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Abstract. We establish relationships between the classical moments problems which are
problems of a construction of a measure supported on a real line, on a half-line or on an
interval from prescribed set of moments with the Boundary control approach to a dynamic
inverse problem for a dynamical system with discrete time associated with Jacobi matrices. We
show that the solution of corresponding truncated moment problems is equivalent to solving
some generalized spectral problems.

1. Introduction
In [14] the authors put forward an approach to Hamburger, Stieltjes and Hausdorff moment
problems based on their relationships with inverse problems for dynamical systems with discrete
time associated with Jacobi matrices. In the present paper we utilize some ideas from [12]
about de Branges spaces associated with such dynamical systems and extend and elaborate
results obtained in [14]. We begin with introducing moment problems and spaces of polynomials
associated with it, dynamical systems with discrete time associated with Jacobi matrices and
de Branges spaces of analytic functions.

1.1. Classical moment problems.
For a given a sequence of numbers s0, s1, s2, . . . called moments, a solution of a Hamburger
moment problem [1, 18] is a Borel measure dρ(λ) on R such that

sk =

∞∫
−∞

λk dρ(λ), k = 0, 1, 2, . . . (1)

The measure is a solution to Stieltjes or Hausdorff moment problems provided supp dρ ⊂ (0,+∞)
or supp dρ ⊂ (0, 1) respectively; in these cases the moments are called Hamburger, Stieltjes or
Hausdorff.

Following [18, 17] we denote by C[X] the set of complex polynomials and by CN [X] the set
of polynomials of order less than or equal to N . The moments {sk}∞k=0 determine on C[X]
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the bilinear form by the rule: for F,G ∈ C[X], F (λ) =
∑N−1

n=0 αnλ
n, G(λ) =

∑N−1
n=0 βnλ

n, one
defines

〈F,G〉 =
N−1∑
n,m=0

sn+mαnβm. (2)

Thus this quadratic form is determined by the following (semi-infinite) Hankel matrix:

S =


s0 s1 s2 s3 . . .
s1 s2 s3 . . . . . .
s2 s3 . . . . . . . . .
s3 . . . . . . . . . . . .
. . . . . . . . . . . . . . .

 (3)

1.2. Initial boundary value problems associated with Jacobi matices.
An initial boundary value problem (IBVP) for an auxiliary dynamical system with discrete time
for a Jacobi matrix is set up in the following way: for a given sequence of positive numbers
{a0, a1, . . .} (in what follows we assume a0 = 1) and real numbers {b1, b2, . . .}, we denote by A
the Jacobi operator, defined on l2, which has a matrix form:

A =


b1 a1 0 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 a3 0 . . .
. . . . . . . . . . . . . . . . . .

 (4)

All our considerations will be local, so when coefficients aj , bj are such that Jacobi matrix is in
limit circle case, by A we can assume any self-adjoint extension. For N ∈ N, by AN we denote
the N ×N Jacobi matrix which is a block of (4) consisting of the intersection of first N columns
with first N rows of A. We consider the dynamical system with discrete time associated with
AN : 

vn,t+1 + vn,t−1 − anvn+1,t − an−1vn−1,t − bnvn,t = 0, t ∈ N ∪ {0}, n ∈ 1, . . . , N,

vn,−1 = vn, 0 = 0, n = 1, 2, . . . , N + 1,

v0, t = ft, vN+1, t = 0, t ∈ N0,

(5)

where f = (f0, f1, . . .) is a boundary control. The solution to (5) is denoted by vf . Note that
(5) is a discrete analog of dynamical system with boundary control for a wave equation on an
interval [3, 8].

The operator corresponding to a finite Jacobi matrix we also denote by AN : RN 7→ RN , it
is given by {

(Aψ)n = anψn+1 + an−1ψn−1 + bnψn, 2 6 n 6 N − 1,

(Aψ)1 = b1ψ1 + a1ψ2, n = 1,
(6)

and the Dirichlet condition at the ”right end”:

ψN+1 = 0. (7)

