∂th− Z2wν2(vi∂i)h + Z3ν∂2h +
1
2

Z4gν2(∂h)2+

1
2

Z5
x
ν

v2
}
+ Sv.

(19)

The constants {Z} are found from the condition that the corresponding Green’s
functions be UV finite in the given order of the perturbation theory.

For the action (19), the relations between the renormalization constants are:

Zh = Z−1/2
1 ; Zh′ = Z1/2

1 ; Zν = Z3; Zv = 1;

Zg = Z1/2
1 Z−2

3 Z4; Zw = Z2Z−1/2
3 ; Zx = Z−1/2

1 Z5Z3. (20)

Using MS scheme and one-loop approximation, we arrive at the following results
(see [67] for a detailed example of one-loop calculations):

Z1 = 1− ĝ2

2ε
,

Z2 = 1 +
ĝ2

dε
− x̂ĝ

(
1− 1

d

)
1

2ξ
,

Z3 = 1 +
ĝ2

dε
− ŵ2

(
1− 1

d

)
1

2ξ
,

Z4 = 1 +
ĝ2

dε
− ŵ2

(
1− 1

d

)
1

2ξ
,

Z5 = 1 +
ĝŵ2

dx̂ε
− x̂ĝ

(
1− 1

d

)
1

2ξ
.

(21)

Here f̂ = f
√

Sd/(2π)d for any f = {g, w, x}, where Sd = 2πd/2/Γ(d/2) is the area of the
unit sphere in d-dimensional space.

4. RG Equation, Fixed Points, Critical Exponents
4.1. RG Equation, RG Functions

The Green’s functions of the theory (11) can be expressed in terms of their renormalized
counterparts in the following way:

G(e0, . . . ) = ZNh
h ZNh′

h′ ZNv
v GR(µ, e, . . . ). (22)

Here e0 denotes the full set of the bare parameters {ν0, g0, w0, x0} while e stands for
renormalized ones; other arguments (times, momenta etc.) are denoted with the ellipsis.
Nh, Nh′ , Nv are numbers of the respective fields in the function G.

We apply the operator µ∂µ, taken at fixed bare parameters, to both sides of the expres-
sion (22) to obtain the basic RG equation:

(Dµ + βg∂g + βw∂w + βx∂x − γνDν − γGR)GR = 0. (23)
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Here Dµ = µ∂µ and Dν = ν∂ν; anomalous dimensions γν, γGR and beta functions βg,
βw, βx are so-called RG functions and they are defined in the standard way:

γ f = DRG ln Z f , β f = DRG f , (24)

where f = {g, w, x} and DRG = µ∂µ|e0 . From (18) and (24) the following relations can be
obtained:

βg = −g(ε/2 + γg),

βw = −w(ξ/2 + γw),

βx = −x(ξ − ε/2 + γx).

(25)

The corresponding anomalous dimensions in one-loop approximation are (hereafter
we omit the notationˆ):

γg = g2/2− 3w2/8,

γw = 3xg/8− g2/8− 3w2/16,

γx = −g2/2− w2g/4x + 3xg/8 + 3w2/8.

(26)

4.2. Fixed Points, Stability Regions

Critical exponents that characterize IR asymptotic behaviour of a system are associated
with IR attractive fixed points of the RG equation derived for the corresponding field theory
(see, e.g., [44]). Values of the renormalized charges (g∗, w∗, x∗) serve as coordinates of
the fixed points; they are found from the system of equations β f (g∗, w∗, x∗) = 0 for all
f = {g, w, x}. Matrix Ωij(g, w, x) = ∂β f j

/∂ fi (where f again is a set of charges {g, w, x})
determines the type of fixed point. For IR attractive points, Re(λk) > 0 for ∀k = {1, 2, 3},
where {λk} is a complete set of eigenvalues of the matrix Ωij(g∗, w∗, x∗). The region of
system’s parameters where a given point is IR attractive is referred to as an IR stability
region of this point.

The system of beta functions (25) reads

βg = −g
(

ε/2 + g2/2− 3
8

w2
)

,

βw = −w
(

ξ/2− g2

8
+

3
8

xg− 3
16

w2
)

,

βx = −x
(

ξ − ε/2− g2/2− 1
4

w2g/x +
3
8

xg +
3
8

w2
)

.

