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Abstract—The article describes the effect of phase transition heat on the temperature of a closed multicom-
ponent vapor–gas metastable phase and on growing supercritical droplets and their size distribution at the
stage of homogeneous formation and growth (nucleation stage) of the supercritical droplets. It is assumed
that, between essentially supercritical droplets and the vapor–gas medium, a stationary diffusion transfer of
condensing vapor molecules and heat is established, and, then, both the composition and temperature
remain unchanged and the same for all supercritical droplets. A set of equations is derived to determine the
composition, temperature, and growth rate of the essentially supercritical droplets via the initial temperature
and supersaturation of vapors. Expressions are obtained for the deviation of vapor–gas medium temperature
from its initial value and for the droplet size distribution function as depending on time.
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INTRODUCTION
Rather many works have been devoted to studying

the nonisothermal homogeneous nucleation in super-
saturated vapors. Usually, when the thermal effects of
the nonisothermal nucleation are in question, the role
of heating of one-component droplets with near-criti-
cal sizes and the resulting thermal deceleration of the
nucleation [1, 2], the heating, variations in the droplet
composition, thermal deceleration of the growth of
one- and multicomponent supercritical droplets
under the conditions of stationary and nonstationary
exchange of matter and heat with a vapor–gas medium
[3–9], and the effect of the heat of the phase transition
in a closed one-component metastable vapor–gas
phase on growing supercritical droplets and their size
distribution at the stage of homogeneous formation
and growth (nucleation stage) of supercritical droplets
[10–12] are discussed.

In this article, we would like to include the descrip-
tion of the thermal effects of nonisothermal condensa-
tion in a closed vapor–gas metastable phase into the
theory of the nucleation stage of supercritical droplets
in multicomponent vapors, which we have recently
formulated in [13, 14]. Therewith, we shall not discuss
the evolution of the distribution of multicomponent
near-critical droplets under the conditions of noniso-
thermal condensation at the incubation stage of the
development of a stationary nucleation rate, because
we consider this problem as requiring a separate study.
The establishment of stationary composition and tem-
perature of essentially supercritical droplets together

with the establishment of stationary diffusion of
vapors into growing droplets will serve as factors that
greatly simplify the study of the nucleation stage of
supercritical droplets.

1. INITIAL RELATIONS

Let an initial system contain  number of compo-
nents of condensable vapors and a noncondensable
passive gas. Initial concentrations of vapors , pas-
sive gas concentration , and initial absolute tempera-
ture  of the vapor–gas mixture are considered to be
preset parameters.

As arising supercritical droplets monotonically
grow, vapor concentrations  decrease as functions
of time , and the heat generated by condensation
increases temperature  of the vapor–gas medium.
In this case, the rate of generation of new supercritical
droplets gradually decreases due to a reduction in the
supersaturation of condensing vapors and an increase
in the temperature of the metastable phase. For the
current values of vapor supersaturation , we have

(1)

where  is the temperature-dependent concentra-
tion of saturated vapor of an ith component near a pla-
nar surface of a pure liquid of this component.
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Accordingly, for the initial values of the supersatura-
tions, we have

(2)

Nucleation rate  of multicomponent droplets may
be written in the following form [13–16]:

(3)

where  is the work formation of a critical droplet
(the value of droplet formation work at the saddle
point corresponding to an unstable equilibrium of the
droplet with the multicomponent vapor–gas medium)
and  is a pre-exponential factor that depends on the
way of transition through the saddle point of the work,
the temperature of near-critical droplets, and super-
saturation of the vapors. This factor varies slightly with
time at the nucleation stage. Expression for work 
has the following form [14]:

(4)

where  is the Boltzmann constant, while surface
tension coefficient  of the droplet and parameter V

depend on critical droplet composition, which is, in
turn, determined by supersaturations

 of the vapors.

As has been shown in [14], to find molar fractions
 of the components in a critical

droplet and parameter V as depending on the supersat-
urations, the following set of nonlinear equations may
be obtained:

(5)

(6)

In these equations,  is the partial volume of
an th component in the droplet and  is the
corresponding activity coefficient.