We also consider the dynamical system corresponding to a semi-infinite Jacobi matrix:
un,t+1 + un,t−1 − anun+1,t − an−1un−1,t − bnun,t = 0, t ∈ N ∪ {0}, n ∈ 1, . . . , N,

un,−1 = un, 0 = 0, n = 1, 2, . . . , N + 1,

u0, t = ft, t ∈ N0,

(8)

its solution is denoted by uf .
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1.3. De Branges spaces.
Here we provide the information on de Branges spaces in accordance with [16]. The entire
function E : C 7→ C is called a Hermite-Biehler function if |E(z)| > |E(z)| for z ∈ C+. We use

the notation F#(z) = F (z). The Hardy space H2 is defined by: f ∈ H2 if f is holomorphic in
C+ and supy>0

∫∞
−∞ |f(x + iy)|2 dx < ∞. Then the de Branges space B(E) consists of entire

functions such that:

B(E) :=

F : C 7→ C, F entire,

∫
R

∣∣∣∣F (λ)

E(λ)

∣∣∣∣2 dλ <∞, FE , F#

E
∈ H2

 .

The space B(E) with the scalar product

[F,G]B(E) =
1

π

∫
R

F (λ)G(λ)
dλ

|E(λ)|2

is a Hilbert space. For any z ∈ C the reproducing kernel is introduced by the relation

Jz(ξ) :=
E(z)E(ξ)− E(z)E(ξ)

2i(z − ξ)
. (9)

Then

F (z) = [Jz, F ]B(E) =
1

π

∫
R

Jz(λ)G(λ)
dλ

|E(λ)|2
.

We observe that a Hermite-Biehler function E(λ) defines Jz by (9).
In the second section we provide the results on solutions to (5) and (8) and introduce the

operators of the Boundary control method according to [13]; using the ideas of [12] we introduce
de Branges spaces corresponding to dynamical systems (8), (5) and give representation of
reproducing kernel in the space of polynomials and Christoffel symbols [17] in dynamic terms.
In the third section we outline the solution to a truncated moment problem following [14], more
specifically, we reduce it to the generalized spectral problem for special matrices constructed
from moments. In the last section we apply obtained results to the problem of uniqueness of
solutions to moment problems.

2. IBVP for a dynamical system associated with Jacobi matrix and de Branges
spaces.
We fix some positive integer T and denote by FT the outer space of systems (5), (8), the space
of controls: FT := RT , f ∈ FT , f = (f0, . . . , fT−1), we use the notation F∞ = R∞ when control
acts for all t > 0.

Definition 1. For f, g ∈ F∞ we define the convolution c = f ∗ g ∈ F∞ by the formula

ct =

t∑
s=0

fsgt−s, t ∈ N ∪ {0}.

The input 7−→ output correspondences in systems (5), (8) are realized by a response operators:
RTN , R

T : FT 7→ RT defined by rules(
RTNf

)
t

= vf1, t =
(
rN ∗ f·−1

)
t
, t = 1, . . . , T,(

RT f
)
t

= uf1, t = (r ∗ f·−1)t , t = 1, . . . , T,
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where rN = (rN0 , r
N
1 , . . . , r

N
T−1), r = (r0, r1, . . . , rT−1) are response vectors, convolution kernels of

response operators. These operators play the role of dynamic inverse data, corresponding inverse
problems were considered in [11, 13]. By choosing the special control f = δ := (1, 0, 0, . . .),
kernels of response operators can be determined as(

RTNδ
)
t

= vδ1, t = rNt−1,
(
RT δ

)
t

= uδ1, t = rt−1.

Let φn(λ) be a solution to the following difference equation{
anφn+1 + an−1φn−1 + bnφn = λφn,

φ0 = 0, φ1 = 1.
(10)

Denote by {λk}Nk=1 roots of the equation φN+1(λ) = 0, it is known [1, 18] that they are real and
distinct. We introduce vectors φn ∈ RN by the rule φni := φi(λn), n, i = 1, . . . , N, and define
numbers ρk by

(φk, φl) = δklρk, k, l = 1, . . . , N,

where (·, ·) is a scalar product in RN .

Definition 2. The set of pairs
{λk, ρk}Nk=1

is called spectral data of the operator AN .