(27)

The system has the following solutions:

• FP1a (fixed point 1a) g∗ = w∗ = x∗ = 0 with IR stability region ε < 0, ξ < 0, ξ < ε/2.
• FP2 g∗2 = −ε, x∗ = w∗ = 0 with IR stability region ε < −4ξ, ξ < 0, ε > 0. Note that

this point is actually two points (as there are two roots of the equation g∗2 = −ε) that
share the same stability region.

• FP3 g∗2 = −4ξ− 2ε, w∗2 = −16ξ/3− 4ε/3, x∗ = (−16ξ/3− 4ε/3)/g with IR stability
region ε > −4ξ, ξ < 0 (for all four combinations of the roots).

• FP4 g∗2 = 4ξ− 2ε, w∗2 = 16ξ/3− 4ε/3, x = 2g/3 with IR stability region ε > 4ξ, ξ > 0
(for all 4 combinations of the roots).

• FP5 g∗2 = −ε, w∗ = 0, x∗ = −8ξ/3g with IR stability region ε < 4ξ, ξ > 0, ε > 0 (for
both roots).

• FP6 g∗ = x∗ = 0, w∗2 = 8ξ/3 with empty IR stability region (for both roots).

The listed fixed points must be supplemented with the solutions that account for
marginal values of the charges. To find them, let us pass to a new set of charges with
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β−functions that do not involve terms with nontrivial denominators. The appropriate
substitution is a set {g, y = xg, α = w2/y} with a system of β−functions:

βg = −g
(

ε/2 + g2/2− 3
8

αy
)

,

βy = −y
(

ξ − αg2

4
+

3
8

y
)

,

βα = −α

(
−g2/4− 3

8
αy +

3
8

y +
1
4

αg2
)

.

(28)

Additional fixed points include:

• FP1b g∗2 = 0, y∗ = 0, arbitrary α∗ with IR stability region ε < 0, ξ < 0;
• FP7 g∗2 = 0, y∗ = −8ξ/3, α∗ = 0 with IR stability region ξ > 0, ε < 0;
• FP8 g∗2 = 0, y∗ = −8ξ/3, α∗ = 1 with empty IR stability region.

Stability regions on the ε− ξ plane are shown at the Figure 1.

Figure 1. IR stability regions of the fixed points for the renormalized theory (19).

Let us discuss the stability regions in details. The domain in the lower left part of the
graph on the Figure 1 (quadrant III of ε− ξ plane) corresponds to the couple of Gaussian
points FP1a and FP1b (their combined stability regions are denoted as FP1 on the Figure 1).
This region is related to ordinary diffusion as all the coupling constants in the IR limit tend
to zero for the negative ξ and ε.

The domain denoted FP2 corresponds to the regime where only the KPZ nonlinearity
is relevant. As one can see, x∗ = 0 in this regime, which is consistent with the pure
KPZ model (with the spatially quenched noise and without the turbulent mixing) being
multiplicatively renormalizable without an extra term h′v2 in the action functional [71].

Surprisingly, while stability region of the point FP5 also corresponds to the regime
where the KPZ nonlinearity is relevant and the turbulent mixing is irrelevant, the coordinate
x∗ is not trivial for this regime: x∗ 6= 0. That means that the new nonlinearity h′v2 is relevant
even while the turbulent mixing (that induced it in the first place) is “turned off”. It should
be noted that it is this regime that corresponds to the Kolmogorov value of the exponent
ξ = 4/3 (for either d = 2 or d = 3).

This is also the case with the regime for the point FP7: the new term h′v2 determines
the IR asymptotic behaviour while both the turbulent mixing and the KPZ nonlinearity
are irrelevant.

Finally, in the regimes corresponding to the points FP3 and FP4, both nonlinearities
and the turbulent mixing are relevant as all coordinates of the fixed points are nontrivial.
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It should be noted that for the regimes that correspond to the regions in the right-hand
side of the graph on Figure 1, some coordinates of the fixed points are imaginary while
some are negative.