We define relative variations in the supersatura-
tions of the vapors at the nucleation stage as

(7)

where  is the total supersaturation of the multicom-
ponent vapor [13, 14]:
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Bearing in mind the smallness of the relative varia-
tions in supersaturations  and temperature

 of the vapor–gas medium at the
stage of nucleation, we may take

(9)

(10)

Here  is the nucleation rate at the initial
values of supersaturations and, ignoring the heating of
the vapor–gas medium but taking into account the
heating of the near-critical droplets, ,

(11)

(12)

As the supercritical droplet grows, its composition
and temperature vary, and a stationary regime of the
growth and heat exchange with the vapor–gas
medium is gradually established. In this regime, both
the droplet composition, which is characterized by a
set of mole fractions , and its temperature 
remain further unchanged and the same for all super-
critical droplets. If the time required to establish the
stationary regime of droplet growth is short compared
to the total duration of the nucleation stage (this will
be the case, provided that the maximum droplet size is
sufficiently large by the end of the nucleation stage), it
may be approximately assumed that this regime is
realized throughout the growth time of supercritical
droplets. We shall use this approximation in our con-
sideration in Section 2.

2. STATIONARY COMPOSITION , 
TEMPERATURE  AND GROWTH RATE 

OF A SUPERCRITICAL DROPLET
Under the conditions of stationary diffusion of

vapor particles, we have the following expression for
the rate of variations in number  of particles of an
th component in a droplet with radius  [14]:
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where it has been taken into account that
. We deter-

mine the total number of particles in the droplet with
composition  by relation

(14)

Accordingly,

(15)

(16)

From Eqs. (16) and (13), we obtain

(17)

Now, we take into account that a good approxima-
tion for  at  is relation

(18)

where  is the heat of one molecule evaporation from
a droplet of pure liquid of th component at tempera-
ture . Substituting Eq. (18) into Eq. (17), we find

(19)

at

(20)

Set (19), (20) includes  number of equations and
is supplemented with the condition of stationary heat
balance, which, for a growing individual droplet, has
the following form:

(21)

where  is the thermal conductivity coefficient of the
vapor–gas medium and qi is the partial heat of con-
densation of ith component from a growing supercrit-
ical droplet. Here, inequality  has
been taken into account. This inequality means that
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the increase in the temperature of the vapor–gas
medium is substantially lower than the increase in the
temperature of the growing supercritical droplet.

As a result, Eqs. (19)–(21) compose the required
complete set of equations for stationary composition

 and temperature  of the droplet. In the general
case, this set requires the knowledge of the activity
coefficients for the solution in the supercritical drop-
let, and, even under the approximation of an ideal
solution, when more than two vapors condense, it can
be solved only numerically.

Let us now find an expression for the stationary
growth rate of an essentially supercritical droplet. For
such a droplet, its radius  and total number  of
condensate molecules in it are obviously related as

(22)

where

(23)

 is the partial volume for molecules of an
th component in the droplet. Differentiating both

sides of Eq. (22) with respect to time and taking into
account Eqs. (14), (15), and (13), we obtain

(24)

Using relation , which follows
from Eq. (2), and Eq. (18), we rewrite Eq. (24) as

(25)

so that

(26)

We see that, as in the isothermal case, the squared
radius of the multicomponent droplet grows linearly
with time. Substituting solutions  and  of Eqs.
(19)–(21) into functions  and 
and using relations (25) and (26), we can find numer-
ically the radius of a growing droplet at any time
moment of the nucleation stage. Upon isothermal
nucleation, , and Eq. (25) is transformed into
relation (4.30) presented in [3]. Note that, taking into

account identity , expression for  may
be equivalently rewritten as
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(27)

3. VARIATIONS IN VAPOR–GAS MEDIUM 
TEMPERATURE

Now, let us find an explicit expression for the tem-
perature of the vapor–gas medium. We assume that all
of the heat released upon vapor condensation is trans-
ferred into the vapor–gas medium. The corresponding
heat balance is expressed as

(28)

where

(29)

 is the current value of the vapor–gas medium
temperature, and

(30)

is the specific heat of vapor–gas medium unit volume
in the units of Boltzmann constant . Taking into
account Eq. (30), Eq. (28) is rewritten as

(31)

Let us express  via the values of .
Using definitions (7) and (2) and Eq. (18), we, at

 derive
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Expressing difference  from relation (32) via
, we find
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Substituting this result into Eq. (31), we obtain
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Solving Eq. (34) with respect to , we arrive at

(35)

where
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Using relation (37), expression (10) for time-
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Substituting Eq. (41) into Eq. (40), we obtain

(42)

Using expression (38) for nucleation rate  in
Eq. (42), we have

(43)

The substance balance equation for an th con-
densing component may be written as follows:
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where  is the maximum droplet
size at a time moment  (this is the radius of the drop-
lets arising at the moment ).