Let Tk(2λ) be Chebyshev polynomials of the second kind, i.e. they satisfy{
Tt+1 + Tt−1 − λTt = 0,

T0 = 0, T1 = 1.
(11)

The spectral function of AN is introduced by the rule

ρN (λ) =
∑

{k |λk<λ}

1

ρk
, (12)

The spectral function of A (non unique if A is limit circle at infinity) is denoted by ρ(λ). In
[11, 13] by the application of Fourier expansion method following representations for the solution
vf and components of response vector were established:

Proposition 1. The solution to (5) and the kernel of RTN admit representations

vfn,t =

∞∫
−∞

t∑
k=1

Tk(λ)ft−kφn(λ) dρN (λ), (13)

rNt−1 =

∞∫
−∞

Tt(λ) dρN (λ), t ∈ N. (14)

Remark 1. The solution corresponding to semi-infinite Jacobi matrix uf and entries of the
kernel of RT admit representations (13), (14) with dρN substituted by dρ(λ).
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The inner space of dynamical system (5) is HN := RN , h ∈ HN , h = (h1, . . . , hN ), vf·, T ∈ HN

for all T . For the system (5) the control operator W T
N : FT 7→ HN is defined by the rule

W T
Nf := vfn, T , n = 1, . . . , N.

The set
UT := W T

NFT =
{
vf·,T
∣∣f ∈ FT}

is called reachable. For the system (8) we have that vf·, T ∈ HT , thus the control operator

W T : FT 7→ HT is introduced by

W T f := ufn, T , n = 1, . . . , T.

Everywhere below we substantially use the finiteness of the speed of wave propagation in
systems (5), (8) which implies the following dependence of inverse data on coefficients {an, bn}:
forM ∈ N, M 6 N, the element vf1,2M−1 depends on {a1, . . . , aM−1} , {b1, . . . , bM}. On observing
this we can formulate the following

Remark 2. Entries of the response vector (rN0 , r
N
1 , . . . , r

N
2N−2)) depend on {a0, . . . , aN−1},

{b1, . . . , bN}, and does not depend on the boundary condition at n = N + 1, the entries starting
from rN2N−1 does ”feel” the boundary condition at n = N + 1. Moreover,

ufn, t = vfn, t, n 6 t 6 N, and WN = WN
N . (15)

The connecting operator for the system (5) CTN : FT 7→ FT is defined via the quadratic form:
for arbitrary f, g ∈ FT we set(

CTNf, g
)
FT =

(
vf·, T , v

g
·, T

)
HN

=
(
W T
Nf,W

T
Ng
)
HN .

For the system (8) the connecting operator CT : FT 7→ FT is introduced by the rule:(
CT f, g

)
FT =

(
uf·, T , u

g
·, T

)
HT

=
(
W T f,W T g

)
HN .

In [11, 13] the following formulas were obtained:

Proposition 2. Connecting operators for systems (5), (8) admit spectral representations

{CTN}l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , T − 1, (16)

{CT }l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρ(λ), l,m = 0, . . . , T − 1,

and the following dynamic representation valid if T 6 N :

CT = CTN =


r0 + r2 + . . .+ r2T−2 r1 + . . .+ r2T−3 . . . rT + rT−2 rT−1
r1 + r3 + . . .+ r2T−3 r0 + . . .+ r2T−4 . . . . . . rT−2

· · · · ·
rT−3 + rT−1 + rT+1 . . . r0 + r2 + r4 r1 + r3 r2

rT + rT−2 . . . r1 + r3 r0 + r2 r1
rT−1 rT−2 . . . r1 r0

 (17)
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According to [2] the spectral measure dρ(λ) corresponding to operator A give rise to the
Fourier transform F : l2 7→ L2(R, dρ), defined by the rule:

(Fa)(λ) =
∞∑
n=0

akφk(λ), a = (a0, a1, . . .) ∈ l2, (18)

where φ is a solution to (10). The inverse transform and Parseval identity reads:

ak =

∞∫
−∞

(Fa)(λ)φk(λ) dρ(λ),

∞∑
k=0

akbk =

∞∫
−∞

(Fa)(λ)(Fb)(λ) dρ(λ). (19)

Note [12] that for λ ∈ C we have the following representation for the Fourier transform of the
solution to (5) at t = T :

(
Fvf·,T

)
(λ) =

T∑
k=1

Tk(λ)fT−k, λ ∈ C. (20)

Now we assume that T = N and introduce the linear manifold of Fourier images of states of
dynamical system (5) at time t = N , i.e. the Fourier image of the reachable set:

BN
J := FUN =

{(
Fuf·,N

)
(λ) | f ∈ FN

}
=
{(
Fvf·,N

)
(λ) | f ∈ FN

}
.