4.3. Critical Exponents

Note that the substitution g → g∗ turns the RG Equation (23) into an equation with
constant coefficients (

Dµ − γ∗ν Dν − γ∗GR

)
GR = 0. (29)

Here γ∗ν = γν(g∗, w∗, x∗) and γ∗GR
= γGR(g∗, w∗, x∗). Canonical scale invariance for

the renormalized Green’s function GR is expressed by the following differential equations:(
∑

i
dk

i Di − dk
GR

)
GR = 0;(

∑
i

dω
i Di − dω

GR

)
GR = 0.

(30)

Here i a is full set of arguments of GR: {i} = {ω, k, g, w, x, ν, µ}. As before, Di = i∂i
while dk and dω stand for canonical dimensions. By combining (29) and (30) to eliminate
operator Dµ (as µ is fixed in IR asymptotic) we obtain the equation of critical scaling:

(∆ωDω + ∆kDk − ∆G)GR = 0, (31)

where critical dimensions ∆G, ∆k, ∆ω are

∆G = γ∗GR
+ dk

GR
+ dω

GR
∆ω,

∆k = 1, ∆ω = (2− γ∗ν).
(32)

Critical exponents χ and z in the power law (2) are related to critical dimensions in
a trivial way: χ = −∆h, z = ∆ω. This statement, however, is not obvious and requires
justification. Indeed, the power law (2) is written for the structure functions Sn that
consist of pair correlation functions 〈hs(x)hq(0)〉 of the composite fields hn(x) (“composite
operators”). Generally, renormalization of such objects requires additional (sometimes
quite complex) analysis. In the present case, however, one can prove (see [67] for a detailed
proof in a similar case) that operators hn are not renormalized and their critical dimensions
are given by the equality ∆hn = n∆h. The latter is enough to justify the relation for
critical exponents.

Critical dimensions for the fixed points FP1–FP7 (one-loop approximation) are pre-
sented in Table 2.

Table 2. Critical dimensions for the fixed points FP1–FP7.

FP ∆ω ∆h ∆v ∆h′

FP1a, FP1b 2 d/2− 2 1− ξ/2 d/2 + 2

FP2 d/4 + 1 0 1/2− d/8− ξ/2 d

FP3 2 + ξ 0 1 d

FP4 2− ξ 0 1− ξ d

FP5 d/4 + 1 0 1/2− d/8− ξ/2 d

FP6 2− ξ 0 1− ξ d

FP7 2 d/2− 2 1− ξ/2 d/2 + 2

Critical exponent ∆h for the point FP2 (the regime of the pure KPZ model) is in
agreement with [71] (Equation (43)), where the KPZ model with the spatially quenched
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noise was considered without the turbulent mixing. IR stability region of the point FP6
is empty but it is this point that corresponds to the regime of the pure turbulent mixing.
Critical exponents for FP6 related to the velocity field (∆ω = 2− ξ, ∆v = 1− ξ) are in
agreement with exponents for Kazantsev-Kraichnan velocity ensemble, see, e.g., equations
(2.18)–(2.20) in [72]. All critical exponents for the point FP4 coincide with the ones calculated
for nontrivial regime of a system described by the original KPZ model (with the white
random noise) and Kazantsev-Kraichnan ensemble, see equation (6.4) in [67].

5. Conclusions and Discussion

We studied the Kardar-Parisi-Zhang (KPZ) model with a time-independent (also
referred to as columnar or spatially quenched) random noise and turbulent motion of
the environment. The latter was simulated by the Kazantsev-Kraichnan’s “rapid-change”
velocity ensemble.

The problem was reformulated as a certain field-theoretic model, and the standard
renormalization procedure was applied. It was shown that the original model is not closed
with respect to renormalization in the following sense: a new interaction (quadratic in the
velocity field) unavoidably appears as a counterterm. The general RG ideology requires
this term (that was absent from the initial “naive” formulation of the model) to be included
into consideration from the very beginning.

Thus, the original KPZ equation should be generalized not only by the minimal
advection replacement (5), but also by adding the new v2 term.