Following [10], let us introduce notation

(45)

Employing notation (45) and expression (43) for

 in (44), we rewrite the substance balance
equation for the th condensing component in the
form of

(46)

Now we need to express functions { } via func-
tions { }. Using relation (31) in expression (32), we
derive

(47)

( ) { }( ) ( )( )

{ }( )( ) ( )

{ }( )
{ }( )

2 2
s d

0

2
s d

0
2

s d

s d

( , ) = ,

,

,
= .

,

t

t

f R t d J R A x T t

d R A x T J t

RJ t
A x T

A x T

τ τ δ − − τ

= τδ − τ − τ

 
− 

 





( )J t

{ }( )

{ }( )

2 0

s d
2

s d

( , ) =
,

exp .
,i i

i

Jf R t
A x T

Rt
A x T

  
× − Γ ϕ −  

  
 �

i

( ) { }( )

( )2
m

3 2 2s
,0

s s d 0

4= ( , ) ,
3 ,

R t
i

i i
xn n t R f R t dR
x T

π− 
V

( ) { }( )2
m s d,R t A x T t=

t
0t =

( ) ( ),0

0 0

.
( )

i i
i

i

n n t
t

n T
−

ψ ≡
ζ �

2( , )f R t
i

( )
{ }( ) { }( )

{ }( )
( )

22

s d

0 s

s d 0 0 s s d

,3 2

0

4
3 , ( ) ,

.
j j

j

i
i

i

RR t t
A x T

J xt
A x T n T x T

R e dR

 
− Γ ϕ − 

 

πψ =
ζ

×



�

�

V

( )tϕ
( )tψ

( )

{ }( ) ( )( )

,0

0 0

s d,0 ,0
,0

10 0 B 0 B 0

( )
( )
,

.
( )

i i
i

i
k

ji i
j j

ji

n n t
t

n T
q x Tn q

n n t
n T k T ck T=

−
ϕ =

ζ

+ −
ζ 

�

�

COLLOID JOURNAL  Vol. 83  No. 6  2021
Substituting notation (45) into Eq. (47) and using
notations (36), we arrive at the sought relation

(48)

Taking into account Eq. (48), we rewrite
 as
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be written as
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Substitution of relation (54) into expression (43) yields
the required expression for the time-dependent drop-
let size distribution function in the form of

(55)

Ignoring the thermal effects, parameters  and 
are found under condition , and, from

Eq. (51), we have , so that distribution (55) is
naturally reduced to the distribution obtained previ-
ously under the isothermal approximation [14]
(unfortunately, relation (5.15) in [14] contains extra
factor 2 in the denominator).

In the particular case of the condensation of a one-
component vapor, relation (55) yields the expression
for the distribution function that was obtained for this
case in [11] under the condition of a stationary diffu-
sion flux of a vapor (relation (37) in [11]). In the one-
component case, expression (55) may be written as
follows:

(56)

where  is the volume of a molecule in a droplet,
and, for the value of , relation (25), yields
expression  .
Further, we have relation 

. Parameters  and  intro-
duced in this way coincide with the corresponding
parameters in [11]. As a result, expression (56) is
rewritten as

(57)

In addition, for the parameter , relation (51) with
regard to Eq. (2) yields

(58)

Using expression (4) for the work of formation of a
critical droplet and the definitions of parameters 
and , it is easy, in the one-component case under
consideration, to ascertain that relation (58) between
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 and  is identical to the relation between the values

of  and  in [11] (expression (23) in [11]). Thus,
relation (57) is indeed identical to the expression
obtained earlier in [11] for the distribution function in
the case of condensation of a one-component vapor
(relation (37) in [11]).

CONCLUSIONS
We have derived thermodynamic equations and

relations that completely describe the established
composition, temperature, and diffusion growth rate
of essentially supercritical droplets at the stage of non-
isothermal phase transition, at which the homoge-
neous nucleation of supercritical droplets occurs in a
closed metastable multicomponent vapor–gas phase.
The parameters of these equations and relations are
the initial supersaturations of the vapors and the initial
temperature of the vapor–gas medium. Moreover, we
have related the current variation in the temperature of
the vapor–gas medium at the stage of nucleation to
the initial values of the supersaturations and tempera-
ture of the medium. These results have enabled us to
find the current distribution of supercritical droplets
over their squared radii at the nucleation stage.

The relations obtained extend and supplement the
general theoretical description of the stage of homoge-
neous nucleation in multicomponent supersaturated
vapors [13, 14] for the case of nonisothermal nucle-
ation.
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