We equip BN
J with the scalar product defined by the rule:

[F,G]BN
J

=
(
CNf, g

)
FN , F,G ∈ BN

J , (21)

F (λ) =
N∑
k=1

Tk(λ)fN−k, G(λ) =
N∑
k=1

Tk(λ)gN−k, f, g ∈ FN .

Evaluating (21) making use of (19) yields:

[F,G]BN
J

=
(
vf·,N , v

g
·,T

)
HN

=
(
uf·,N , u

g
·,T

)
HN

=

∞∫
−∞

(Fuf·,N )(λ)(Fug·,N )(λ) dρ(λ)

=

∞∫
−∞

F (λ)G(λ) dρ(λ) =

∞∫
−∞

F (λ)G(λ) dρN (λ). (22)

On comparing (2) and (22) we see that:

[F,G]BN
J

= 〈F,G〉 =

N−1∑
n,m=0

sn+mαnβm =

∞∫
−∞

F (λ)G(λ) dρ(λ). (23)

In [13] the authors proved the following
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Theorem 1. The vector (r0, r1, r2, . . . , r2N−2) is a response vector for the dynamical system (5)
if and only if the matrix CT (with T = N) defined by (16), (17) is positive definite.

This theorem shows that (22) is a scalar product in BN
J . But we can say even more [12]:

Theorem 2. By dynamical system with discrete time (8) one can construct the de Branges
space

BN
J :=

{(
Fuf·,N

)
(λ) | f ∈ FN

}
=

{
N∑
k=1

Tk(λ)fN−k | f ∈ FN
}
.

As a set of functions it coincides with the space of Fourier images of states of dynamical system
(8) at time N (the Fourier image of a reachable set) and is the set of polynomials with real
coefficients of the order less or equal to N − 1. The norm in BN

J is defined via the connecting
operator:

[F,G]BN
J

:=
(
CNf, g

)
FN , F,G ∈ BN

J ,

where

F (λ) =

N∑
k=1

Tk(λ)fN−k, G(λ) =

N∑
k=1

Tk(λ)gN−k, f, g ∈ FN .

The reproducing kernel has a form

Jz(λ) =
N∑
k=1

Tk(λ)jzN−k,

where jz is a solution to Krein-type equation

CN jz =


TN (z)
TN−1(z)
·
T1(z)

.
Note [12, 14] that control jz drives the system (8) to special state φ, that is:(

WNjz
)
i

=
(
WN
N j

z
)
i

= φi(z), i = 1, . . . , N. (24)

Thus the reproducing kernel in CN [X] (or in BN
J ) is given by

KN (z, λ) =

(CN)−1

TN (z)
TN−1(z)
·
T1(z)

,

TN (λ)
TN−1(λ)
·

T1(λ)


 . (25)

Remark 3. The space of complex polynomials CN [X] with scalar product defined by matrix S is
a de Branges space BN

J where scalar product and reproducing kernel are given by (23) and (25).

Definition 3. The n−th Christoffel function is defined by the rule

κn(λ) =

(
N∑
k=1

φ2k(λ)

)−1
.

From (24) it immediately follows that

κn(λ) = KN (λ, λ) =

(CN)−1

TN (λ)
TN−1(λ)
·

T1(λ)

,

TN (λ)
TN−1(λ)
·

T1(λ)


 .

Different formulas for reproducing kernel and Christoffel functions are derived in [18, 17].
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3. Truncated moment problem. Recovering Dirichlet spectral data.
We observe the following: in the moment problem we are given the sequence of moments (1),
and in the inverse dynamic problem for systems (5), (8) we are given a response vector [11, 13],
whose spectral representation has a form (14). Thus the knowledge of moments {s0, s1, . . .}
implies a possibility to calculate the response vector {r0, r1, . . .} by (14). Note that Chebyshev
polynomials of the second kind {T1(λ), T2(λ), . . . Tn(λ)} (see (11)) are related to {1, λ, λn−1} by
the following formula

T1(λ)
T2(λ)
. . .
Tn(λ)

 = Λn


1
λ
. . .
λn−1

 =


1 0 . . . 0
a21 1 . . . 0
. . .
an1 an2 . . . 1




1
λ
. . .
λn−1

 . (26)

Proposition 3. Entries of the matrix Λn ∈ Rn×n are given by

Λn = aij =


0, if i > j,

0, if i+ j is odd,

Cji+j
2

(−1)
i+j
2

+j .