In terms of the Wilsonian RG, the appearance of such a new term can be explained in
the following way. The first RG iteration consists of the integration of the band of Fourier
modes k closest to the UV cut-off. The resulting “effective” stochastic equation (or the
corresponding effective action functional) involves infinitely many terms with arbitrarily
high powers of fields and their derivatives. Most of them are discarded by dimensionality
reasons. In ordinary cases, the remaining terms differ from the original ones only by the
change (“renormalization”) of the coefficient parameters. If so, the iteration procedure is
infinitely repeated, driving the system to one of the IR attractive fixed points. In our case,
the very first iteration gives rise to a new term: v2 in the equation, or h′v2 in the action
functional. This term cannot be discarded, and it will reappear in the subsequent iterations.
Thus, it is not forbidden by symmetry or dimensionality reasons, and it is natural to include
it into the model from the very beginning. Then, such an extended model will be closed
with respect to the renormalization procedure.

For this extended renormalizable field theoretic model, possible types of IR asymptotic
behaviour (universality classes) are associated with the fixed points of the corresponding
RG equations.

The RG equations, derived for our properly extended model with the new term, have
eight fixed points. Two of them are always unstable, while the others can be IR attractive for
a certain choice of the spatial dimension d and the velocity exponent ξ. Critical dimensions
that describe the IR (long-time, large-distance) asymptotic behaviour of the correlation
functions were found in the leading order of the double expansion in ε = 4− d and ξ
(one-loop approximation). Their values are universal in the sense that they depend only on
the spatial dimension d and the parameter ξ.

It turns out, that all the nontrivial scaling regimes correspond to complex or negative
fixed points coordinates, which is a feature shared with the majority of models within the
KPZ family.

The most realistic values of parameters (d = 1, 2, 3 and ξ = 4/3) correspond to
the point referred to as FP5 in Section 4. In this regime, the advection term appears IR
irrelevant (in the sense of Wilson) while the new term is relevant along with the original
KPZ nonlinearity. This means that the effect of the turbulent environment manifests itself
not as a habitual transfer (advection) but as a certain nonlinear interaction of the velocity
field. In other words, the minimal replacement (5) is not internally consistent and thus, is
not sufficient to describe the effect of the environment of the scalar field.
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This situation has some interesting parallels with the light-light (or photon-photon)
scattering, the phenomenon that is absent in the classical electrodynamics, but emerges in
the quantum case as a result of interaction with the vacuum fluctuations. To be precise,
the situation can roughly be compared with the weak-field limit of the Euler-Heisenberg
electrodynamics that involve two terms, quartic in the electromagnetic potential [73]. The
simplest interaction term responsible for such phenomenon is a local term quartic in
the electromagnetic potential, (Aµ Aµ)2. It has the necessary canonical dimension but
it is forbidden by the gauge symmetry and, therefore, cannot emerge as a counterterm.
Similarly, dimensional considerations show that the term v2 can be added to the KPZ
equation, no matter what kind of random noise is used. However, if we require the model
to be Galilean covariant, such term is forbidden. This happens in the case of the white
in-time noise because it respects the Galilean symmetry [70]. On the contrary, in our
model, that symmetry is already violated by the spatially quenched noise so the term h′v2

necessarily results from the renormalization procedure and should be added into the action
functional from the very beginning.

However, quartic terms in the QED do appear in the effective action functional due to
the radiative corrections. For the first time, they were derived within the Euler-Heisenberg
Lagrangian and, for small fields, reduce to the forms (E2 − B2)2 and (EB)2, which are both
Lorentz and gauge invariant. Written in terms of the potential Aµ, they involve fourth-
order derivatives and have a larger canonical dimension in comparison with the classical
Lagrangian L ∼ (E2 − B2). This difference is compensated by the dimensional coefficient
1/m4

e , where me is the electron mass.
Similarly, the effective action for the KPZ model in the Galilean invariant case may

include invariant terms, quadratic in the gradients of the velocity field (resulting from
the 1-irreducible function 〈h′vv〉) with a larger canonical dimension and the dimensional
coefficient 1/m2.

For the heat transfer equation, an explicit expression for those terms is presented
in [74], see equation (50.2) on page 197. They describe dissipation of the mechanical kinetic
energy of the fluid into heat and lead to the linear growth of the mean temperature. Note
that in the energy balance equation for the fluid they appear with the opposite sign (see,
e.g., [10]) providing conservation of the full energy.

It should be stressed that the actual dimensionless parameter in the gradient expansion
for the KPZ equation is ∂2/m2 ∼ k2/m2 � 1. In the Galilean invariant case (white in-time
noise) the contribution of the new terms to the surface growth rate is suppressed by this
parameter, while in the present case (spatially quenched noise) the effect is of order O(1)
and, therefore, is much more strongly pronounced. Thus, the RG ideology requires that
this h′v2 term be included in the action functional from the very start.