(27)

entries of the response vector are related to moments by the rule:
r0
r1
. . .
rn−1

 = Λn


s0
s1
. . .
sn−1

 . (28)

Definition 4. By a solution of a truncated moment problem of order N we call a Borel measure
dρ̃N (λ) on R such that equalities (1) with this measure hold for k = 0, 1, . . . , 2N.

Remark 4. Results from [11, 13] imply that from the finite set of moments {s0, s1, . . . , s2N−2},
or what is equivalent from {r0, r1, . . . , r2N−2}, it is possible to recover Jacobi matrix AN ∈ RN×N ,
whose elements can be thought of as a coefficients in dynamical system (5) with Dirichlet
boundary condition at n = N + 1, or N ×N block in semi-infinite Jacobi matrix in (5).

This theorem and formulas for the entries of Jacobi matrix obtained in [13] implies the
following procedure of solving the truncated moment problem:

• 1) Calculate (r0, r1, r2, . . . , r2N−2) from {s0, s1, . . . , s2N−2} by using (28).

• 2) Recover N ×N Jacobi matrix AN using formulas for ak, bk from [13]

• 3) Recover spectral measure for finite Jacobi matrix AN prescribing arbitrary selfadjoint
condition at n = N + 1. Or one can do

• 3’) Extend Jacobi matrix AN to finite Jacobi matrix AM , M > N , prescribe arbitrary
selfadjoint condition at n = M + 1 and recover the spectral measure of AM .

• 3”) Extend Jacobi matrix AN to infinite Jacobi matrix A, and recover the spectral measure
of A.

Every measure obtained in 3), 3′), 3′′) gives a solution to the truncated moment problem. Below
we propose a different approach: we recover the spectral measure corresponding to Jacobi matrix
directly from moments (from the operator CN ), without recovering the Jacoi matrix itself.

Agreement 1. We assume that controls f ∈ FN , f = (f0, . . . , fN−1) are extended: f =
(f−1, f0, . . . , fN−1, fN ), where f1 = fN = 0.
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We introduce the special space of controls FN0 =
{
f ∈ FT | f0 = 0

}
and the operator

D : FT 7→ FT acting by
(Df)t = ft+1 + ft−1.

The following statements can be easily proved using arguments from [13]:

Proposition 4. The operator WN maps FN isomorphically onto HN and FN0 maps
isomorphically onto HN−1.

Proposition 5. On the set FT0 the following relation holds:

WNDf = DWNf, f ∈ FN0 . (29)

Taking f, g ∈ FT0 we can evaluate the quadratic form, bearing in mind (29):(
CNDf, g

)
FN =

(
WNDf,WNg

)
HN =

(
DWNf,WNg

)
HN−1 =

(
AN−1vf , vg

)
HN−1

. (30)

The last equality in (30) means that only AN−1 block from the whole matrix AN is in use. Then
it is possible to perform the spectral analysis of AN−1 using the classical variational approach,
the controllability of the system (5) (see Proposition 4) and the representation (30), see also [5].
The spectral data of Jacobi matrix AN−1 with Dirichlet boundary condition at n = N can be
recovered by the following procedure:

1) The first eigenvalue is given by

λN−11 = min
f∈FN

0 , (CNf,f)FN=1

(
CNDf, f

)
FN . (31)

2) Let f1, be the minimizer of (31), then

ρ1 =
(
CNf1, f1

)
FN .

3) The second eigenvalue is given by

λN−12 = min
f∈FN

0 ,(CNf,f)FN=1

(CNf,fl)FN=0

(
CNDf, f

)
FN . (32)

4) Let f2, be the minimizer of (32), then

ρ2 =
(
CT f2, f2

)
FT .

Continuing this procedure, one recovers the set {λN−1k , ρk}N−1k=1 and construct the measure
dρN−1(λ) by formula (12).

Remark 5. The measure, constructed by the above procedure solves the truncated moment
problem for the set of moments {s0, s1, . . . , s2N−4}.