The new term h′v2 also determines the IR asymptotic behaviour in the regime that cor-
responds to the fixed point FP7, where both the turbulent mixing and the KPZ nonlinearity
are irrelevant.

Now let us briefly comment on the physical interpretation of the negative and imag-
inary fixed points’ coordinates. Imaginary values of the coordinate g∗ correspond to a
negative amplitude of the pair correlator for the field h. This has several possible impli-
cations. Firstly, it may imply a connection to models constructed within the Doi-Peliti
formalism [75–81] where quadratic terms with negative signs and imaginary random noise
can appear [78–82]. Secondly, there is a mapping of the KPZ equation with the white in-time
noise onto the one-dimensional Lieb–Liniger model of Bose gas [83,84]. Surprisingly, it is a
negative sign of the pair correlator that corresponds to the Bose gas with repulsion [85].
Lastly, such coordinates do not preclude the existence of non-perturbative IR attractive
fixed point that remains hidden in perturbative RG analysis. See a more detailed discussion
of related issues in [68].

Elsewhere, negative values of kinetic coefficients were sometimes encountered in non-
equilibrium stochastic models, especially involving compressible fluids [86–89]. Complex
effective viscosity coefficient is featured in stochastic equations for Langmuir plasma
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turbulence [90,91] and in a stochastic version of the nonlinear Schrödinger equation [92].
Imaginary fixed points and negative contributions to the diffusivity coefficient were recently
obtained in a model of active scalar turbulent convection [93].

Thus, the problem of complex effective values of real physical quantities appears
ubiquitous and pervasive in non-equilibrium stochastic problems. The physical inter-
pretation of this persistent phenomenon deserves a careful and systematic analysis and
suggests important directions in further investigation. In particular, it is interesting to
study more realistic and complex models. As possible generalizations of our present model,
non-Gaussian velocity fields with finite correlation time, governed by various types of
stochastic Navier-Stokes equations, can be employed.

Another direction to explore was recently suggested in [43] where critical exponents
for the KPZ model were obtained for general d by imposing the fractality of the interface.
That result brings to mind the earlier work [94] where the exponents were “quantized” due
to certain requirements involving an operator product expansion, although the issue of
multiscaling was not addressed. By now, multiscaling and multifractals have been observed
in a variety of field theoretic models; see, e.g., [72,95–97]. One can hope that combined
application of functional renormalization group, operator algebras and fractal concept will
shed new light to the critical behaviour of growing interfaces and kinetic roughening on
the whole.
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Notes
1 To be precise, an equivalent model was introduced much earlier in terms of a vector field in a seminal paper by Forster, Nelson

and Stephen [4]. There, among other relevant models, the stochastic d-dimensional generalization of the Burgers equation was
studied in connection with problem of long-time tails in hydrodynamic description of fluids.

2 Giorgio Parisi was awarded the Nobel Prize in Physics 2021 “for the discovery of the interplay of disorder and fluctuations in
physical systems from atomic to planetary scales” [5].

3 Regarding the upper critical dimension (UCD), it should be noted that in the field theoretic approach to stochastic models
analysis, the term “UCD” is used for the dimension above which the critical exponents are given by the mean-field theory [44].
This UCD generally coincides with the logarithmic dimension d∗ above which all the interactions become IR irrelevant in the
sense of Wilson; see, e.g., Section 1.16 in [44]. In the study of fluctuating surfaces, however, the “UCD” means something different
and stands for the dimension below which a surface is rough and above which it is smooth. While the logarithmic dimension
can be easily found for a renormalizable model, calculation of thus defined UCD requires significantly more effort. For the KPZ
equation, not only there is no consensus on the value of UCD, but even its existence is under a question [3,19,20,34–43].

4 In other words, the random noise f (x) is assumed to have Gaussian probability distribution with the correlation function (1).
5 The brackets 〈. . . 〉 in Equation (4), thus, stand for averaging over the Gaussian statistics for the velocity v while the brackets in

Equation (1) stood for averaging over the Gaussian statistics for the random noise f .
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