By fk, k = 1, . . . , N we denote the control that drive system (5) to prescribed state (see
(10)):

W T fk = φk, k = 1, . . . , N.

Due to Proposition 4, such a control exists and is unique for every k. The remarkable fact
that these controls as well as the spectrum of AN can be found from Euler-Lagrange equations
for the problem of the minimization of a functional

(
CNDf, f

)
FN in FN0 with the constrain
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(
CT f, f

)
FN = 1. Similar method of deriving equations which can be used for recovering of

spectral data was used in [4]. We introduce the operator

BN =


cN,N+1 + cN,N−1 cN,N + cN,N−2 . . . cN,3 + cN,1 cN,2

cN−1,N+1 + cN−1,N−1 . . . . . . cN−1,3 + cN−1,1 cN−1,2
· · . . . · ·

c1,N+1 + c1,N−1 c1,N + c1,N−2 . . . . . . c1,2

 . (33)

The following result was obtained in [14]:

Theorem 3. The spectrum of AN and (non-normalized) controls fk, k = 1, . . . , N are the
spectrum and eigenvectors of the following generalized spectral problem:

BNfk = λkC
Nfk, k = 1, . . . , N. (34)

Introduce the following Hankel matrices

SNm :=


s2N−2+m s2N−3+m . . . sN−1+m
s2N−3+m . . . . . . . . .
· · . . . s1+m

sN−1+m . . . s1+m sm

 , m = 0, 1, . . . ,

the matrix JN ∈ RN×N :

JN =


0 . . . 0 1
0 . . . 1 0
· · . . . ·
0 1 . . . 0
1 . . . 0 0

 , JNJN = IN =


1 0 . . . 0
0 1 . . . 0
· · . . . ·
0 . . . 1 0
0 . . . 0 1

 ,

and define
Λ̃N := JNΛNJN .

The remarkable fact is that the matrices BN , CN can be reduced to Hankel matrices by the
same linear transformation:

Theorem 4. The following relations hold:

CN = Λ̃NS
N
0

(
Λ̃N

)∗
,

BN = Λ̃NS
N
1

(
Λ̃N

)∗
.

Then the generalized spectral problem (34) upon introducing the notation gk =
(

Λ̃N

)∗
fk is

equivalent to the following generalized spectral problem:

SN1 gk = λkS
N
0 gk. (35)

Having found spectrum and non-nomalized controls from (34) one can recover the measure
of AN with Dirichlet boundary condition at n = N + 1 by the following procedure:

• 1) Normalize controls by choosing
(
CNfk, fk

)
FN = 1,

• 2) Observe that WNfk = αkφ
k for some αk ∈ R, where the constant is defined by

αk = (Rfk)N .

• 3) The norming coefficients are given by ρk = α2
k, k = 1, . . . , N .

• 4) Recover the measure by (12).
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4. Existence and uniqueness for Hamburger, Stieltjes and Hausdorff moment
problems.
We remind the reader that the moment problem is called determinate if it has only one solution,
otherwise it is called indeterminate. It is well-known fact [18, 17] that the uniqueness of the
solution to a moment problem is related to the index of the operator A. Here we provide well-
known results on discrete version of Weyl limit point-circle theory, answering the question on
the index of A, which will be subsequently used. By ξ(λ) we denote the solution to the difference
equation in (10) with Cauchy data ξ0 = −1, ξ1 = 0.

Proposition 6. The Jacobi operator A is limit circle at infinity (has index equal to one) if and
only if one of the following occurs:

1) φ(x), ξ(x) ∈ l2 for some x ∈ R,

2) φ(x), ϕ′(x) ∈ l2 for some x ∈ R,

3) ξ(x), ξ′(x) ∈ l2 for some x ∈ R.

In [14] the authors proved the following

Theorem 5. The set of numbers (s0, s1, s2, . . .) are moments of a spectral measure corresponding
to the Jacobi operator A if and only if

the matrix SN0 is positive definite for all N ∈ N. (36)

The Hamburger moment problem is indeterminate if and only if

lim
T→∞

((
CT
)−1

ΓT ,ΓT

)
FT

< +∞, lim
T→∞

((
CT
)−1

∆T ,∆T

)
FT

< +∞, (37)

where

ΓT :=


TT (0)
TT−1(0)
. . .
T1(0)

 , ΩT =


T ′T (0)
T ′T−1(0)
. . .
T ′1 (0)

 . (38)

Here we rewrite conditions (37) in more standard form:

Proposition 7. Conditions in (37) are equivalent to

lim
T→∞

detST−12

detST0
< +∞, lim

T→∞

detST−1,20

detST0
< +∞, (39)

where ST−1,20 =


s0 s2 . . . sT−2
s2 s4 . . . sT−1
. . .
sT−2 sT−1 . . . s2T−3

 .

Indeed, bearing in mind (26) and relations

CT = Λ̃TS
T
0 Λ̃∗T , Λ̃T = JTΛTJT ,

we pass to ((
CT
)−1

ΓT ,ΓT

)
FT

=

((
S̃T0

)−1
e1, e1

)
FT

, (40)((
CT
)−1

∆T ,∆T

)
FT

=

((
S̃T0

)−1
e2, e2

)
FT

. (41)
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The right hand side of above equalities can be computed using the following formula for a bilinear
form of inverse matrix. Namely, for the matrix D = (dij)

n
i,j=1 and vectors h = (h1, . . . , hn),

c = (c1, . . . , cn) we have that

(D−1b, c) =

det


0 h1 . . . hn
c1 d11 . . . d1n
. . .
cn dn1 . . . dnn


det

d11 . . . d1n
. . .
dn1 . . . dnn

 . (42)

Then applying (42) to (40), (41), we get (39).
The following result concerning the Stieltjes problem was formulated in [14], where the

authors obtained expressions for the mass M∞ and the length L∞ of a string in terms of
operators of the Boundary control method, associated with the dynamical system (8):

Theorem 6. The set of numbers (s0, s1, s2, . . .) are moments of a spectral measure, supported
on (0,+∞), corresponding to Jacobi operator A

matrices SN0 and SN1 are positive definite for all N ∈ N.

The Stieltjes moment problem is indeterminate if and only if the following relations hold:

M∞ = lim
T→∞

((
CT
)−1

ΓT ,ΓT

)
FT

< +∞, L∞ = lim
K→∞

((
CK
)−1 (

RK
)∗

ΓK , e1

)
(

(CK)−1 ΓK , e1

) < +∞. (43)

Notice that the the necessity of (43) is a subtle result, see (see [18, 17]) for details. Here we
reformulate (43):

Proposition 8. Conditions in (43) are equivalent to

lim
T→∞

detST−12

detST0
< +∞, lim

T→∞

detST0,0

detST−11

< +∞, (44)

where ST0,0 =


0 s0 . . . sT−2
s0 s1 . . . sT−1
. . .
sT−1 sT . . . s2T−2

 .

Indeed, we notice that the operator RT has a form of a Toeplitz matrix

RT =


0 0 . . . 0
r0 0 . . . 0
. . .
rT−2 rT−3 . . . 0

 .

Bearing in mind (26) and relations

CT = Λ̃TS
T
0 Λ̃∗T , Λ̃T = JTΛTJT ,
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we pass to ((
CT
)−1

ΓT , e1

)
FT

=

((
S̃T0

)−1
e1, eT

)
FT

,

((
CT
)−1

(RT )∗ΓT , e1

)
FT

=

((
S̃T0

)−1
g, eT

)
FT

.

where g = Λ−1T JT (RT )∗ΓT = (0, s0, s1, . . . , sT−2). Using (42) we obtain (44).

Remark 6. Condition ξ(0) ∈ l2 is equivalent to((
CT
)−1 (

RT
)∗

ΓT ,
(
RT
)∗

ΓT

)
FT

=

((
S̃T0

)−1
g, g

)
FT

<∞,

where g = (0, s0, s1, . . . , sT−2).

The following stetement was proved in [18], but we give a new proof in order to show that it
is a direct consequence of the spectral problem (34).

Proposition 9. Let {sk}∞k=0 be a set of Stieltjes moments, we set {hm}∞m=0 =
{s0, 0, s1, 0, s2, 0, s3, 0, . . . }. Then {hm}∞m=0 corresponds to a determinate Hamburger moment
problem if and only if {sk}∞k=0 corresponds to a determinate Stieltjes moment problem.

We use the spectral problem (35) with two matrices for Stiltjes moment problem:

S̃T0 =


s0 s1 . . . sT−1
s1 s2 . . . sT
. . .
sT−1 sT . . . s2T−2

 , S̃T1 =


s1 s2 . . . sT
s2 s3 . . . sT+1

. . .
sT sT+1 . . . s2T−1

 (45)

and two matrices for Hamburger moment problem:

H̃2T
0 =


s0 0 s1 . . . 0
0 s1 0 . . . sT
s1 0 s2 . . . 0
. . .
0 sT 0 . . . s2T−1

 , H̃2T
1 =


0 s1 0 . . . sT
s1 0 s2 . . . 0
0 s2 0 . . . sT+1

. . .
sT 0 sT+1 . . . 0

 (46)

Simple observation det H̃2T
0 = det S̃T0 det S̃T1 allows us to conclude that the set {hm}∞m=0 =

{s0, 0, s1, 0, s2, 0, s3, 0, . . . } indeed corresponds to Hamburger moment problem. Even more, if
we look for eigenvalues of (35) with Hamburger matrices (46), we see that

0 = det (λH̃2T
0 − H̃2T

1 ) = det


λs0 −s1 λs1 . . . −sT
−s1 λs1 −s2 . . . λsT
λs1 −s2 λs2 . . . −sT+1

. . .
−sT λsT −sT+1 . . . λs2T−1

 =

= det


λ2s0 − s1 0 λ2s1 − s2 . . . 0

0 s1 0 . . . λ2sT − sT+1

λ2s1 − s2 0 λ2s2 − s3 . . . 0
. . .
0 sT 0 . . . s2T−1

 = det (λ2ST0 − ST1 ) detST1 .
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The later means that if 0 < µ is an eigenvalue for (35) with Stieltjes matrices (45), then ±√µ –
are two eigenvalues for (35) with Hamburger matrices (46) and vise-versa.

To prove that Hamburger and Stieltjes problems are determinate simultaneously we note that

detH2T−1
2

detH2T
0

=
detST1 detST−12

detST0 detST1
=

detST−12

detST0

and

((
H̃2T

0

)−1
g, g

)
FT

=
1

detH2T
0

det


0 0 s0 . . . sT−1
0 s0 0 . . . 0
s0 0 s1 . . . sT
. . .
sT−1 0 sT . . . sT−1

 =
detST0 detST+1

0,0

detST0 detST1
=

detST+1
0,0

detST1
.

Using Theorem 7 for Stieltjes problem and Theroem 5 and Remark 5 for Hamburger we complete
the proof.

As we saw, the reproducing kernel KN (z, λ) has a form (25). Using (42) and carrying out
similar transformations, we obtain the following

Remark 7. The reproducing kernel admits the following representation:

KN (z, λ) =
1

detST0
det


0 1 z . . . zN−1

1 s0 s1 . . . sT−1
λ s1 s2 . . . sT
. . .
λN−1 sT−1 sT . . . s2T−2


In [14] the authors used (35) to prove the following

Theorem 7. The set of numbers (s0, s1, s2, . . .) are moments of a spectral measure, supported
on (0, 1), corresponding to operator A if and only if the condition

SN0 > SN1 > 0 holds for all N ∈ N

The Hausdorff moment problem is determinate.

Conclusion
In the present paper we considered the dynamical system (5) associated with Jacobi matrix
with the Dirichlet boundary condition at the ”right end”. In the third section it is shown how
to use the Boundary control method to recover the measure dρN of the operator AN (6), (7)
from the finite set of moments. After taking the limit dρN (λ) 7→ dρ∗(λ), where convergence is
understood in the week sense, we have two options: when A is in limit point case at infinity,
dρ∗(λ) is a unique solution to a moment problem, but when A is in limit circle case, dρ∗(λ) gives
certain distinguished solution (week limit of measures corresponding to operators with Dirichlet
condition). At the same time it is well-known [1, 18, 17] that the answer in Hamburger moment
problem is a spectral measures of any self-adjoint extension of Jacobi operator A.

The prospective problem is to use dynamic inverse data {r0, r1, . . .} of the dynamical system
(8) associated with A, which is obtained from the set of moments {s0, s1, . . .} by (28), for the
construction of the dynamic model of self-adjoint extensions of operator A in the spirit of [9, 10].
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